RU2600996C2 - Способ аэробно-анаэробной обработки бесподстилочного навоза с получением биогаза, эффлюента, биошлама и устройство для его реализации - Google Patents

Способ аэробно-анаэробной обработки бесподстилочного навоза с получением биогаза, эффлюента, биошлама и устройство для его реализации Download PDF

Info

Publication number
RU2600996C2
RU2600996C2 RU2015108656/05A RU2015108656A RU2600996C2 RU 2600996 C2 RU2600996 C2 RU 2600996C2 RU 2015108656/05 A RU2015108656/05 A RU 2015108656/05A RU 2015108656 A RU2015108656 A RU 2015108656A RU 2600996 C2 RU2600996 C2 RU 2600996C2
Authority
RU
Russia
Prior art keywords
anaerobic
phase
aerobic
bioreactor
liquid
Prior art date
Application number
RU2015108656/05A
Other languages
English (en)
Other versions
RU2015108656A (ru
Inventor
Евгений Николаевич Камайданов
Дмитрий Александрович Ковалев
Original Assignee
Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) filed Critical Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ)
Priority to RU2015108656/05A priority Critical patent/RU2600996C2/ru
Publication of RU2015108656A publication Critical patent/RU2015108656A/ru
Application granted granted Critical
Publication of RU2600996C2 publication Critical patent/RU2600996C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes

Abstract

Изобретение относится к переработке бесподстилочного навоза с содержанием твердой фазы 6-10% в газообразный энергоноситель - биогаз с энергосодержанием не менее 20 МДж/м3, обеззараженные стабилизированные продукты - жидкий обогащенный азотом сток - эффлюент с содержанием аммиачного азота не менее 500 мг/л, и твердую фракцию с повышенным содержанием гумусообразующих веществ (лигнина, гемицеллюлозы), азота и фосфора - биошлама. Исходный навоз подвергают аэробному автотермическому термогидролизу, анаэробной ацидофикации и анаэробной переработке в горючий биогаз, биошлам и эффлюент, причем жидкофазную переработку в горючий биогаз и эффлюент осуществляют с использованием прикрепленной метаногенной микрофлоры. Твердофазную переработку в горючий биогаз и биошлам осуществляют с использованием взвешенной метаногенной микрофлоры. Твердофазную переработку совмещают с уплотнением биошлама и контактным осветлением надосадочной жидкости. Аэробный автотермический термогидролиз и жидкофазную переработку осуществляют в условиях взаимного теплообмена с размещением зоны анаэробной ацидофикации внутри зоны жидкофазной переработки в условиях гидравлической циркуляционной связи зон аэробного автотермического термогидролиза и анаэробной ацидофикации, а также зон жидкофазной переработки и контактного осветления надосадочной жидкости. Эффлюент зоны жидкофазной переработки используют для термостабилизации зоны твердофазной переработки и предварительного нагрева навоза. Устройство состоит из аэробного биореактора, анаэробного ацидофикационного биореактора, сгустителя, жидкофазного и твердофазного анаэробного биореакторов. Жидкофазный анаэробный биореактор снабжен размещенной внутри загрузки развитой поверхностью теплообмена в виде системы оребренных труб, внутренняя полость которых гидравлически связана с рабочим пространством аэробного биореактора. Технический результат - повышение удельного выхода товарного биогаза, повышение потребительских качеств эффлюента и биошлама. 2 н.п. ф-лы, 3 ил.

Description

Предлагаемое изобретение относится к переработке бесподстилочного навоза с содержанием твердой фазы 6-10% в газообразный энергоноситель - биогаз с энергосодержанием не менее 20 МДж/м3, и обеззараженные стабилизированные продукты - жидкий обогащенный азотом сток - эффлюент (содержание аммиачного азота не менее 500 мг/л), и твердую фракцию с повышенным содержанием гумусообразующих веществ (лигнина, гемицеллюлозы), азота и фосфора - биошлама. Эффлюент и биошлам могут непосредственно или после соответствующей подготовки использоваться для приготовления твердых (компостов, удобрительных смесей), а также жидких (подкормок, аммиачной воды) удобрений. На основе биошлама могут вырабатываться различные бипродукты - белково-витаминные добавки, премиксы, стимуляторы роста, а также подстилка для скота; эффлюент после рекуперации аммонийного азота и/или доочистки может использоваться в системе повторного водоснабжения хозяйства или сбрасываться в водоем.
Реализация предлагаемых способа и устройства может осуществляться на фермах с привязным содержанием и поголовьем КРС до 400, а также на других животноводческих (птицеводческих) объектах АПК, на поселковых и малых городских сооружениях механобиологической очистки.
Предлагаемое изобретение предназначено для реализации в климатических зонах с положительной среднегодовой температурой.
Устройство может быть реализовано в виде возводимых строительным способом моноблочных конструкций или в виде монтируемых на прифермской площадке аппаратов заводского изготовления.
Технологические процессы, на основе которых реализован способ, саморегулирующиеся и/или легко поддаются автоматизации. Обслуживание устройства не требует высококвалифицированного персонала.
Известны способы и устройства аналогичного назначения. В кн. авт. Гюнтер Л.И., Гольдфарб Л.Л. «Метантенки». М.: Стройиздат, 1991 г., представлено техническое решение, согласно которому исходный органический полисубстрат (осадок) последовательно подвергается аэробной термофильной обработке с целью гидролиза органического вещества твердой фазы и нагрева до термофильных температур (50-60°С), регенеративному теплообмену с исходным субстратом с целью предварительного нагрева последнего и достижения обработанным субстратом мезофильных температур (30-40°С), мезофильной анаэробной переработке в биогаз и обеззараженный стабилизированный субстрат с его последующим разделением на твердую (биошлам) и жидкую (эффлюент) фракции.
В сравнении с одно- или двухфазной анаэробной переработкой в биогаз, эффлюент и биошлам такое техническое решение обладает рядом преимуществ:
- сокращается продолжительность переработки (с 15-30 до 8-10 суток);
- не требуется дорогостоящее и сложное в эксплуатации встроенное теплообменное оборудование (за исключением регенеративного теплообменника);
- улучшаются реологические и гранулометрические характеристики исходного субстрата, что положительно влияет на последующие метаногенез и разделение субстрата.
Недостатками являются:
- недостаточно высокая степень конверсии исходного биоразлагаемого органического вещества в промежуточные продукты - питательные субстраты метаногенов на стадии предобработки навоза и, как следствие, снижение скорости метаногенеза;
- неустойчивость анаэробного процесса (по выходу метана, стабилизации и обеззараживанию биошлама и эффлюента) из-за отсутствия температурной стабилизации и использования взвешенной (неиммобилизированной) микрофлоры, или наоборот, при наличии системы термостабилизации чрезмерно большой расход биогаза на собственные нужды;
- наличие влажного газового выброса со стадии аэробной предобработки, с которым теряется не менее 20% биологической энергии и неусвоенный кислород (до 80%) от исходного.
В известной степени, указанные недостатки устранены в способе согласно патента WO 2009 055 793. Более глубокая степень конверсии достигается посредством введения перед метаногенезом дополнительной стадии ацидогенеза. Метаногенез осуществляется последовательно в две стадии различными группами анаэробной микрофлоры (термофильными и мезофильными). Биошлам используется для приготовления удобрений, по крайней мере часть эффлюента направляется на стадию гидролиза с целью регулирования влажности и температуры субстрата. Остальные недостатки, по отношению к первому аналогу, сохраняются. Отсутствие иммобилизации анаэробной микрофлоры обуславливает высокий уровень капитальных затрат на основные сооружения - метантенки, а также сравнительно невысокую эксплуатационную надежность устройства.
В способе и устройстве согласно патента США №7 854 841 исходный субстрат разделяют на жидкую и твердую фракции, жидкую фракцию последовательно подвергают гидролизу и анаэробной переработке в биогаз и эффлюент в биореакторе с прикрепленной или сфлокулированной микрофлорой. Твердую фазу эффлюента осаждают и используют в качестве инокулирующего агента на стадии анаэробной переработки твердой фракции в биогаз и биошлам. Таким образом, достигается повышение удельной производительности (в 1,5-2 раза для одинаковых условий) в сравнении с аналогами, увеличиваются удельный выход и содержание метана в биогазе.
Недостатком является отсутствие температурной стабилизации анаэробных процессов, что приводит к ухудшению и зависимости от внешних условий целевых показателей: выхода биогаза, степени стабилизации и обеззараживания эффлюента и биошлама. Другим недостатком является недостаточно глубокая степень гидролиза и перевода органического вещества исходного субстрата в жидкую фазу, что приводит к нерациональному распределению нагрузки между наиболее производительной (жидкофазной) и экстенсивной (твердофазной) газогенерирующих сооружений.
Известен способ, в соответствии с которым исходный субстрат влажностью 88-94% подвергается глубокому термическому ферментативному гидролизу с переводом не менее 40% органического вещества в растворенное состояние и разделению на фракции с последующей скоростной переработкой жидкой фракции в анаэробном биореакторе с прикрепленной микрофлорой, см. заявку ФРГ №3 627 253.
Недостатками являются высокий уровень энергозатрат на термогидролиз и разделение на фракции, отсутствие стадии кислотообразования, значительные потери энергии с нагретым эффлюентом анаэробного биореактора и с биошламом.
Наиболее близким к заявляемому является способ, согласно которому исходный органический субстрат (навоз, осадки) последовательно подвергается автотермическому аэробному нагреву до термофильных температур и гидролизу в одном сооружении - аэробном биореакторе, анаэробной ацидофикации в отдельном биореакторе с получением преимущественно основного источника питания метаногенных микроорганизмов - ацетата, переработке в метантенке в целевые продукты - биогаз, биошлам для приготовления компоста, и жидкий продукт - эффлюент, который может быть использован повторно или сброшен в водоем после рекуперации аммонийного азота и доочистки. Метаногенез может осуществляться отдельно в анаэробных биореакторах с прикрепленной (для жидкой фракции) и взвешенной метаногенной микрофлорой (для твердой фракции), см. патент WO 2009 103 866, МПК C02F 11/04. В данном способе решены некоторые из недостатков рассмотренных выше аналогов.
Основным недостатком прототипа является отсутствие температурной стабилизации процесса метаногенеза, что приводит к снижению выхода биогаза и удельного содержания метана в нем, к уменьшению степени обеззараживания эффлюента и биошлама. Другим недостатком являются значительные потери тепловой энергии с эффлюентом.
Задачами, решаемыми посредством предлагаемого изобретения, являются:
- повышение температурного уровня в рабочем пространстве анаэробного биореактора с прикрепленной метаногенной микрофлорой без расходования генерируемого биогаза в сочетании с одновременной ацидофикацией навоза;
- снижение концентрации взвешенных веществ на входе в анаэробный биореактор с прикрепленной метаногенной микрофлорой при последующем использовании биоэнергетического потенциала удержанной твердой фазы в метантенке-уплотнителе;
- снижение или полное устранение расходования биогаза на собственные нужды установки посредством использования регенеративного теплообмена и энергии аэробного распада части органического вещества навоза;
- повышение степени обеззараживания, очистки жидкой и стабилизации твердой фракций посредством рационального сочетания предварительной высокотемпературной (до 60°С) биологической аэробной обработки навоза с многостадийной анаэробной обработкой.
Техническим результатом является улучшение показателей удельной эффективности метаногенерации (удельного выхода товарного биогаза (на единицу объема основных сооружений и на единицу массы перерабатываемого органического вещества)), повышение потребительских качеств эффлюента и биошлама.
Технический результат достигается тем, что согласно предлагаемому способу исходный навоз подвергают аэробному автотермическому термогидролизу, анаэробной ацидофикации и анаэробной переработке в горючий биогаз, биошлам и эффлюент, причем жидкофазную переработку в горючий биогаз и эффлюент осуществляют с использованием прикрепленной метаногенной микрофлоры. Твердофазную переработку в горючий биогаз и биошлам осуществляют с использованием взвешенной метаногенной микрофлоры. Твердофазную переработку совмещают с уплотнением биошлама и контактным осветлением надосадочной жидкости. Аэробный автотермический термогидролиз и жидкофазную переработку осуществляют в условиях взаимного теплообмена с размещением зоны анаэробной ацидофикации внутри зоны жидкофазной переработки в условиях гидравлической циркуляционной связи зон аэробного автотермического термогидролиза и анаэробной ацидофикации, а также зон жидкофазной переработки и контактного осветления надосадочной жидкости. Эффлюент зоны жидкофазной переработки используют для термостабилизации зоны твердофазной переработки и предварительного нагрева навоза. Технический результат достигается также тем, что устройство для аэробно-анаэробной обработки бесподстилочного навоза с получением биогаза, эффлюента и биошлама состоит из аэробного биореактора, анаэробного ацидофикационного биореактора, сгустителя, жидкофазного анаэробного биореактора с прикрепленной метаногенной микрофлорой, твердофазного анаэробного биореактора со взвешенной метаногенной микрофлорой. Жидкофазный анаэробный биореактор с прикрепленной метаногенной микрофлорой снабжен размещенным внутри иммобилизирующей загрузки развитой поверхностью теплообмена в виде системы оребренных труб, внутренняя полость которых гидравлически связана с рабочим пространством аэробного биореактора посредством первого циркуляционного контура. Сгуститель выполнен в виде контактного осветлителя и размещен в надосадочной части твердофазного анаэробного биореактора со взвешенной метаногенной микрофлорой. Выход контактного осветлителя гидравлически связан со входом жидкофазного анаэробного биореактора с прикрепленной метаногенной микрофлорой посредством второго циркуляционного контура. Выход жидкофазного анаэробного биореактора с прикрепленной метаногенной микрофлорой последовательно гидравлически связан с теплообменным регистром, размещенным в рабочем пространстве твердофазного анаэробного биореактора со взвешенной метаногенной микрофлорой и регенеративным подогревателем исходного навоза.
Способ осуществляют следующим образом.
Навоз после удаления крупных включений и усреднения поступает на аэробную обработку в аэробный биореактор известного типа, оснащенный средствами аэрации и перемешивания. В процессе аэробной обработки осуществляется дополнительная гомогенизация и интенсивный саморазогрев навоза с темпом 1-4°С/ч. На 1 кг распавшегося органического вещества (по ХПК) выделяется до 15 МДж тепловой энергии, при этом затрачивается до 1 кг кислорода. Процесс осуществляется посредством консорциума аэробной термофильной микрофлоры, важной составной частью которого являются гидролитические микроорганизмы. В результате распада 5-10% органического вещества достигаются термофильные температуры (50-60°С), не менее 30-50% органического вещества твердой фазы переходит в растворенную форму. Происходит существенное снижение вязкости навоза, снижается удельный вес крупных и средних частиц.
Подготовленный таким образом навоз (субстрат) после разделения на фракции подвергается последующей анаэробной переработке в горючий биогаз, стабилизированные и обеззараженные биошлам и эффлюент. Основная масса субстрата (не менее 70%) - жидкая фракция - перерабатывается в эффлюент и биогаз с использованием прикрепленной микрофлоры с малым гидравлическим временем пребывания. При этом в несколько раз снижается уровень капитальных вложений в основное сооружение (анаэробный биореактор) для эквивалентной обрабатываемой массы. Высокие показатели достигаются в условиях температурной стабилизации процесса анаэробной обработки за счет использования энергии сжигаемого биогаза (базовый вариант) либо энергии аэробного распада биомассы.
Исследованиями Лаборатории биоэнергетических установок ВИЭСХ установлено, что при скорости движения аэробно обработанной биомассы в трубном пространстве до 1,5 м/с достигаются коэффициенты теплопередачи 250-1000 Вт/м2·К. Такой интенсивности теплопередачи вполне достаточно для создания компактной конструкции анаэробного биореактора с иммобилизированной микрофлорой с удельной поверхностью не менее 80-100 м23 и технологическими показателями, не хуже приведенных выше.
Согласно предлагаемому способу аэробно подготовленный субстрат направляется в теплообменный регистр, выполняющий одновременно функции анаэробного ацидофикационного биореактора, и далее в твердофазный анаэробный биореактор, который выполняет одновременно функцию седиментационного сооружения.
Согласно современным представлениям, см. Кривошеин Д.А., Кукин П.П. и др. «Инженерная защита поверхностных вод от промышленных стоков». М.: Высшая школа, 2008, основными этапами подготовки субстрата к метаногенезу являются:
- образование на основе гидролизованного субстрата летучих жирных кислот, аминокислот, высших спиртов и некоторых других соединений;
- ацетогенез на основе вышеприведенных соединений, в результате чего образуется до 70% исходного питания для ацетотрофных метаногенов;
- сопутствующее образование биогенных водорода и диоксида углерода, использующихся в метаболитических реакциях архебактерий-метаногенов.
При этом ацетогенная группа бактерий обладает рядом особенностей, позволяющих совмещать процессы ацидогенеза и теплообмена:
- эффективное функционирование в условиях интенсивного перемешивания, в том числе при циркуляции в трубчатке с использованием центробежных насосов;
- устойчивость к температурным перепадам в достаточно широком температурном диапазоне;
- возможность ведения процесса в аэробных, анаэробных или микроаэрофильных условиях, что позволяет вести непрерывный процесс кислотогенеза при циркуляции субстрата по схеме «аэробный биореактор-ацидофикационный биореактор».
Таким образом, одновременно осуществляются термогидролиз исходного субстрата, термостабилизация процесса биофильтрации и ацидогенез. При этом достигаются следующие положительные эффекты:
- увеличение удельного выхода метана, степени стабилизации и обеззараживания жидкой фракции;
- повышение компактности, снижение материалоемкости всего комплекса оборудования.
В результате анаэробной конверсии органического вещества жидкой фракции в рабочем пространстве анаэробного биореактора с прикрепленной метаногенной микрофлорой образуется горючий биогаз, который по газопроводу отводится в газохранилище. Метаногенерирующая микрофлора развивается на поверхности загрузки, представляющей собой регулярную насыпную структуру с удельной поверхностью не менее 100 м23, а также в свободном пространстве загрузки, которое может превышать 90% от общего объема (например, для загрузки в виде обрезков гофрированных или перфорированных труб). Процесс конверсии осуществляется в термофильном (50-55°С) или мезофильном (30-37°С) диапазоне температур.
Продолжительность обработки навоза в системе «аэробный биореактор - ацидофикационный биореактор» не превышает 1-2 суток. Нагрузка на рабочее (реакционное) пространство при этом может достигать 60 кг/м3 сут.
Подготовленный таким образом навоз, представляющий собой питательный субстрат для метаногенных микроорганизмов, подвергается твердофазной анаэробной обработке.
Гидравлическое время пребывания жидкой фракции в рабочем пространстве анаэробного биореактора с прикрепленной метаногенной микрофлорой составляет 12-48 часов при нагрузке по органическому веществу не менее 10 кг/м3 сут (по ХПК).
Обеззараженный и стабилизированный эффлюент с температурой не менее 30°С используется в качестве теплоносителя в системе термостабилизации твердофазного анаэробного процесса.
Охлажденный эффлюент с температурой до 15°С используется для регенеративного подогрева исходного навоза (преимущественно в зимнее время), затем направляется на повторное использование или на доочистку перед сбросом в водоем.
В твердофазном анаэробном биореакторе при пребывании в нем подготовленного навоза не менее 4,5 сут происходит его расслоение на надосадочную жидкость (жидкую фракцию) с содержанием твердой фазы до 1-20 г/л и сгущенную (твердую) фракцию, влажность которой при достаточно длительном уплотнении может достигать 85%. Одновременно инициируется твердофазный метаногенный процесс. Достижение низкого содержания взвешенных веществ в жидкой фракции достигается путем организации фильтрационного режима восходящего суспендированного потока надосадочной жидкости в уплотненном взвешенном слое осадка (режим контактного осветления). Процесс реализуется в контактном осветлителе, являющемся неотъемлемой частью твердофазного анаэробного биореактора. Данный режим способствует переходу солюблизированного и ацидофицированного в процессе предобработки органического вещества в жидкую фракцию. Осветленный, обогащенный растворенным и тонкодисперсным органическим веществом поток направляется в анаэробный биореактор с прикрепленной метаногенной микрофлорой.
Анаэробная конверсия биоразлагаемого органического вещества в твердофазном анаэробном биореакторе осуществляется суспендированной метаногенной микрофлорой. Образующийся горючий биогаз по газопроводу отводится в газохранилище. Метаногенерирующая микрофлора функционирует в психрофильном (20-30°С) или мезофильном (30-37°С) диапазоне температур. Твердофазный анаэробный биореактор может быть оснащен стандартными средствами перемешивания биомассы (не показаны).
Уплотненный, обеззараженный и стабилизированный биошлам влажностью 85-92% и с отношением углерода к азоту не более С:N≤10 представляет собой ценное сырье для приготовления твердых удобрений (компостов, удобрительных смесей). С этой целью биошлам направляют в блок приготовления удобрений, представляющий собой аэробный ферментер или смеситель. Для приготовления удобрений может использоваться также эффлюент, отводимый из теплообменных регистров, содержание аммонийного азота в котором может достигать 1,5 г/л и более, а также различные доступные косубстраты (торф, солома).
Сущность предлагаемого изобретения поясняется фигурами 1-3.
Принципиальная структурная схема осуществления способа представлена на фигуре 1.
Конструктивное оформление пространства ацидофикационного биореактора по схеме Фильда представлено на фигуре 2.
Принципиальная технологическая схема устройства для реализации способа представлена на фигуре 3.
Устройство для реализации предлагаемого способа содержит аэробный биореактор 1 (см. фигуру 1), оснащенный контуром внутренней циркуляции субстрата 2 и линией подачи кислородсодержащего агента 3 (преимущественно воздуха), теплообменный регистр, выполняющий одновременно функции анаэробного ацидофикационного биореактора 4, и твердофазный анаэробный биореактор 5, который выполняет одновременно функцию седиментационного сооружения.
Твердофазный анаэробный биореактор 5 представляет собой заглубленное или обвалованное герметичное сооружение.
Внешняя часть трубчатки ацидофикационного биореактора 4 для улучшения условий теплоподвода к загрузке анаэробного биореактора с прикрепленной метаногенной микрофлорой 6 снабжена развитой поверхностью теплообмена 7 в виде системы оребренных труб.
Анаэробный биореактор с прикрепленной метаногенной микрофлорой 6 представляет собой вертикально ориентированный герметичный аппарат.
В целях повышения эффективности процесса тепломассопередачи внутренняя часть 8 рабочего пространства ацидофикационного биореактора 4 выполнена по схеме Фильда, см. фигуру 2.
В процессе циркуляции в трубке Фильда субстрат меняет направление движения на противоположное, что способствует интенсификации тепломассообменных процессов, при этом достигается рациональное сочетание реакционного объема ацидофикационного биореактора 4 (внутренней части 8 рабочего пространства) и теплообменной поверхности 7.
Газопровод 9 служит для отведения горючего биогаза из рабочего пространства анаэробного биореактора с прикрепленной метаногенной микрофлорой 6 в газохранилище 10.
Метаногенерирующая микрофлора иммобилизируется на поверхности загрузки 11 (фигура 2).
В теплообменном регистре 12 твердофазного анаэробного биореактора 5 в качестве теплоносителя используется обеззараженный и стабилизированный эффлюент.
В теплообменном регистре 13 регенеративного подогревателя исходного навоза 14 в качестве теплоносителя используется охлажденный эффлюент, подаваемый из теплообменного регистра 12 (преимущественно в зимнее время).
Контактный осветлитель 15 является составной частью твердофазного анаэробного биореактора 5.
Блок приготовления удобрений 16, служащий для переработки биошлама в компост или удобрительную смесь, представляет собой аэробный ферментер или смеситель известной конструкции.
Устройство работает следующим образом.
Исходный навоз поступает в аэробный биореактор 1, конструктивно оформленный в виде герметичного сооружения (аппарата), снабженного контуром циркуляции 2 для локального перемешивания субстрата и линией подачи воздуха 3 от компрессора 17, см. фигуру 3.
В холодное время года исходный навоз поступает в регенеративный подогреватель 14, обогреваемый поступающим в теплообменный регистр 13 эффлюентом с температурой не менее 15°С.
По достижении определенной температуры (в пределах 30-60°С) гидролизованный субстрат из аэробного биореактора 1 поступает во внешний контур циркуляции 16, связанный с внутренней частью 8 рабочего пространства ацидофикационного биореактора 4. По окончании предобработки подготовленный навоз (субстрат) по перепускному трубопроводу 19 отводится в рабочее пространство 20 твердофазного анаэробного биореактора 5.
Биогаз из твердофазного анаэробного биореактора 5 отводится в газохранилище 10. Биошлам из уплотнительной части 21 удаляется через разгрузочную трубу 22 под гидростатическим давлением.
Поддержание температурного режима осуществляется посредством теплообменного регистра 12, в трубное пространство которого подается теплоноситель (эффлюент).
Надосадочная жидкость (жидкая фракция) отводится через сливной патрубок 23 в анаэробный биореактор с прикрепленной метаногенной микрофлорой 6 посредством трубопровода 24, оснащенного гидрозатвором 25.
Биошлам отводится в блок приготовления удобрений 16 через трубопровод 26.
Блок приготовления удобрений 16 обеспечивает, в зависимости от потребностей хозяйства, приготовление высококачественных удобрительных смесей на основе обогащенного азотом и фосфором биошлама и с использованием местных влагопоглощающих, структурирующих и компенсирующих материалов. При необходимости, осуществляется аэробная ферментация в управляемых условиях с получением органоминеральных удобрений нового поколения (например, с использованием современных технологий согласно патента РФ №2 028 998). Газы разложения из аэробного биореактора, содержащие не менее 10% кислорода, отводятся посредством газопровода 27 в блок 16 и утилизируются в ходе ферментационных процессов.
Теплопотери анаэробным биореактором с прикрепленной метаногенной микрофлорой 6 минимизируются посредством теплоизоляции 28. Жидкая фракция подводится через патрубок 29. Эффлюент отводится через патрубок 30. Температурный режим твердофазного анаэробного биореактора 5 и нагрузка на микрофлору анаэробного биореактора с прикрепленной метаногенной микрофлорой 6 регулируются посредством рециркуляции с использованием распределительного устройства 31 любой известной конструкции и рециркуляционного трубопровода 32.

Claims (2)

1. Способ аэробно-анаэробной обработки бесподстилочного навоза с получением биогаза, эффлюента, биошлама, согласно которому исходный навоз подвергают аэробному автотермическому термогидролизу, анаэробной ацидофикации и анаэробной переработке в горючий биогаз, биошлам и эффлюент, причем жидкофазную переработку в горючий биогаз и эффлюент осуществляют с использованием прикрепленной метаногенной микрофлоры, твердофазную переработку в горючий биогаз и биошлам осуществляют с использованием взвешенной метаногенной микрофлоры, отличающийся тем, что твердофазную переработку совмещают с уплотнением биошлама и контактным осветлением надосадочной жидкости, аэробный автотермический термогидролиз и жидкофазную переработку осуществляют в условиях взаимного теплообмена с размещением зоны анаэробной ацидофикации внутри зоны жидкофазной переработки в условиях гидравлической циркуляционной связи зон аэробного автотермического термогидролиза и анаэробной ацидофикации, а также зон жидкофазной переработки и контактного осветления надосадочной жидкости, эффлюент зоны жидкофазной переработки используют для термостабилизации зоны твердофазной переработки и предварительного нагрева навоза.
2. Устройство для аэробно-анаэробной обработки бесподстилочного навоза с получением биогаза, эффлюента и биошлама, состоящее из аэробного биореактора, анаэробного ацидофикационного биореактора, сгустителя, жидкофазного анаэробного биореактора с прикрепленной метаногенной микрофлорой, твердофазного анаэробного биореактора со взвешенной метаногенной микрофлорой, отличающееся тем, что жидкофазный анаэробный биореактор с прикрепленной метаногенной микрофлорой снабжен размещенной внутри иммобилизирующей загрузки развитой поверхностью теплообмена в виде системы оребренных труб, внутренняя полость которых гидравлически связана с рабочим пространством аэробного биореактора посредством первого циркуляционного контура, сгуститель выполнен в виде контактного осветлителя и размещен в надосадочной части твердофазного анаэробного биореактора со взвешенной метаногенной микрофлорой, выход контактного осветлителя гидравлически связан со входом жидкофазного анаэробного биореактора с прикрепленной метаногенной микрофлорой посредством второго циркуляционного контура, а выход жидкофазного анаэробного биореактора с прикрепленной метаногенной микрофлорой последовательно гидравлически связан с теплообменным регистром, размещенным в рабочем пространстве твердофазного анаэробного биореактора со взвешенной метаногенной микрофлорой и регенеративным подогревателем исходного навоза.
RU2015108656/05A 2015-03-12 2015-03-12 Способ аэробно-анаэробной обработки бесподстилочного навоза с получением биогаза, эффлюента, биошлама и устройство для его реализации RU2600996C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015108656/05A RU2600996C2 (ru) 2015-03-12 2015-03-12 Способ аэробно-анаэробной обработки бесподстилочного навоза с получением биогаза, эффлюента, биошлама и устройство для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015108656/05A RU2600996C2 (ru) 2015-03-12 2015-03-12 Способ аэробно-анаэробной обработки бесподстилочного навоза с получением биогаза, эффлюента, биошлама и устройство для его реализации

Publications (2)

Publication Number Publication Date
RU2015108656A RU2015108656A (ru) 2016-09-27
RU2600996C2 true RU2600996C2 (ru) 2016-10-27

Family

ID=57018349

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015108656/05A RU2600996C2 (ru) 2015-03-12 2015-03-12 Способ аэробно-анаэробной обработки бесподстилочного навоза с получением биогаза, эффлюента, биошлама и устройство для его реализации

Country Status (1)

Country Link
RU (1) RU2600996C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774082C1 (ru) * 2021-11-15 2022-06-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" Система для непрерывной утилизации жидкой фракции навоза крупного рогатого скота

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982847A (zh) * 2019-12-02 2020-04-10 刘辉 一种利用花生秸秆共发酵提高源分离褐水厌氧消化产甲烷的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2636651A1 (en) * 2012-03-06 2013-09-11 Lely Patent N.V. System for processing biomass
RU2505490C2 (ru) * 2012-04-10 2014-01-27 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Устройство для утилизации органических субстратов с влажностью 92-99% с получением органических удобрений и электроэнергии
RU2533431C1 (ru) * 2013-04-16 2014-11-20 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Способ переработки бесподстилочного навоза в удобрения, электрическую и тепловую энергию и биоэнергетическая установка для его реализации
RU2542107C2 (ru) * 2013-04-16 2015-02-20 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) Устройство для экологически безопасной переработки органических субстратов в биогаз и удобрения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2636651A1 (en) * 2012-03-06 2013-09-11 Lely Patent N.V. System for processing biomass
RU2505490C2 (ru) * 2012-04-10 2014-01-27 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Устройство для утилизации органических субстратов с влажностью 92-99% с получением органических удобрений и электроэнергии
RU2533431C1 (ru) * 2013-04-16 2014-11-20 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Способ переработки бесподстилочного навоза в удобрения, электрическую и тепловую энергию и биоэнергетическая установка для его реализации
RU2542107C2 (ru) * 2013-04-16 2015-02-20 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) Устройство для экологически безопасной переработки органических субстратов в биогаз и удобрения

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774082C1 (ru) * 2021-11-15 2022-06-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" Система для непрерывной утилизации жидкой фракции навоза крупного рогатого скота
RU2774905C1 (ru) * 2021-11-15 2022-06-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" Способ непрерывной утилизации жидкой фракции навоза крупного рогатого скота

Also Published As

Publication number Publication date
RU2015108656A (ru) 2016-09-27

Similar Documents

Publication Publication Date Title
CN101337838B (zh) 有机固体废弃物联合厌氧发酵方法
DK2155854T3 (en) MILLING TANK FOR MAKING BIOGAS OF PUMPABLE ORGANIC MATERIAL
CN101935139B (zh) 一种城市污泥干法厌氧发酵产沼气的方法
BR112012013332B1 (pt) método e aparelho para tratamento biológico de esgoto
CN102344197B (zh) 一种快速启动厌氧氨氧化反应器的方法
CN103086583B (zh) 一种强化污泥稳定集污泥消化液处理的装置和方法
CN110079448B (zh) 一种秸秆和粪污三段式共发酵制备沼气的方法及其装置
CN105036489B (zh) 一种畜禽养殖废水深度脱氮除磷达标处理装置及其工艺
CN103803770A (zh) 有机污泥高温微好氧-厌氧消化装置和方法
CN101215049B (zh) 一种生态型农村污水与有机固体废弃物协同处理的工艺
Yang et al. Influence of reflux ratio on the anaerobic digestion of pig manure in leach beds coupled with continuous stirred tank reactors
CN105060669A (zh) 厌氧发酵与碳化处理相结合技术进行污泥综合利用的方法
CN103981220A (zh) 一种氢烷发酵耦合微藻养殖处理有机废弃物的方法
CN101285077B (zh) 一种利用水生植物制备短链脂肪酸的方法
CN108585407B (zh) 一种以亚临界水热液化为核心的多技术耦合生态厕所粪尿处理系统及方法
CN101255227A (zh) 利用含油污泥合成聚羟基烷酸酯的方法
CN109650555A (zh) 一种利用微藻处理含磷废水的方法
RU2600996C2 (ru) Способ аэробно-анаэробной обработки бесподстилочного навоза с получением биогаза, эффлюента, биошлама и устройство для его реализации
RU2505490C2 (ru) Устройство для утилизации органических субстратов с влажностью 92-99% с получением органических удобрений и электроэнергии
CN203878041U (zh) 一种有机污泥高温微好氧-厌氧消化装置
CN209065710U (zh) 污泥热水解太阳能低温膜厌氧消化联合快速处理系统
CN112759430A (zh) 一种养猪废弃物处理及综合利用的方法
JPS602920B2 (ja) 嫌気性汚泥消化法
RU2500628C2 (ru) Способ переработки органических субстратов в удобрения и газообразный энергоноситель
Konstandt Engineering, operation and economics of methane gas production

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170313