RU2603936C1 - Сварочная проволока с нанокомпозиционным покрытием для сварки высокопрочных сталей - Google Patents

Сварочная проволока с нанокомпозиционным покрытием для сварки высокопрочных сталей Download PDF

Info

Publication number
RU2603936C1
RU2603936C1 RU2015118691/02A RU2015118691A RU2603936C1 RU 2603936 C1 RU2603936 C1 RU 2603936C1 RU 2015118691/02 A RU2015118691/02 A RU 2015118691/02A RU 2015118691 A RU2015118691 A RU 2015118691A RU 2603936 C1 RU2603936 C1 RU 2603936C1
Authority
RU
Russia
Prior art keywords
rare
fluoride
metal
boride
particles
Prior art date
Application number
RU2015118691/02A
Other languages
English (en)
Inventor
Сергей Георгиевич Паршин
Алексей Сергеевич Майстро
Original Assignee
Сергей Георгиевич Паршин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сергей Георгиевич Паршин filed Critical Сергей Георгиевич Паршин
Priority to RU2015118691/02A priority Critical patent/RU2603936C1/ru
Application granted granted Critical
Publication of RU2603936C1 publication Critical patent/RU2603936C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

Изобретение может быть использовано при дуговой сварке и наплавке металлических деталей из высокопрочных сталей в среде защитного газа и под флюсом. Проволока состоит из металлического стержня с нанокомпозиционным покрытием, состоящим из металлической матрицы и наноразмерных частиц фторидов и боридов редкоземельных металлов с размером частиц менее 1000 нм, при следующем соотношении объемов матрицы и наноразмерных частиц в покрытии, %: металлическая матрица 55-96, наноразмерные частицы фторида или смеси фторидов редкоземельного металла 3-20, наноразмерные частицы борида или смеси боридов редкоземельного металла 1-25. Сварочная проволока позволяет увеличить прочность, пластичность и ударную вязкость сварных швов высокопрочных сталей. 2 з.п.ф-лы, 6 табл.

Description

Предлагаемое изобретение относится преимущественно к машиностроению и может быть применено при дуговой сварке и наплавке металлических деталей в среде защитного газа и под флюсом.
Известен сварочный материал (см. Патон Б.Е., Мусияченко В.Ф., Кирьяков В.М. и др. Авторское свидетельство СССР №1447619 от 08.10.1986 г. Опубликовано 30.12.1988 г. Бюл. №48). Указанный сварочный материал состоит из легированного стального сердечника и напыленного многослойного покрытия, в состав которого входят редкоземельные металлы и никель. Применение материала позволяет увеличить сопротивляемость высокопрочных сталей возникновению холодных трещин за счет измельчения микроструктуры при образовании интерметаллидов типа (РЗМ)n×Nim. Однако, указанный материал недостаточно эффективно влияет на модифицирование шва при сварке высокопрочных сталей. Кроме того, материал получают путем вакуумного напыления РЗМ, что ограничивает область применения материала и увеличивает его стоимость.
Известна сварочная проволока (см. Сидлин З.А., Строев B.C., Иванов В.А. и др. Сварочная проволока. Авторское свидетельство СССР №469565 от 05.09.1975 г. Опубликовано 05.05.1975 г. Бюл. №17). Состав проволоки содержит бор, лантан и церий, что позволяет измельчать дендритную микроструктуру, раскислять сварочную ванну и повышать пластичность сварочного шва. Однако указанная проволока предназначена для сварки коррозионно-стойких высоколегированных сплавов и не может применяться при сварке низколегированных высокопрочных сталей.
Известна наноструктурированная сварочная проволока (см. Паршин С.Г. Наноструктурированная сварочная проволока. Патент РФ №2538228 от 01.07.2013 г. Опубликовано 10.01.2015 г. Бюл. №1), которая принята за прототип. Указанная проволока состоит из металлического стержня, на поверхность которого нанесено нанокомпозиционное покрытие. Покрытие выполнено электролитическим способом и включает металлическую матрицу с распределенными в ней наноразмерными частицами фторида металла и редкоземельных металлов. Проволока по прототипу позволяет улучшить капельный перенос электродного металла и механические свойства сварных соединений. Однако указанная проволока недостаточно эффективно влияет на модифицирование микроструктуры при сварке легированных высокопрочных сталей, что не позволяет повысить пластичность и ударную вязкость сварных швов.
Техническим результатом предлагаемого изобретения является повышение механических свойств сварных соединений легированных высокопрочных сталей за счет комплексного модифицирования и рафинирования сварочной ванны путем нанесения на поверхность сварочной проволоки нанокомпозиционного покрытия, содержащего наноразмерные частицы фторида и борида редкоземельного металла.
Сущность предлагаемого изобретения заключается в том, что на поверхности металлического стержня размещают нанокомпозиционное покрытие, состоящее из металлической матрицы, наноразмерных частиц фторидов и боридов редкоземельных металлов с размером частиц менее 1000 нм. В отличие от прототипа нанокомпозиционное покрытие содержит наноразмерные частицы фторида редкоземельного металла и борида редкоземельного металла при следующем соотношении объемов матрицы и наноразмерных частиц в покрытии, %:
Металлическая матрица - 55-96
Наноразмерные частицы фторида редкоземельного металла - 3-20
Наноразмерные частицы борида редкоземельного металла - 1-25.
В качестве фторида редкоземельного металла могут применяться: фторид лантана, фторид иттрия, фторид церия, фторид тория. В качестве борида редкоземельного металла могут применяться: борид лантана, борид иттрия, борид церия, борид тория.
При объеме фторида редкоземельного металла менее 3% отсутствует воздействие нанокомпозиционного покрытия на процесс капельного перехода и удаление водорода, а при увеличении объема более 20% снижается стабильность горения дуги. При объеме борида редкоземельного металла менее 1% снижается влияние покрытия на процессы модифицирования и улучшения микроструктуры наплавленного металла, а при увеличении объема более 25% происходит ухудшение механических свойств наплавленного металла и электрической проводимости композиционного покрытия.
Такое сочетание известных и новых признаков позволяет улучшить механические свойства сварного шва легированных высокопрочных сталей. Это становится возможным, поскольку проволока содержит систему комплексных модификаторов, которые обладают модифицирующим и рафинирующим воздействием. Для улучшения механических свойств в расплавленную сталь необходимо вводить комплексные модификаторы, которые содержат систему элементов, в которую могут входить бор, редкоземельные металлы, титан, цирконий и щелочноземельные металлы, например: La-B, Ti-B-Ca, Mg-Zr-Се, La-B-Ca и др. (см. Задиранов А.Н., Кац A.M. Теоретические основы кристаллизации металлов и сплавов. Москва: РУДН, 2008. - 225 с.).
Введение комплексных модификаторов позволяет одновременно измельчать и рафинировать микроструктуру легированных сталей. Модификация (измельчение) зерна за счет введения модификаторов основана на изменении поверхностной энергии на границе кристалл-расплав, уменьшении поверхностного натяжения расплава и увеличения количества центров кристаллизации. Одновременное введение фторида и борида редкоземельного металла позволяет изменить свойства поверхности на границе твердой и жидкой фазы, а также образовать дополнительные центры кристаллизации за счет тугоплавких боридов и образующихся нитридов. Введение фторида редкоземельного металла позволяет уменьшить количество остаточного диффузионного водорода в сварочном шве за счет связывания водорода H2 в плазме сварочной дуги в нерастворимые в сварочной ванне соединения HF.
Рафинирование заключается в удалении оксидов и сульфидов железа: FeO, FeS из сварочной ванны путем металлургических реакций с переходными металлами. Указанные реакции позволяют уменьшить количество легкоплавких эвтектик и ликваций в наплавленном металле сварного шва, что снижает межкристаллитную и межзеренную химическую неоднородность и приводит к повышению прочности межзеренных границ. Измельчение зерна в результате введения модификаторов приводит к увеличению протяженности межзеренных границ и уменьшению их ширины, что также увеличивает прочность межзеренных границ.
Увеличение прочности межзеренных границ в результате модифицирования микроструктуры, уменьшение количества остаточных газов H2, N2, O2 и рафинирование сварочной ванны по извлечению оксидов и сульфидов железа позволяет повысить пластичность, ударную вязкость сварных швов и их сопротивляемость хрупкому разрушению и возникновению холодным трещинам.
Термодинамические расчеты фазового состава металлургических систем при помощи программы FACT (Facility for the Analysis of Chemical Thermodynamics) показывают, что в равновесной системе Fe-LaF3-LaB6 при температуре сварочной ванны 1000-3000 K образуется значительное количество свободного лантана La и бора B в конденсированной фазе, табл. 1.
Figure 00000001
Аналогичное образование свободных элементов РЗМ: церия Ce, иттрия Y, тория Th и бора B в конденсированной фазе, согласно расчетам, отмечается в системах: Fe-(РЗМ)F3-CeB6, Fe-(РЗМ)F3-YB6, Fe-(РЗМ)F3-ThB6, основу которых составляют тугоплавкие гексабориды: LaB6пл=2715°C), СеВ6пл=2190°C), YB6пл=2600°C), ThB6пл=2450°C).
Термодинамические расчеты показывают, что наличие в сварочной ванне La и В приводит к образованию нитридов LaN, BN в системе N2-LaF3-LaB6, которые имеют высокие температуры плавления: LaN(Тпл=2450°C), BN(Тпл=3000°C), табл. 2.
Figure 00000002
Аналогичное образование нитридов РЗМ: церия Се, иттрия Y, тория Th и бора B в конденсированной фазе, согласно расчетам, отмечается в системах: Fe-(РЗМ)F3-CeB6, Fe-(РЗМ)F3-YB6, Fe-(РЗМ)F3-ThB6. Нитриды церия, иттрия, тория также имеют высокие температуры плавления: CeN(Тпл=2570°C), YN(Тпл=2670°C), ThN(Тпл=2820°C) (см. Двойные и тройные карбидные и нитридные системы переходных металлов. Холлек X. /пер. с нем. Под ред. Левинского Ю.М., М.: Металлургия, 1988. - 319 с.).
Тугоплавкие нитриды редкоземельных металлов (РЗМ) и бора увеличивают количество центров кристаллизации в сварочной ванне, что приводит к модифицированию (измельчению) микроструктуры сварного шва.
Наличие в сварочной ванне редкоземельного металла, например La, Се, Y, Th способствует интенсивным металлургическим реакциям по десульфурации - удалению сульфидов железа FeS путем связывания серы в тугоплавкие сульфиды редкоземельных металлов по реакциям:
Figure 00000003
Термодинамические расчеты констант равновесия металлургических реакций Kр показывают высокую вероятность указанных реакций по десульфурации в сварочной ванне при Т=1000-2000 K, табл. 3.
Figure 00000004
В результате реакций 1-4 в сварочной ванне уменьшается содержание легкоплавкого сульфида FeS(Тпл=1194°C) путем образования тугоплавких сульфидов РЗМ: La2S3(Tпл=2150°C), Ce2S3(Tпл=1890°C), Y2S3(Tпл=1925°C), Th2S3(Tпл=1950°C). Уменьшение растворенного сульфида FeS в сварочной ванне снижает концентрацию легкоплавких эвтектик при первичной кристаллизации, что снижает межкристаллитную и межзеренную химическую неоднородность. Это способствует увеличению прочности и пластичности металла сварного шва (см. Гуляев А.П. Металловедение. М.: Металлургия, 1986. - 272 с.).
Наличие в сварочной ванне редкоземельного металла позволяет интенсифицировать металлургические реакции по раскислению железа:
Figure 00000005
Термодинамические расчеты констант равновесия металлургических реакций Кр показывают высокую вероятность указанных реакций при Т=1000-2000 К, табл. 4.
Figure 00000006
В результате реакций раскисления образуются тугоплавкие оксиды РЗМ: La2O3пл=2280°C), CeO2пл=2600°C), Y2O3(Tпл=2430°C), ThO2пл=3050°C). Образование оксидов РЗМ снижает концентрацию растворенного в сварочной ванне оксида железа FeO(Тпл=1377°C) и способствует увеличению дополнительных центров кристаллизации. Это также улучшает механические свойства сварного шва.
Одной из причин хрупкого разрушения и появления холодных трещин при сварке легированных высокопрочных сталей является наличие остаточного водорода и азота. Термодинамические расчеты показывают, что при дуговой сварке в диапазоне температур 1000-6000 K в газовой фазе при равновесной концентрации веществ в системах: H2-LaF3-LaB6, N2-LaF3-LaB6, парциальное давление молекулярного водорода и азота уменьшается, табл. 5.
Figure 00000007
Аналогичное уменьшение парциального давления молекулярного водорода и азота происходит в системах: H2-(РЗМ)F3-CeB6, N2-(РЗМ)F3-CeB6; H2-(РЗМ)F3-YB6, N2-(РЗМ)F3-YB6; H2-(РЗМ)F3-ThB6, N2-(РЗМ)F3-ThB6. Согласно закону Сивертса растворимость молекулярного водорода и азота в сварочной ванне пропорциональна квадратному корню из парциального давления газа, поэтому уменьшение парциального давления газов Н2, N2 над сварочной ванной уменьшает концентрацию остаточных газов в сварном шве, что улучшает сопротивляемость хрупкому разрушению.
Примером применения предлагаемой проволоки является механизированная сварка пластин толщиной 14 мм из стали 10ХСНД в среде смеси: аргон 75% + CO2 25% с применением полуавтомата ESAB Origo MIG L405. Для получения проволок с нанокомпозиционными покрытиями использовали сварочную проволоку Св-08Г2С без покрытия диаметром 1,2 мм. Нанокомпозиционные покрытия наносили электрохимическим способом из коллоидных никельсодержащих электролитов с нанодисперсными частицами фторида лантана LaB6 и гексаборида лантана LaB6. Для механических испытаний образцов по ГОСТ 6996-66 применяли разрывную машину «Super L 60», маятниковый копер РН450, твердомер «DuraScan-20», табл. 6.
Figure 00000008
Таким образом, предлагаемая проволока обеспечивает технический эффект, который выражается в улучшении механических свойств сварных соединений высокопрочных сталей, может быть изготовлена и применена с использованием известных в технике средств, следовательно, она обладает промышленной применимостью.

Claims (3)

1. Проволока для сварки и наплавки высокопрочных сталей, содержащая металлический стержень и электролитически нанесенное на него нанокомпозиционное покрытие, включающее металлическую матрицу с распределенными в ней наноразмерными частицами, отличающаяся тем, что нанокомпозиционное покрытие содержит наноразмерные частицы фторида или смеси фторидов редкоземельного металла и наноразмерные частицы борида или смеси боридов редкоземельного металла при следующем соотношении объемов матрицы и наноразмерных частиц в покрытии, %:
Металлическая матрица 55-96
Наноразмерные частицы фторида или смеси фторидов 3-20
Наноразмерные частицы борида или смеси боридов 1-25.
2. Проволока по п. 1, отличающаяся тем, что фторид редкоземельного металла выбран из группы, включающей фторид лантана, фторид иттрия, фторид церия.
3. Проволока по п. 1, отличающаяся тем, что борид редкоземельного металла выбран из группы, включающей борид лантана, борид иттрия, борид церия.
RU2015118691/02A 2015-05-19 2015-05-19 Сварочная проволока с нанокомпозиционным покрытием для сварки высокопрочных сталей RU2603936C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015118691/02A RU2603936C1 (ru) 2015-05-19 2015-05-19 Сварочная проволока с нанокомпозиционным покрытием для сварки высокопрочных сталей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015118691/02A RU2603936C1 (ru) 2015-05-19 2015-05-19 Сварочная проволока с нанокомпозиционным покрытием для сварки высокопрочных сталей

Publications (1)

Publication Number Publication Date
RU2603936C1 true RU2603936C1 (ru) 2016-12-10

Family

ID=57776755

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015118691/02A RU2603936C1 (ru) 2015-05-19 2015-05-19 Сварочная проволока с нанокомпозиционным покрытием для сварки высокопрочных сталей

Country Status (1)

Country Link
RU (1) RU2603936C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106808114A (zh) * 2017-03-29 2017-06-09 北京工业大学 一种环保型无镀铜实心焊丝表面纳米复合涂层
RU2766942C1 (ru) * 2020-12-16 2022-03-16 Сергей Георгиевич Паршин Композиционная проволока для наплавки алюмоматричного интерметаллидного сплава

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU671960A1 (ru) * 1977-12-01 1979-07-05 Ордена Ленина И Ордена Трудового Красного Знамени Институт Электросварки Им. Е.О.Патона Ан Украинской Сср Электродна проволока
CN1586790A (zh) * 2004-07-14 2005-03-02 北京京大瑞博资源应用技术研究院 一种纳米焊条药皮配方
RU2294272C1 (ru) * 2005-11-01 2007-02-27 Сергей Георгиевич Паршин Сварочная активированная проволока
RU2415742C2 (ru) * 2009-06-30 2011-04-10 Сергей Георгиевич Паршин Наноструктурированная композиционная проволока
RU2538228C1 (ru) * 2013-07-01 2015-01-10 Общество с ограниченной ответственностью "Северо-Западный институт сварки и наноматериалов" (ООО "ИСНАНО") Наноструктурированная сварочная проволока

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU671960A1 (ru) * 1977-12-01 1979-07-05 Ордена Ленина И Ордена Трудового Красного Знамени Институт Электросварки Им. Е.О.Патона Ан Украинской Сср Электродна проволока
CN1586790A (zh) * 2004-07-14 2005-03-02 北京京大瑞博资源应用技术研究院 一种纳米焊条药皮配方
RU2294272C1 (ru) * 2005-11-01 2007-02-27 Сергей Георгиевич Паршин Сварочная активированная проволока
RU2415742C2 (ru) * 2009-06-30 2011-04-10 Сергей Георгиевич Паршин Наноструктурированная композиционная проволока
RU2538228C1 (ru) * 2013-07-01 2015-01-10 Общество с ограниченной ответственностью "Северо-Западный институт сварки и наноматериалов" (ООО "ИСНАНО") Наноструктурированная сварочная проволока

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106808114A (zh) * 2017-03-29 2017-06-09 北京工业大学 一种环保型无镀铜实心焊丝表面纳米复合涂层
CN106808114B (zh) * 2017-03-29 2019-09-03 北京工业大学 一种环保型无镀铜实心焊丝表面纳米复合涂层
RU2766942C1 (ru) * 2020-12-16 2022-03-16 Сергей Георгиевич Паршин Композиционная проволока для наплавки алюмоматричного интерметаллидного сплава

Similar Documents

Publication Publication Date Title
Arivazhagan et al. A comparative study on the effect of GTAW processes on the microstructure and mechanical properties of P91 steel weld joints
Suito et al. Influence of oxide particles and residual elements on microstructure and toughness in the heat-affected zone of low-carbon steel deoxidized with Ti and Zr
RU2603936C1 (ru) Сварочная проволока с нанокомпозиционным покрытием для сварки высокопрочных сталей
EP1958729A1 (en) Weld metal of high-strength Cr-Mo steel
Kozyrev et al. New carbon-fluorine containing additive for the welding fluxes
RU2766942C1 (ru) Композиционная проволока для наплавки алюмоматричного интерметаллидного сплава
EP2952286B1 (en) Weld metal and welded structure
RU2613243C2 (ru) Композиционная сварочная проволока для дуговой сварки легированных сталей высокой прочности
RU2610374C2 (ru) Сварочная композиционная проволока для дуговой сварки трубных и криптоустойчивых сталей
EP3103888A1 (en) High alloy for oil well use
Jiménez-Jiménez et al. Improvement of the toughness and ductility of the weld beads by inducing growth of acicular ferrite with TiO2-nanoparticles during submerged arc welding
RU2623981C2 (ru) Шихта порошковой проволоки
RU2711286C1 (ru) Композиционная проволока для дуговой наплавки
Saenko et al. Electron beam welding of sheet commercial titanium VT1-0, hardened by nitrogen in the process of arc-slag remelting, and properties of produced joints
RU2632728C2 (ru) Жаропрочный сплав
JP5213517B2 (ja) 溶接熱影響部靭性に優れた鋼材
RU2579710C1 (ru) Жаропрочный сплав
RU2577643C1 (ru) Жаропрочный сплав
JP5066370B2 (ja) 被覆アーク溶接棒用希土類金属合金粉および低水素系被覆アーク溶接棒
RU2579403C1 (ru) Жаропрочный сплав
Bang et al. Effects of welding parameters on tensile strength of weld metal in flux cored arc welding
Yushchenko et al. Investigation of composition and structure of weld metal of Kh20N9G2B type made in wet underwater welding
Jia et al. Effects of the beam offset on microstructure and properties of electron beam welded tantalum and Inconel 718 joints
RU2632497C2 (ru) Жаропрочный сплав
RU2579711C1 (ru) Жаропрочный сплав

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170520