RU2601335C1 - Method for application of arrays of carbon nanotubes on metal substrates - Google Patents

Method for application of arrays of carbon nanotubes on metal substrates Download PDF

Info

Publication number
RU2601335C1
RU2601335C1 RU2015127162/05A RU2015127162A RU2601335C1 RU 2601335 C1 RU2601335 C1 RU 2601335C1 RU 2015127162/05 A RU2015127162/05 A RU 2015127162/05A RU 2015127162 A RU2015127162 A RU 2015127162A RU 2601335 C1 RU2601335 C1 RU 2601335C1
Authority
RU
Russia
Prior art keywords
metal substrates
carbon nanotubes
arrays
helium
vol
Prior art date
Application number
RU2015127162/05A
Other languages
Russian (ru)
Inventor
Дмитрий Николаевич Борисенко
Валентина Кирилловна Гартман
Николай Николаевич Колесников
Александр Алексеевич Левченко
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН)
Priority to RU2015127162/05A priority Critical patent/RU2601335C1/en
Application granted granted Critical
Publication of RU2601335C1 publication Critical patent/RU2601335C1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0014Array or network of similar nanostructural elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/30Purity

Abstract

FIELD: nanotechnology.
SUBSTANCE: invention relates to nanotechnology and can be used for production of field-effect emitters. Carbon nanotubes are deposited on metal substrates in an arc reactor in a working medium based on inert gas, containing hydrogen 8-10 vol% and helium - balance. Metal substrates are fixed on a disc cathode at a distance 10d-12d from axis of arc discharge, where d is diameter of anode graphite rod.
EFFECT: obtained carbon nanotubes do not contain impurities of soot and fullerenes, have good contact with substrate; implementation of process is simplified.
1 cl, 1 dwg

Description

Изобретение относится к области получения углеродных наноструктур, а именно массивов углеродных нанотрубок на металлических подложках.The invention relates to the field of production of carbon nanostructures, namely arrays of carbon nanotubes on metal substrates.

Углеродные наноматериалы имеют широкий спектр применения. Одно из важных направлений их практического использования - это создание автоэлектронных эмиттеров на основе массивов углеродных нанотрубок на токопроводящих подложках.Carbon nanomaterials have a wide range of applications. One of the important directions of their practical use is the creation of field emission emitters based on arrays of carbon nanotubes on conductive substrates.

Известен способ нанесения углеродных нанотрубок на металлические подложки [Wu Z. Transparent conductive carbon nanotube films. Science, 2004, v. 305, p. 1273-1276] - аналог. Нанотрубки наносят на металлические подложки из растворов путем вакуумной фильтрации через мембрану с последующим удалением поверхностно-активных веществ. Основным недостатком аналога является сложность, которая обусловлена необходимостью изготовления наноструктурированных мембран и приготовления жидких растворов углеродных нанотрубок. Кроме того, следует отметить плохую воспроизводимость процесса, а также загрязнение массива углеродных нанотрубок поверхностно-активными веществами.A known method of applying carbon nanotubes to metal substrates [Wu Z. Transparent conductive carbon nanotube films. Science, 2004, v. 305, p. 1273-1276] - analogue. Nanotubes are applied to metal substrates from solutions by vacuum filtration through a membrane, followed by the removal of surfactants. The main disadvantage of the analogue is the complexity, which is due to the need to fabricate nanostructured membranes and prepare liquid solutions of carbon nanotubes. In addition, it should be noted the poor reproducibility of the process, as well as contamination of the carbon nanotube array with surface-active substances.

Известен способ нанесения углеродных нанотрубок на металлические подложки [Kaempgen М. Sonochemical optimization of the conductivity of single wall carbon nanotube networks. Adv. Mater., 2008, v. 20, p. 616-620]. Нанотрубки наносят на металлические подложки ультразвуковым распылением жидких растворов. Создание раствора на основе смеси углеродных нанотрубок и поверхностно-активных веществ для получения высококачественных пленок требует значительных усилий, поэтому сложность процесса является основным недостатком аналога. Следует отметить, что загрязнение углеродных нанотрубок поверхностно-активными веществами и веществом растворителя также нужно отнести к недостаткам процесса-аналога.A known method of applying carbon nanotubes to metal substrates [Kaempgen M. Sonochemical optimization of the conductivity of single wall carbon nanotube networks. Adv. Mater., 2008, v. 20, p. 616-620]. Nanotubes are applied to metal substrates by ultrasonic spraying of liquid solutions. Creating a solution based on a mixture of carbon nanotubes and surfactants to obtain high-quality films requires considerable effort, therefore, the complexity of the process is the main disadvantage of the analogue. It should be noted that contamination of carbon nanotubes with surface-active substances and solvent substance also needs to be attributed to the disadvantages of the analogue process.

Наиболее близким по технической сущности к предлагаемому является способ нанесения углеродных нанотрубок на металлическую подложку (Патент RU 2471706, кл. С01В 31/02, 10.01.2013 г.), позволяющий осаждать упорядоченные массивы УНТ на подложки из электротехнических нелегированных сталей в атмосфере инертного газа. Изготавливаемые на этом устройстве структуры «подложка - массив УНТ» являются токопроводящими.The closest in technical essence to the proposed one is the method of applying carbon nanotubes to a metal substrate (Patent RU 2471706, class СВВ 31/02, 01/10/2013), which allows one to deposit ordered CNT arrays on substrates of non-alloyed electrical steels in an inert gas atmosphere. The structures “substrate - array of CNTs” fabricated on this device are conductive.

Однако эти структуры не пригодны для изготовления автоэлектронных эмиттеров по причине плохого контакта металлическая подложка - углеродные нанотрубки и показывают плохие характеристики в части, касающейся срока службы и плотности тока. Заявленное устройство позволяет размещать подложки исключительно вблизи дуги, и для поиска оптимального расстояния для получения токопроводящих структур, пригодных для изготовления автоэлектронных эмиттеров, требуется специальное приспособление, позволяющее перемещать металлические подложки (изготовление катода с большим количеством отверстий для крепления подложек на разных расстояниях приводит к изменению потоков углеродсодержащего пара и отсутствию нанотрубок в слое сажи на металлических подложках).However, these structures are not suitable for the manufacture of field emitters due to poor contact between the metal substrate and carbon nanotubes and show poor characteristics in terms of service life and current density. The claimed device allows you to place the substrate exclusively near the arc, and to find the optimal distance to obtain conductive structures suitable for the manufacture of field emitters, a special device is required that allows you to move the metal substrate (manufacturing a cathode with a large number of holes for mounting the substrates at different distances leads to a change in flux carbon-containing vapor and the absence of nanotubes in the soot layer on metal substrates).

Задачей предлагаемого способа является упрощение процесса нанесения массивов углеродных нанотрубок на металлические подложки без примеси сажи и фуллеренов, что обеспечивало бы хороший контакт углеродных нанотрубок с металлической подложкой и получение структуры, пригодной для изготовления автоэлектронных эмиттеров.The objective of the proposed method is to simplify the process of applying arrays of carbon nanotubes to metal substrates without impurities of soot and fullerenes, which would ensure good contact of carbon nanotubes with a metal substrate and obtain a structure suitable for the manufacture of field emitters.

Эта задача решается в способе нанесения массивов углеродных нанотрубок на металлические подложки, включающем осаждение углеродных нанотрубок на металлические подложки в дуговом реакторе в рабочей атмосфере на основе инертного газа, при этом металлические подложки закреплены на дисковом катоде на расстоянии 10d-12d от оси дугового разряда, где d - диаметр графитового стержня анода, а рабочей атмосферой является смесь, содержащая водород 8-10 об.% и гелий - остальное.This problem is solved in a method of depositing carbon nanotube arrays on metal substrates, including the deposition of carbon nanotubes on metal substrates in an arc reactor in an inert gas-based working atmosphere, the metal substrates being fixed to the disk cathode at a distance of 10d-12d from the arc discharge axis, where d is the diameter of the graphite rod of the anode, and the working atmosphere is a mixture containing hydrogen of 8-10 vol.% and helium - the rest.

Сепарация нанотрубок от примесей (углеродных наночастиц, сажи и фуллеренов) основана на разном парциальном давлении углеродных наноматериалов в плазме дугового разряда в атмосфере гелия и, как следствие, на наличии градиента концентрации этих примесей в объеме, окружающем дуговой разряд. В атмосфере гелия на расстоянии 10d-12d от оси дугового разряда, где d - диаметр графитового стержня анода, на металлические подложки преимущественно конденсируются сажа, фуллерены и углеродные нанотрубки. Дальнейшие опыты показали, что получение массивов углеродных нанотрубок на металлических подложках без примеси сажи и фуллеренов возможно при введении в атмосферу гелия 8-10% (об.) водорода.The separation of nanotubes from impurities (carbon nanoparticles, carbon black and fullerenes) is based on different partial pressures of carbon nanomaterials in the plasma of an arc discharge in a helium atmosphere and, as a consequence, on the presence of a concentration gradient of these impurities in the volume surrounding the arc discharge. In a helium atmosphere, at a distance of 10d-12d from the axis of the arc discharge, where d is the diameter of the graphite rod of the anode, soot, fullerenes, and carbon nanotubes are predominantly condensed on metal substrates. Further experiments showed that obtaining arrays of carbon nanotubes on metal substrates without the admixture of soot and fullerenes is possible with the introduction of 8-10% (vol.) Hydrogen into the atmosphere of helium.

Массивы углеродных нанотрубок на металлических подложках, полученные предложенным способом, являются токопроводящими и пригодны для изготовления автоэлектронных эмиттеров, что подтверждается вольт-амперными характеристиками Фиг. 1, снятыми при комнатной температуре. На Фиг. 1 кривая 1 получена при повышении напряжения, кривая 2 - при понижении напряжения от 1000 В.Arrays of carbon nanotubes on metal substrates obtained by the proposed method are conductive and suitable for the manufacture of field emitters, which is confirmed by the current-voltage characteristics of FIG. 1 taken at room temperature. In FIG. 1 curve 1 is obtained with increasing voltage, curve 2 - with decreasing voltage from 1000 V.

Примеры.Examples.

1. Осаждение массивов углеродных нанотрубок на металлические подложки проводили в процессе горения дуги в атмосфере смеси, содержащей водород - 7% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 11d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток не наблюдался. Полученные структуры не пригодны для изготовления автоэлектронных эмиттеров.1. The deposition of carbon nanotube arrays on metal substrates was performed during arc burning in the atmosphere of a mixture containing hydrogen - 7% (vol.) And helium (the rest), metal substrates were fixed to the disk cathode at a distance of 11d from the arc discharge axis (where d - diameter of the graphite rod of the anode). As a result of measuring the current – voltage characteristics of the obtained arrays of carbon nanotubes on metal substrates, no emission current was observed. The resulting structures are not suitable for the manufacture of field emitters.

2. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 11% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 11d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток не наблюдался. Полученные структуры не пригодны для изготовления автоэлектронных эмиттеров.2. The deposition of carbon nanotube arrays on metal substrates is carried out during arc burning in the atmosphere of a mixture containing hydrogen - 11% (vol.) And helium (the rest), metal substrates are fixed to the disk cathode at a distance of 11d from the arc discharge axis (where d - diameter of the graphite rod of the anode). As a result of measuring the current – voltage characteristics of the obtained arrays of carbon nanotubes on metal substrates, no emission current was observed. The resulting structures are not suitable for the manufacture of field emitters.

3. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 10% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 11d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток наблюдался. Полученные структуры пригодны для изготовления автоэлектронных эмиттеров.3. The deposition of carbon nanotube arrays on metal substrates is carried out during arc burning in the atmosphere of a mixture containing hydrogen - 10% (vol.) And helium (the rest), metal substrates are fixed on the disk cathode at a distance of 11d from the arc discharge axis (where d - diameter of the graphite rod of the anode). As a result of measuring the current – voltage characteristics of the obtained arrays of carbon nanotubes on metal substrates, an emission current was observed. The resulting structures are suitable for the manufacture of field emitters.

4. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 10% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 9,5d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток не наблюдался. Полученные структуры не пригодны для изготовления автоэлектронных эмиттеров.4. The deposition of carbon nanotube arrays on metal substrates is carried out during arc burning in the atmosphere of a mixture containing hydrogen - 10% (vol.) And helium (the rest), metal substrates are fixed to the disk cathode at a distance of 9.5d from the axis of the arc discharge (where d is the diameter of the graphite rod of the anode). As a result of measuring the current – voltage characteristics of the obtained arrays of carbon nanotubes on metal substrates, no emission current was observed. The resulting structures are not suitable for the manufacture of field emitters.

5. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 10% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 12,5d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток не наблюдался. Полученные структуры не пригодны для изготовления автоэлектронных эмиттеров.5. The deposition of carbon nanotube arrays on metal substrates is carried out during arc burning in the atmosphere of a mixture containing hydrogen - 10% (vol.) And helium (the rest), metal substrates are fixed to the disk cathode at a distance of 12.5d from the axis of the arc discharge (where d is the diameter of the graphite rod of the anode). As a result of measuring the current – voltage characteristics of the obtained arrays of carbon nanotubes on metal substrates, no emission current was observed. The resulting structures are not suitable for the manufacture of field emitters.

6. Осаждение массивов углеродных нанотрубок на металлические подложки проводится в процессе горения дуги в атмосфере смеси, содержащей водород - 10% (об.) и гелий (остальное), металлические подложки закреплены на дисковом катоде на расстоянии 10d от оси дугового разряда (где d - диаметр графитового стержня анода). В результате измерения вольт-амперных характеристик полученных массивов углеродных нанотрубок на металлических подложках эмиссионный ток наблюдался. Полученные структуры пригодны для изготовления автоэлектронных эмиттеров.6. The deposition of carbon nanotube arrays on metal substrates is carried out during arc burning in the atmosphere of a mixture containing hydrogen - 10% (vol.) And helium (the rest), metal substrates are fixed to the disk cathode at a distance of 10d from the arc discharge axis (where d - diameter of the graphite rod of the anode). As a result of measuring the current – voltage characteristics of the obtained arrays of carbon nanotubes on metal substrates, an emission current was observed. The resulting structures are suitable for the manufacture of field emitters.

Claims (1)

Способ нанесения массивов углеродных нанотрубок на металлические подложки для автоэлектронных эмиттеров, включающий осаждение углеродных нанотрубок на металлические подложки в дуговом реакторе в рабочей атмосфере на основе инертного газа, отличающийся тем, что металлические подложки закреплены на дисковом катоде на расстоянии 10d-12d от оси дугового разряда, где d - диаметр графитового стержня анода, а рабочей атмосферой является смесь, содержащая водород - 8-10 об.% и гелий - остальное. A method of applying arrays of carbon nanotubes to metal substrates for field emitters, including the deposition of carbon nanotubes on metal substrates in an arc reactor in an inert gas-based working atmosphere, characterized in that the metal substrates are fixed to the disk cathode at a distance of 10d-12d from the axis of the arc discharge, where d is the diameter of the graphite rod of the anode, and the working atmosphere is a mixture containing hydrogen - 8-10 vol.% and helium - the rest.
RU2015127162/05A 2015-07-06 2015-07-06 Method for application of arrays of carbon nanotubes on metal substrates RU2601335C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015127162/05A RU2601335C1 (en) 2015-07-06 2015-07-06 Method for application of arrays of carbon nanotubes on metal substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015127162/05A RU2601335C1 (en) 2015-07-06 2015-07-06 Method for application of arrays of carbon nanotubes on metal substrates

Publications (1)

Publication Number Publication Date
RU2601335C1 true RU2601335C1 (en) 2016-11-10

Family

ID=57277872

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015127162/05A RU2601335C1 (en) 2015-07-06 2015-07-06 Method for application of arrays of carbon nanotubes on metal substrates

Country Status (1)

Country Link
RU (1) RU2601335C1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2309480C2 (en) * 2005-08-04 2007-10-27 Федеральное государственное унитарное предприятие "НПП "Контакт" Material and method for manufacturing multipoint field-emission cathode
EA010388B1 (en) * 2003-01-31 2008-08-29 Дау Корнинг Айэлэнд Лимитед Plasma generating electrode assembly
RU2419585C2 (en) * 2005-06-16 2011-05-27 Синвент Ас Method and reactor for production of carbon nanotubes
RU2471706C1 (en) * 2011-06-09 2013-01-10 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Device for producing arrays of carbon nanotubes on metal substrates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA010388B1 (en) * 2003-01-31 2008-08-29 Дау Корнинг Айэлэнд Лимитед Plasma generating electrode assembly
RU2419585C2 (en) * 2005-06-16 2011-05-27 Синвент Ас Method and reactor for production of carbon nanotubes
RU2309480C2 (en) * 2005-08-04 2007-10-27 Федеральное государственное унитарное предприятие "НПП "Контакт" Material and method for manufacturing multipoint field-emission cathode
RU2471706C1 (en) * 2011-06-09 2013-01-10 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Device for producing arrays of carbon nanotubes on metal substrates

Similar Documents

Publication Publication Date Title
KR100383493B1 (en) Method of preparing film of carbon nano-tube and film of carbon nano-tube prepared thereby
Borgohain et al. Controlled synthesis, efficient purification, and electrochemical characterization of arc-discharge carbon nano-onions
Zanin et al. Field emission from hybrid diamond-like carbon and carbon nanotube composite structures
Gao et al. Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template
Sridhar et al. Enhanced field emission properties from CNT arrays synthesized on inconel superalloy
CN1532142A (en) Method for growing carbon nano tube
US11005046B2 (en) Carbon nanotube array, material, electronic device, process for producing carbon nanotube array, and process for producing field effect transistor
Yun et al. High-performance field-emission properties of boron nitride nanotube field emitters
Yi et al. Crack-assisted field emission enhancement of carbon nanotube films for vacuum electronics
Xu et al. All carbon nanotube based flexible field emission devices prepared through a film transfer method
JP4761346B2 (en) Double-walled carbon nanotube-containing composition
Tzeng et al. Carbon nanowalls on graphite for cold cathode applications
Sankaran et al. Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid
Banerjee et al. Enhancement of field emission and hydrophobic properties of silicon nanowires by chemical vapor deposited carbon nanoflakes coating
Shao et al. A few-layer graphene ring-cathode field emitter for focused electron/ion beam applications
RU2601335C1 (en) Method for application of arrays of carbon nanotubes on metal substrates
Yin et al. Postgrowth processing of carbon nanotube arrays-enabling new functionalities and applications
JP5831009B2 (en) MICROSTRUCTURE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL
Minh et al. Selective growth of carbon nanotubes on Si microfabricated tips and application for electron field emitters
Lee et al. Influence of the nitrogen content on the electrochemical capacitor characteristics of vertically aligned carbon nanotubes
KR101433226B1 (en) A Cavity Ionization Chamber comprising graphene electrode
Mittal et al. Carbon nanotube based 3-dimensional hierarchical field emitter structure
FR3002526A1 (en) PROCESS FOR MANUFACTURING MULTI-WALL CARBON NANOTUBE NANOTUBE, ELECTRON SOURCE AND DEVICE THEREFOR
Tseng et al. Field emission characteristic study on bristling few-layer graphite/diamond composite film
WO2014007680A2 (en) Three-dimensionally structured semiconductor substrate for a field emission cathode, means for producing same, and field emission cathode