RU2602342C2 - Устройство определения углов пространственной ориентации летательного аппарата - Google Patents

Устройство определения углов пространственной ориентации летательного аппарата Download PDF

Info

Publication number
RU2602342C2
RU2602342C2 RU2014152747/08A RU2014152747A RU2602342C2 RU 2602342 C2 RU2602342 C2 RU 2602342C2 RU 2014152747/08 A RU2014152747/08 A RU 2014152747/08A RU 2014152747 A RU2014152747 A RU 2014152747A RU 2602342 C2 RU2602342 C2 RU 2602342C2
Authority
RU
Russia
Prior art keywords
block
input
output
matrix
squaring
Prior art date
Application number
RU2014152747/08A
Other languages
English (en)
Other versions
RU2014152747A (ru
Inventor
Виктор Федорович Заец
Олег Николаевич Корсун
Владимир Сергеевич Кулабухов
Николай Алексеевич Туктарев
Олег Павлович Лысюк
Александр Викторович Стуловский
Original Assignee
Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика") filed Critical Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика")
Priority to RU2014152747/08A priority Critical patent/RU2602342C2/ru
Publication of RU2014152747A publication Critical patent/RU2014152747A/ru
Application granted granted Critical
Publication of RU2602342C2 publication Critical patent/RU2602342C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/548Trigonometric functions; Co-ordinate transformations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/48Analogue computers for specific processes, systems or devices, e.g. simulators
    • G06G7/78Analogue computers for specific processes, systems or devices, e.g. simulators for direction-finding, locating, distance or velocity measuring, or navigation systems

Abstract

Изобретение относится к вычислительной технике и может быть использовано на борту летательного аппарата, а также при моделировании динамики и управлении полетами летательных аппаратов. Технический результат - увеличение точности определения углов пространственной ориентации летательных аппаратов. Устройство определения углов пространственной ориентации летательного аппарата, содержащее блок датчиков угловых скоростей и блок интегрирования матрицы направляющих косинусов, дополнительно включает в себя шесть блоков возведения в квадрат, два умножителя, пять сумматоров, четыре делителя, три устройства извлечения квадратного корня, три инвертора и три блока определения арккосинуса, соединенных между собой таким образом, чтобы по сигналам с блока интегрирования матрицы направляющих косинусов обеспечить определение углов крена, тангажа и рыскания. Для определения углов пространственной ориентации предлагаемое устройство реализует использование максимально возможного числа элементов матрицы направляющих косинусов, в результате чего, выполняя прямые многократные измерения с учетом случайных погрешностей, применяя усреднение полученных значений по N измерениям, уменьшает дисперсию оценки сигнала в N раз. 1 ил.

Description

Изобретение относится к вычислительной технике и может быть использовано на борту летательного аппарата, а также при моделировании динамики и управления полетами летательных аппаратов.
Определение углов пространственной ориентации летательного аппарата (ЛА) относительно земной нормальной системы координат является важной задачей как в процессе выполнения полета, так и при математическом и полунатурном моделировании движения ЛА. Углы ориентации могут быть определены с использованием уравнений Эйлера, Пуассона и при помощи кватернионов. Наиболее простыми являются уравнения Эйлера, однако при углах тангажа, близких по модулю к 90°, они имеют точку особенности, что приводит к утрате работоспособности. Поэтому на практике для определения углов пространственной ориентации ЛА используют кватернионы или уравнения Пуассона. В последнем случае выполняется численное интегрирование дифференциальных уравнений для элементов матрицы направляющих косинусов, не имеющих особенных точек. При этом возникает задача определения углов пространственной ориентации, то есть углов тангажа υ, крена γ и рыскания ψ по вычисленным, с учетом угловых скоростей, элементам матрицы направляющих косинусов.
Существуют системы определения углов пространственной ориентации, использующие бесплатформенные инерциальные навигационные системы (БИНС), в которых реализуются матрицы направляющих косинусов с минимально возможным числом элементов (В.В. Матвеев, В.Я. Распопов. Основы построения бесплатформенных инерциальных навигационных систем, СПб, ГНЦ РФ ОАО «Концерн «ЦНИИ «Электроприбор», 2009, стр. 129).
Недостатком этих систем является то, что для определения трех углов пространственной ориентации ЛА используются только три элемента матрицы, то есть минимально возможное число элементов, что приводит к снижению точности системы.
Известна бесплатформенная инерциальная навигационная система, описанная в патенте US 5422817 от 1995 г., МПК G01C 25/00, содержащая акселерометры, гироскопы и вычислитель, позволяющая определить углы пространственной ориентации ЛА путем использования матрицы направляющих косинусов между связанной и земной системой координат.
Недостаток известной системы заключается в том, что с течением времени в ней происходит интегрирование шумов и ошибок датчиков, что, в свою очередь, приводит к возрастанию ошибки определения углов пространственной ориентации из-за выхода аргументов обратных тригонометрических функций из их области определений и нарушения ортонормированности матрицы направляющих косинусов.
Целью изобретения является повышение точности определения углов крена, курса и тангажа.
Поставленная цель достигается за счет того, что в устройство определения углов пространственной ориентации, содержащее блок датчиков угловых скоростей, блок интегрирования матрицы направляющих косинусов, дополнительно введены последовательно соединенные первый блок возведения в квадрат, первый и второй сумматоры, первый делитель, первое устройство извлечения квадратного корня и первый блок определения арккосинуса аргумента, два умножителя, последовательно соединенные третий сумматор, второй делитель и второй блок определения арккосинуса аргумента, последовательно соединенные второй блок возведения в квадрат, с выходом которого соединен второй вход первого сумматора, четвертый сумматор, второе устройство извлечения квадратного корня, третий делитель и третий блок определения арккосинуса аргумента, третий блок возведения в квадрат, выход которого подключен ко вторым входам второго и четвертого сумматоров, последовательно соединенные пятый сумматор, к первому, второму и третьему входам которого подключены выходы четвертого пятого и шестого блоков возведения в квадрат соответственно, четвертый делитель и третье устройство извлечения квадратного корня, выход которого подключен ко второму входу второго делителя, при этом ко вторым входам первого и четвертого делителей подключен выход четвертого сумматора, первый выход блока интегрирования матрицы направляющих косинусов подключен к четвертому входу данного блока, к входу первого блока возведения в квадрат и через первый инвертор ко второму входу первого блока определения арккосинуса аргумента, второй выход блока интегрирования матрицы направляющих косинусов подключен к пятому входу данного блока, к первому входу первого умножителя и к входу второго блока возведения в квадрат, третий выход блока интегрирования матрицы направляющих косинусов подключен к шестому входу данного блока, ко второму входу первого умножителя и к входу шестого блока возведения в квадрат, четвертый выход блока интегрирования матрицы направляющих косинусов подключен к седьмому входу данного блока, к первым входам второго умножителя и третьего блока возведения в квадрат и через второй инвертор ко второму входу третьего блока определения арккосинуса аргумента, пятый выход блока интегрирования матрицы направляющих косинусов подключен к восьмому входу данного блока, ко второму входу второго умножителя и к входу четвертого блока возведения в квадрат, шестой выход блока интегрирования матрицы направляющих косинусов подключен к девятому входу данного блока, к входу пятого блока возведения в квадрат и через третий инвертор ко второму входу второго блока определения арккосинуса аргумента, десятый, одиннадцатый и двенадцатый входы блока интегрирования матрицы направляющих косинусов являются входами устройства по сигналам, соответствующим начальным значениям углов крена, тангажа и рыскания, а выходы блоков определения арккосинусов аргумента являются выходами устройства.
Сущность изобретения поясняется чертежом, на котором представлена структурная схема заявляемого устройства.
Устройство определения углов пространственной ориентации летательного аппарата содержит блок 1 датчиков угловых скоростей, блок 2 интегрирования матрицы направляющих косинусов, шесть блоков 3-8 возведения в квадрат, два умножителя 9 и 10, пять сумматоров 11-15, первый и четвертый делители 16 и 17, три устройства 18-20 извлечения квадратного корня, второй и третий делители 21 и 22, три инвертора 23-25 и три блока 26-28 определения арккосинуса.
Устройство определения углов пространственной ориентации летательного аппарата работает следующим образом: по сигналам из блока 1 датчиков угловых скоростей, с учетом начальных значений углов тангажа ϑ0, крена γ0 и курса ψ0, в блоке 2 интегрирования матрицы направляющих косинусов обновляются элементы данной матрицы, которые являются выходными сигналами блока 2 интегрирования матрицы направляющих косинусов. Подключенные к выходу блока 2 интегрирования матрицы направляющих косинусов последовательно соединенные первый блок 3 возведения в квадрат, первый 11 и второй 14 сумматоры, первый делитель 16, первое устройство 18 извлечения квадратного корня и первый блок 26 определения арккосинуса аргумента, а также первый логический инвертор 23, с учетом выходных сигналов второго 4 и третьего 5 блоков возведения в квадрат и четвертого сумматора 15, реализуют выражение, определяющее угол тангажа: ϑ = arccos ( U 11 2 + U 13 2 ) / ( U 11 2 + U 12 2 + U 13 2 )
Figure 00000001
,
Чтобы получать значения угла тангажа в диапазоне [-90°, 90°] требуется дополнительно ввести условие:
если (U12<0), то ϑ = arccos ( U 11 2 + U 13 2 ) / ( U 11 2 + U 12 2 + U 13 2 )
Figure 00000002
.
Подключенные к выходам блока 2 интегрирования матрицы направляющих косинусов первый 9 и второй 10 умножители, последовательно соединенные третий сумматор 12, второй делитель 21 и второй блок 27 определения арккосинуса аргумента, с учетом выходных сигналов третьего устройства 20 извлечения квадратного корня и третьего логического инвертора 25, а также подключенные к выходам блока 2 интегрирования матрицы направляющих косинусов четвертый 6, пятый 7 и шестой 8 блоки возведения в квадрат, последовательно соединенные пятый сумматор 13, четвертый делитель 17 и третье устройство 20 извлечения квадратного корня, выход которого подключен ко второму входу второго делителя 21, реализуют выражение для определения угла крена:
γ = arccos [ ( U 13 U 31 + U 11 U 33 ) / ( U 11 2 + U 13 2 ) / ( U 31 2 + U 32 2 + U 33 2 ) ]
Figure 00000003
.
Чтобы угол крена принимал значения в диапазоне [-180°, 180°] требуется дополнительно ввести следующее условие:
если (U32≥0), то γ = arccos [ ( U 13 U 31 + U 11 U 33 ) / ( U 11 2 + U 13 2 ) / ( U 31 2 + U 32 2 + U 33 2 ) ]
Figure 00000004
.
Подключенные к выходам блока 2 интегрирования матрицы направляющих косинусов второй 4 и третий 5 блоки возведения в квадрат, последовательно соединенные четвертый сумматор 15, второе устройство 19 извлечения квадратного корня, третий делитель 22 и третий блок 28 определения арккосинуса аргумента, а также второй логический инвертор 24 реализуют выражение определяющее значение угла рыскания ψ:
ψ = arccos ( U 11 / U 11 2 + U 13 2 )
Figure 00000005
.
Чтобы угол рыскания принимал значения в диапазоне [-180°, 180°], требуется дополнительно ввести условие:
если (U13≥0)), то ψ = arccos ( U 11 / U 11 2 + U 13 2 )
Figure 00000006
.
Таким образом, предлагаемое устройство для определения углов пространственной ориентации летательного аппарата реализует использование максимально возможного количества элементов матрицы направляющих косинусов. В результате учитываются случайные погрешности и шумы путем усреднения полученных значений по N измерениям, что приводит к уменьшению дисперсии оценки сигнала в N раз.
Техническим результатом является повышение точности определения углов крена, тангажа и рыскания.
Заявляемое устройство может быть реализовано на стандартных элементах вычислительной техники и может использоваться на всех типах летательных аппаратов.

Claims (1)

  1. Устройство определения углов пространственной ориентации летательного аппарата, содержащее блок датчиков угловых скоростей, блок интегрирования матрицы направляющих косинусов, отличающееся тем, что в него дополнительно введены последовательно соединенные первый блок возведения в квадрат, первый и второй сумматоры, первый делитель, первое устройство извлечения квадратного корня и первый блок определения арккосинуса аргумента, два умножителя, последовательно соединенные третий сумматор, второй делитель и второй блок определения арккосинуса аргумента, последовательно соединенные второй блок возведения в квадрат, с выходом которого соединен второй вход первого сумматора, четвертый сумматор, второе устройство извлечения квадратного корня, третий делитель и третий блок определения арккосинуса аргумента, третий блок возведения в квадрат, выход которого подключен ко вторым входам второго и четвертого сумматоров, последовательно соединенные пятый сумматор, к первому, второму и третьему входам которого подключены выходы четвертого пятого и шестого блоков возведения в квадрат соответственно, четвертый делитель и третье устройство извлечения квадратного корня, выход которого подключен ко второму входу второго делителя, при этом ко вторым входам первого и четвертого делителей подключен выход четвертого сумматора, первый выход блока интегрирования матрицы направляющих косинусов подключен к четвертому входу данного блока, к входу первого блока возведения в квадрат и через первый инвертор ко второму входу первого блока определения арккосинуса аргумента, второй выход блока интегрирования матрицы направляющих косинусов подключен к пятому входу данного блока, к первому входу первого умножителя и к входу второго блока возведения в квадрат, третий выход блока интегрирования матрицы направляющих косинусов подключен к шестому входу данного блока, ко второму входу первого умножителя и к входу шестого блока возведения в квадрат, четвертый выход блока интегрирования матрицы направляющих косинусов подключен к седьмому входу данного блока, к первым входам второго умножителя и третьего блока возведения в квадрат и через второй инвертор ко второму входу третьего блока определения арккосинуса аргумента, пятый выход блока интегрирования матрицы направляющих косинусов подключен к восьмому входу данного блока, ко второму входу второго умножителя и к входу четвертого блока возведения в квадрат, шестой выход блока интегрирования матрицы направляющих косинусов подключен к девятому входу данного блока, к входу пятого блока возведения в квадрат и через третий инвертор ко второму входу второго блока определения арккосинуса аргумента, десятый, одиннадцатый и двенадцатый входы блока интегрирования матрицы направляющих косинусов являются входами устройства по сигналам, соответствующим начальным значениям углов крена, тангажа и рыскания, а выходы блоков определения арккосинусов аргумента являются выходами устройства.
RU2014152747/08A 2014-12-25 2014-12-25 Устройство определения углов пространственной ориентации летательного аппарата RU2602342C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014152747/08A RU2602342C2 (ru) 2014-12-25 2014-12-25 Устройство определения углов пространственной ориентации летательного аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014152747/08A RU2602342C2 (ru) 2014-12-25 2014-12-25 Устройство определения углов пространственной ориентации летательного аппарата

Publications (2)

Publication Number Publication Date
RU2014152747A RU2014152747A (ru) 2016-07-20
RU2602342C2 true RU2602342C2 (ru) 2016-11-20

Family

ID=56413186

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014152747/08A RU2602342C2 (ru) 2014-12-25 2014-12-25 Устройство определения углов пространственной ориентации летательного аппарата

Country Status (1)

Country Link
RU (1) RU2602342C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717703C1 (ru) * 2017-05-26 2020-03-25 Гуанчжоу Иксэркрафт Текнолоджи Ко., Лтд Способ определения курса беспилотного летательного аппарата и беспилотный летательный аппарат
RU2733099C1 (ru) * 2020-03-04 2020-09-29 Общество с ограниченной ответственностью НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ "ГИРОСКОПИЯ И НАВИГАЦИЯ" Устройство для определения углов пространственной ориентации динамических и статических объектов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321678A (en) * 1977-09-14 1982-03-23 Bodenseewerk Geratetechnik Gmbh Apparatus for the automatic determination of a vehicle position
US5422817A (en) * 1991-08-13 1995-06-06 Litton Systems, Inc. Strapdown inertial navigation system using high order
RU2371733C1 (ru) * 2008-07-07 2009-10-27 Министерство обороны Российской Федерации Государственное образовательное учреждение высшего профессионального образования ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени С.М. Буденного Способ определения угловой ориентации летательных аппаратов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321678A (en) * 1977-09-14 1982-03-23 Bodenseewerk Geratetechnik Gmbh Apparatus for the automatic determination of a vehicle position
US5422817A (en) * 1991-08-13 1995-06-06 Litton Systems, Inc. Strapdown inertial navigation system using high order
RU2371733C1 (ru) * 2008-07-07 2009-10-27 Министерство обороны Российской Федерации Государственное образовательное учреждение высшего профессионального образования ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени С.М. Буденного Способ определения угловой ориентации летательных аппаратов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717703C1 (ru) * 2017-05-26 2020-03-25 Гуанчжоу Иксэркрафт Текнолоджи Ко., Лтд Способ определения курса беспилотного летательного аппарата и беспилотный летательный аппарат
RU2733099C1 (ru) * 2020-03-04 2020-09-29 Общество с ограниченной ответственностью НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ "ГИРОСКОПИЯ И НАВИГАЦИЯ" Устройство для определения углов пространственной ориентации динамических и статических объектов

Also Published As

Publication number Publication date
RU2014152747A (ru) 2016-07-20

Similar Documents

Publication Publication Date Title
Li et al. Effective adaptive Kalman filter for MEMS-IMU/magnetometers integrated attitude and heading reference systems
WO2009061235A3 (fr) Procédé de détermination des paramètres de navigation par un système de navigation inertielle sans plate-forme
CN103557864A (zh) Mems捷联惯导自适应sckf滤波的初始对准方法
US20160370188A1 (en) Inertial device, control method and program
RU2602342C2 (ru) Устройство определения углов пространственной ориентации летательного аппарата
WO2020124678A1 (zh) 一种基于函数迭代积分的惯性导航解算方法及系统
CN103712598A (zh) 一种小型无人机姿态确定系统与确定方法
CN101929862A (zh) 基于卡尔曼滤波的惯性导航系统初始姿态确定方法
RU2564379C1 (ru) Бесплатформенная инерциальная курсовертикаль
RU2539140C1 (ru) Интегрированная бесплатформенная система навигации средней точности для беспилотного летательного аппарата
Changey et al. Experimental validation
da Silva et al. Performance evaluation of the extended kalman filter and unscented kalman filter
CN108731702A (zh) 一种基于Huber方法的大失准角传递对准方法
Gu et al. A Kalman filter algorithm based on exact modeling for FOG GPS/SINS integration
Kamil et al. Low-cost object tracking with MEMS sensors, Kalman filtering and simplified two-filter-smoothing
CN103954289A (zh) 一种光学成像卫星敏捷机动姿态确定方法
RU2581743C1 (ru) Бесплатформенная аппаратура счисления координат
RU2493578C1 (ru) Устройство для контроля датчиков системы управления подвижного аппарата
KR20210080978A (ko) 전지구위성항법 수신기와 관성항법 센서를 융합한 지표 변위 관측 기법
RU2615032C1 (ru) Бесплатформенная инерциальная курсовертикаль на чувствительных элементах высокой точности
Yengera et al. Computation of extended robust Kalman filter for real-time attitude and position estimation
RU2747672C1 (ru) Устройство преобразования сигналов датчиков углов беспилотного летательного аппарата в кватернионы
RU2146803C1 (ru) Комплексная система навигации
García et al. A Methodology for Design and Analysis of Sensor Fusion with Real Data in UAV platforms
El-Osery et al. An Inertial Navigation System for Autonomous Outdoor Robots