RU2599901C1 - Антенна полигона для измерения радиолокационных характеристик целей в зоне френеля - Google Patents

Антенна полигона для измерения радиолокационных характеристик целей в зоне френеля Download PDF

Info

Publication number
RU2599901C1
RU2599901C1 RU2015123533/28A RU2015123533A RU2599901C1 RU 2599901 C1 RU2599901 C1 RU 2599901C1 RU 2015123533/28 A RU2015123533/28 A RU 2015123533/28A RU 2015123533 A RU2015123533 A RU 2015123533A RU 2599901 C1 RU2599901 C1 RU 2599901C1
Authority
RU
Russia
Prior art keywords
mixers
switches
input
antenna
polarization
Prior art date
Application number
RU2015123533/28A
Other languages
English (en)
Inventor
Георгий Галиуллович Валеев
Ирина Викторовна Гагарина
Original Assignee
Георгий Галиуллович Валеев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Георгий Галиуллович Валеев filed Critical Георгий Галиуллович Валеев
Priority to RU2015123533/28A priority Critical patent/RU2599901C1/ru
Application granted granted Critical
Publication of RU2599901C1 publication Critical patent/RU2599901C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

Антенна полигона для измерения радиолокационных характеристик целей в зоне Френеля выполнена в виде фазированной антенной решетки (ФАР), которая содержит систему ответвителей с входом и N выходами, N четное число больше шести, N первых коммутаторов сигналов и N каналов передачи сигналов, в которые входят N вторых и N третьих коммутаторов, N первых, N вторых, N третьих и N четвертых смесителей, 2N циркуляторов, 2N переменных аттенюаторов, 2N фазовращателей, 2N излучателей. Каждый канал состоит из двух субканалов вертикальной Ε и горизонтальной Η поляризаций излучений. В субканал Ε входят: второй коммутатор, первый и второй смесители частот и последовательно соединенные первый выход циркулятора, переменный аттенюатор, фазовращатель и излучатель вертикальной поляризаций, в субканал Η входят: третий коммутатор, третий и четвертый смесители частот и последовательно соединенные первый выход второго циркулятора, второй переменный аттенюатор, второй фазовращатель, излучатель горизонтальной поляризации. Технический результат изобретения - увеличение коэффициента использования апертуры приемно-передающей антенны - ФАР до 0,9 и уменьшение занимаемой антенной площади безэховой камеры, т.к. продольный размер ФАР определяется ее толщиной, которая составляет 3-5 рабочих длин волн. 3 ил.

Description

Изобретение относится к антенной технике, именно к коллиматорным антеннам. Преимущественная область применения изобретения в качестве приемно-передающей антенны закрытых полигонов, предназначенных для измерения в ближней зоне (зоне Френеля) статических радиолокационных характеристик (РЛХ) целей: амплитуды, фазы и поляризации поля вторичного излучения, которые, описываются комплексными элементами (КЭ) матрицы рассеяния с абсолютной фазой цели (МРА). Для измерения РЛХ в ближней зоне антенны должен быть сформирован плоский фронт поля излучения с однородной амплитудой, в пределах апертуры цели, для этого используются коллиматорные антенны: линзовые или рупорно-параболические.
Известна линзовая антенна, на апертуре которой и ближней зоне формируется плоский фронт поля излучения, при этом амплитудное распределение неоднородное и определяется диаграммой направленности облучателя линзы, которое спадает от оси линзы к ее краям [1]. Коэффициент использования апертур линзовых антенн не превышает 0,3-0,5 диаметра линзы и зависит от допустимой амплитудной неоднородности поля, которая приводит к погрешности измерения РЛХ. Кроме того, продольный размер линзовых антенн зависит от фокусного расстояния линзы, которое составляет десятки и сотни рабочих длин волн, поэтому линзовая антенна занимает не менее трети площади безэховой камеры, в которой размещен полигон.
Общим признаком аналога и изобретения является облучатель (излучатель).
Известна рупорно-параболическая антенна (РПА), принятая за прототип изобретения, которая в пределах апертуры создает плоский фронт поля, при этом амплитудное распределение неоднородное, определяется диаграммой направленности облучателя параболоида, которое спадает от оси антенны к краям параболоида [2]. Коэффициент использования апертур РПА не превышает 0,3-0,5 размера раскрыва параболоида и зависит от допустимой амплитудной неоднородности поля, которая приводит к погрешности измерения РЛХ. Кроме того, продольный размер РПА зависит от фокусного расстоянием параболоида, которое составляет десятки и сотни рабочих длин волн, поэтому РПА занимает не менее трети площади безэховой камеры, в которой размещен полигон.
Общим признаком прототипа и изобретения является облучатель (излучатель).
Техническим результатом изобретения является увеличение коэффициента использования апертуры приемно-передающей антенны до 0,9 и более за счет выполнения антенны в виде фазированной антенной решетки (ФАР) и уменьшение занимаемой антенной площади безэховой камеры (БЭК), в которой размещен полигон, т.к. продольный размер ФАР определяется ее толщиной, которая составляет 3-5 рабочих длин волн.
ФАР называется антенное устройство, состоящее из N каналов излучателей (N от нескольких единиц до нескольких тысяч), каждый из которых способен излучать в пространство и принимать из него радиосигналы [3].
Изобретение поясняется чертежами.
На фиг. 1 представлена структурная схема ФАР, на которой введены обозначения: 1 - система из N ответвителей; 2 - первый коммутатор; 3 - второй коммутатор; 4 - третий коммутатор; 5 - циркуляторы; 6 - переменные аттенюаторы (Ат); 7 - фазовращатели (ФВ); 8 - излучатель вертикальной Е поляризации; 9 - излучатель горизонтальной Н поляризации; 10 - первый смеситель частоты сигналов; 11 - второй смеситель частоты сигналов; 12 - третий смеситель частоты сигналов, 13 - четвертый смеситель частоты сигналов.
На фиг. 2 представлен вид на апертуру плоской 36-канальной ФАР (N=36), на которой вертикальными черточками обозначены излучатели вертикальной Е поляризации, горизонтальными - излучатели горизонтальной Н поляризации, причем соседние излучатели имеют ортогональные поляризации.
На фиг. 3 представлен вариант структурной схемы радиоизмерительной аппаратуры (РИА), обеспечивающий реализацию изобретения, на которой введены обозначения: 14 - генератор сигналов опорной частоты (ГО); 15 - смеситель частоты сигналов (См); 16 - генератор сигналов сверхвысокой частотны (СВЧ) (Г); 17 - фильтр сигналов СВЧ (ФВЧ); 18 - усилитель мощности СВЧ-сигнала (УМ); 19 - импульсный амплитудный модулятор (ИМ); 20 - генератор прямоугольных импульсов (ГИ); 21 - приемник сигналов при облучении цели полем Е поляризации и параллельном приеме поля вторичного излучения цели; 22 - приемник сигналов при облучении цели полем Е поляризации и ортогональном приеме поля вторичного излучения цели; 23 - приемник сигналов при облучении цели полем Н поляризации и ортогональном приеме поля вторичного излучения цели; 24 - приемник сигналов при облучении цели полем Н поляризации и параллельном приеме поля вторичного излучения цели.
Генератор сигналов опорной частоты (ГО) 14 выполнен стабилизированным с частотой сигнала f (МГц), равной промежуточной частоте радиоизмерительной установки.
Смеситель (См) 15 предназначен для преобразования сигнала генератора (Г) 16 частотой F (ГГц) и сигнала опорного генератора 1 частотой f (МГц) в частоту F+f (ГГц) зондирующего сигнала.
Генератор сигналов (Г) 16 предназначен для генерации монохроматических сверхвысокочастотных (СВЧ) электрических колебаний F (ГГц).
Фильтр сигналов СВЧ (ФВЧ) 17 предназначен для фильтрации частоты зондирующих импульсов (F+f), образованной на выходе смесителя (См) 15.
Усилитель мощности СВЧ-сигнала (УМ) 18 может быть выполнен на лампе бегущей волны.
Импульсный модулятор (ИМ) 19 предназначен для амплитудной модуляции усилителя мощности (УМ) 18 сигнала с частотой (F+f), короткими прямоугольными импульсами.
Генератор прямоугольных импульсов (ГИ) 20 генерирует короткие прямоугольные импульсы, доли мкс, со скважностью Т больше времени t, необходимого для прохождения зондирующим импульсом расстояния от апертуры ФАР до цели и обратно.
Технический результат изобретения достигается за счет применения, в качестве приемно-передающей антенны полигона, фазированной антенной решетки (ФАР). Плоский фронт поля с однородной амплитудой в ближней зоне ФАР с синфазными излучателями и одинаковыми амплитудами излучений, в соответствии принципом Гюйгенса-Френеля, формируется в дальней зоне излучателей и ближней зоне ФАР.
Антенна полигона для измерения радиолокационных характеристик целей в зоне Френеля выполнена в виде фазированной антенной решетки (ФАР), содержит (фиг. 1): систему 1 ответвителей с входом и N выходами, N - четное число больше 6, N первых коммутаторов сигналов 2 и N каналов передачи сигналов, в которые входят N вторых коммутаторов 3, N третьих коммутаторов 4, N первых смесителей 10, N вторых смесителей 11, N третьих смесителей 12, N четвертых смесителей 13, 2N циркуляторов 5, 2N переменных аттенюаторов 6, 2N фазовращателей 7, 2N излучателей.
Каждый канал состоит из двух субканалов вертикальной Е и горизонтальной Н поляризации излучений.
В субканал Е входят: второй коммутатор 3, первый 10 и второй 11 смесители частот и последовательно соединенные первый выход циркулятора 5, переменный аттенюатор 6, фазовращатель 7 и излучатель вертикальной поляризаций 8.
В субканал Н входят: третий коммутатор 4, третий 12 и четвертый 13 смесители частот и последовательно соединенные первый выход циркулятора 5, второй переменный аттенюатор 6, второй фазовращатель 7, излучатель горизонтальной поляризаций 9.
Коммутаторы 2, 3 и 4 имеют два неподвижных и один подвижный контакт, подвижный контакт первых коммутаторов 2 соединен с одним выходом системы 1 ответвителей.
Неподвижный контакт первых коммутаторов 2 соединен с входом субканалов Е, которым является вход циркуляторов 5, второй выход циркуляторов соединен с подвижным контактом вторых коммутаторов 3, один неподвижный контакт которых соединен с входом первых смесителей 10, а второй - с входом вторых смесителей 11.
Другой неподвижный контакт первых коммутаторов 2 соединен с входом субканалов Н, которым является вход вторых циркуляторов 5, второй выход циркуляторов 5 соединен с подвижными контактами третьих коммутаторов 4, один неподвижный контакт которых соединен с входом третьих смесителей 12, а четвертый - с входом четвертых смесителей 13.
N ответвителей системы 1 (соединены последовательно или параллельно), которые предназначены для разводки СВЧ-сигналов по каналам и субканалам ФАР. Система 1 имеет вход СВЧ-сигнала и N выходов и может быть выполнена на волноводе или коаксиальном кабеле с отводами.
Первый коммутатор 2 предназначен для переключения режимов излучения ФАР вертикальной Е или горизонтальной Н линейной поляризации и может быть выполнен электронным.
Второй коммутатор 3 предназначен для включения первого 10 или второго 11 смесителя в зависимости от излучения ФАР вертикальной Е или горизонтальной Н поляризации, выполнен как первый коммутатор 2.
Третий коммутатор 4 предназначен для включения третьего 12 или четвертого 13 смесителя в зависимости от излучения ФАР вертикальной Е или горизонтальной Н поляризации, выполнен как первый коммутатор 2.
Циркуляторы 5 предназначены для разделения излучаемых СВЧ-сигналов от принимаемых [3].
Переменные аттенюаторы 6 предназначены для выравнивания амплитуд излучений излучателей Е и Н поляризаций. Аттенюаторы выполнены электронно-управляемые на транзисторах [3].
Фазовращатели 7 предназначены для выравнивания фаз излучений излучателей Е и Н поляризаций, выполнены электронно-управляемыми на транзисторах [3].
Излучатели предназначены для создания в зоне Френеля ФАР плоского фронта поля однородного по амплитуде и могут быть выполненными в виде волноводных рупоров Е и Н поляризаций.
Смесители 10, 11, 12 и 13 предназначены для преобразования принимаемых СВЧ-сигналов частотой F+f в сигналы промежуточной частоты f и являются выходами сигналов ФАР, несущих информацию об амплитудах, фазах и поляризации поля вторичного излучения цели при их соответственно параллельном и ортогональном приемах в линейном поляризационном базисе, которые соответствуют комплексным элементам (КЭ) матрицы рассеяния с абсолютной фазой (МРА) цели: КЭ - М11; КЭ - M12; КЭ - М12 и КЭ - М22. С выходов смесителей 11 и 13 сигналы поступают на соответствующие входы приемников 21-24 (фиг. 3). Выходы одноименных смесителей 10, 11, 12 и 13N каналов соединены между собой кабелями одинаковой электрической длины.
Для уменьшения фазовых погрешностей измерения входы приемников соединены с выходами разных смесителей кабелями одинаковой электрической длины.
На основании принципа взаимности антенн плоская ФАР выполняет функцию коллиматорной антенны, позволяет измерять статические РЛХ, которые описываются матрицей рассеяния с абсолютной фазой цели (МРА), в ближней зоне ФАР, в которой формируется поле с плоским фазовым фронтом и однородной амплитудой.
Математически МРА записывается [4] в виде:
Figure 00000001
где σ1,2·expjβ1,2 - комплексные элементы матрицы (КЭ) МРА;
σ11, σ22 и σ12 - эффективная площадь рассеяния (ЭПР) цели при параллельном и ортогональном приеме в линейном поляризационном базисе;
β11, β22 и β12 - абсолютные фазы цели при параллельном и ортогональном приеме;
Figure 00000002
- знак квадратного корня из значений σ11, σ22 и σ12.
В каждой строке излучателей апертуры ФАР два соседних излучателя, с ортогональными поляризациями образуют приемно-передающий модуль, который обеспечивает измерение всех комплексных элементов (КЭ) матрицы рассеяния с абсолютной фазой цели (МРА) (фиг. 2). Выходы всех модулей соединены кабелями одинаковой электрической дины.
В соответствии с равенством (1) уравнения измерения КЭ МРА записываются в виде:
Figure 00000003
Figure 00000004
Измерение КЭ MP неподвижной цели производят построчно и последовательно.
Первую пару КЭ МРА уравнений измерения измеряют при излучении ФАР, Е поляризации и приеме Е и Н поляризаций поля вторичного излучения цели всеми излучателями. В этом случае подвижные контакты всех первых коммутаторов 2 каналов соединены с входами субблоков Е поляризации. Подвижный контакт второго переключателя 3 соединен с входом смесителя 10, а подвижный контакт третьего переключателя 4 соединен с входом смесителя 12.
Вторую пару КЭ МРА уравнений измерения измеряют при излучении ФАР Н поляризации и приеме Е и Н поляризаций поля вторичного излучения цели. В этом случае подвижные контакты всех первых коммутаторов 2 каналов соединены с входами субблоков Н поляризации. Подвижные контакты вторых переключателей соединены со входами смесителей 11, а подвижный контакт третьего переключателя 4 соединен с входом смесителя 13.
КЭ M12 измеряются дважды, что позволяет оценить погрешность измерения РЛХ путем сравнения их значений на Е и Н поляризациях излучений ФАР.
При необходимости измерения диаграмм ЭПР цель вращают в азимутальной плоскости, измерение всех КЭ МРА должны производиться одновременно, что физически нереализуемо. В этом случае измерение пар КЭ МРА первой и второй строк уравнений измерения производят через один зондирующий импульс. При этом погрешностью неодновременного измерения КЭ можно пренебречь, т.к. измерение производят при малой скорости вращения цели (2-5 об/мин), а различие во времени измерения составляет единицы мкс (меньше удвоенного значения скважности), за это время угол визирования цели изменится на сотые доли углового градуса.
Настройка ФАР для измерения РЛХ целей
У торцевой стены БЭК размещают ФАР электрической осью соосно продольной оси БЭК.
Подключают систему 1 ответвителей ФАР к выходу радиоизмерительной аппаратуры (РИА) (к выходу усилителя мощности УМ 18) (фиг. 1 и 3). Подвижные контакты всех первых коммутаторов 2 подключены к входам субканалов Е.
На сканере [2], с возможностью горизонтального и вертикального перемещений в плоскости параллельной плоскости ФАР, перед ней на расстоянии около длины рабочей волны, соосно крайнему и излучателю, устанавливают измерительный зонд в виде волноводного рупора Е поляризации. Подключают зонд к радиоизмерительной аппаратуре, которая позволяет измерять и фиксировать амплитуду и фазу излучателей ФАР. Сканируют зондом излучатели Е поляризации ФАР. Результаты измерения, в соответствие с программой, записывают в память ЭВМ. По программе ЭВМ выбирает излучатель с наименьшей амплитудой излучения.
После чего на сканере устанавливают зонд Н поляризации. Подключают зонд к радиоизмерительной аппаратуре, которая позволяет измерять и фиксировать амплитуду и фазу излучателей ФАР. Подвижные контакты всех первых коммутаторов 2 подключены к входам субканалов Н поляризации. Сканируют зондом излучатели Н поляризации ФАР. Результаты измерения, в соответствие с программой, записывают в память ЭВМ. По программе ЭВМ из результатов двух измерений ЭВМ выбирает излучатель с наименьшей амплитудой излучения, по этим результатам, с помощью электронных аттенюаторов 6 и фазовращателей 7, ЭВМ выравнивает амплитуды и фазы всех излучателей Е и Н поляризаций. ФАР настроена и готова к измерениям статических РЛХ целей.
Работа радиоизмерительной аппаратуры (РИА) полигона с ФАР
1. Настраивают ФАР (см. выше).
2. На опору, стоящую в ближней зоне ФАР, устанавливают цель.
3. Включают питание всех активных блоков РИА.
4. В каналах и субканалах излучателей ФАР возникают сигналы, которые излучаются в пространство в виде зондирующих импульсов радиосигнала с одинаковыми фазами и амплитудами, например, Е поляризации в дальней зоне излучателей ФАР и ближней зоне апертуры ФАР формируется плоский фронт поля с однородной амплитудой. При работе на прием, на основании принципа взаимности антенн, плоская ФАР работает как коллиматорная антенна. Поле вторичного излучения цели поступает на все излучатели, работающие в режиме приема, в промежуток время равный удвоенному значению скважности. На выходах всех смесителей 10 и 12 возникают сигналы амплитуды и фазы, которые регистрируют приемники 21 и 22.
5. ФАР на Н поляризации излучения работает аналогично работе на Е поляризации.
Для обеспечения работы РИА длительности скважности Т и радиоимпульсов т должны удовлетворять неравенству:
Figure 00000005
где c - скорость света.
В промежуток время, равный удвоенной скважности Т, приемники осуществляют прием поля вторичного излучения цели.
9. С опоры снимают цель и на ее место помещают эталонный отражатель с известным значением ЭПР. При линейной характеристике приемника фиксируют сигнал, отраженный от эталонного отражателя, и путем экстраполяции калибруют его шкалу в значениях ЭПР.
ЭПР измеряемой цели
Figure 00000006
, для каждой поляризации определяют по формуле (3):
Figure 00000007
где
Figure 00000006
- ЭПР цели;
Figure 00000008
- ЭПР эталона; Pц - мощность сигнала, отраженного от цели; Pэт - мощность сигнала, отраженного от эталона.
10. Фазовую шкалу приемников калибруют путем перемещения эталонного отражателя вдоль электрической оси ФАР на расстояние нескольких длин волн L. Фаза Ф отраженного сигнала, определяется по формуле:
Figure 00000009
На фазовой шкале приемника с балансным фазовым детектором фазовая характеристика будет выглядеть в виде пилообразной кривой с нулевым обратным ходом со скачками фазы 2π.
Технический результат изобретения - увеличение коэффициента использования апертуры приемно-передающей антенны до 0,9 за счет применения фазированной антенной решетки (ФАР) в качестве антенны полигона и уменьшения занимаемой антенной площади безэховой камеры (БЭК), т.к. продольный размер ФАР равен ее толщине, которая составляет 3-5 рабочих длин волн.
Литература
[1] - Майзельс Е.Н., Торгованов В.А. Измерение характеристик рассеяния радиолокационных целей. - М.: Сов. радио, 1972.
[2] - Балабуха Н.П., Зубов А.С., Солосин B.C. Компактные полигоны для измерения характеристик рассеяния объектов. - М.: Наука, 2007.
[3] - Карташкин А.С. Радионаблюдение воздушных объектов. - М.: РадиоСофт, 2014.
[4] - Теоретические основы радиолокации. Под редакцией Ширмана Я.Д. - М.: Советское радио, 1970.

Claims (1)

  1. Антенна полигона для измерения радиолокационных характеристик целей в зоне Френеля, содержащая излучатель, отличающаяся тем, что введены: система ответвителей с входом и N выходами, N четное число больше шести, N первых коммутаторов сигналов и N каналов передачи сигналов, в которые входят N вторых коммутаторов, N третьих коммутаторов, N первых смесителей, N вторых смесителей, N третьих смесителей, N четвертых смесителей, 2N циркуляторов, 2N переменных аттенюаторов, 2N фазовращателей, 2N-1 излучателей, причем каждый канал состоит из двух субканалов вертикальной Е и горизонтальной Н поляризаций излучения, в субканал Е входят: второй коммутатор, первый и второй смесители частот и последовательно соединенные первый выход циркулятора, переменный аттенюатор, фазовращатель и излучатель вертикальной поляризации, в субканал Н входят: третий коммутатор, третий и четвертый смесители частот и последовательно соединенные первый выход второго циркулятора, второй переменный аттенюатор, второй фазовращатель, излучатель горизонтальной поляризации, кроме того, первый, второй и третий коммутаторы имеют два неподвижных и один подвижный контакт, подвижный контакт первых коммутаторов соединен с одним выходом системы ответвителей, причем неподвижный контакт первых коммутаторов соединен с входом субканалов Е, которым является вход циркуляторов, второй выход циркуляторов соединен с подвижным контактом вторых коммутаторов, один неподвижный контакт которых соединен с входом первых смесителей, а второй - с входом вторых смесителей, кроме того, другой неподвижный контакт первых коммутаторов соединен с входом субканалов Н, которым является вход вторых циркуляторов, второй выход вторых циркуляторов соединен с подвижными контактами третьих коммутаторов, один неподвижный контакт которых соединен с входом третьих смесителей, а четвертый - с входом четвертых смесителей, причем выходы одинаковых смесителей соединены между собой кабелями одинаковой электрической длины.
RU2015123533/28A 2015-06-18 2015-06-18 Антенна полигона для измерения радиолокационных характеристик целей в зоне френеля RU2599901C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015123533/28A RU2599901C1 (ru) 2015-06-18 2015-06-18 Антенна полигона для измерения радиолокационных характеристик целей в зоне френеля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015123533/28A RU2599901C1 (ru) 2015-06-18 2015-06-18 Антенна полигона для измерения радиолокационных характеристик целей в зоне френеля

Publications (1)

Publication Number Publication Date
RU2599901C1 true RU2599901C1 (ru) 2016-10-20

Family

ID=57138539

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015123533/28A RU2599901C1 (ru) 2015-06-18 2015-06-18 Антенна полигона для измерения радиолокационных характеристик целей в зоне френеля

Country Status (1)

Country Link
RU (1) RU2599901C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2801123C2 (ru) * 2019-05-03 2023-08-02 Олл.Спейс Нетворкс Лимитед Коррекция спада коэффициента усиления в фазированной решетке гибридной линзовой антенны с механическим приводом
US11735816B2 (en) 2019-05-03 2023-08-22 All.Space Networks Limited Gain roll-off for hybrid mechanical-lens antenna phased arrays

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU287146A1 (ru) * Б. И. Уль нов Способ синтезирования
US4220957A (en) * 1979-06-01 1980-09-02 General Electric Company Dual frequency horn antenna system
RU2278396C2 (ru) * 2004-09-03 2006-06-20 5 Центральный научно-исследовательский испытательный институт Министерства обороны Российской Федерации (5 ЦНИИИ МО РФ) Устройство калибровки наземных радиолокационных измерительных комплексов под малыми углами места
RU2335779C2 (ru) * 2006-06-01 2008-10-10 Анатолий Александрович Хрусталев Способ измерения коэффициента усиления антенны методом сравнения с эталонной антенной и устройство для его осуществления
RU2451373C1 (ru) * 2010-09-10 2012-05-20 Открытое Акционерное Общество "Уральское проектно-конструкторское бюро "Деталь" Активная фазированная антенная решетка

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU287146A1 (ru) * Б. И. Уль нов Способ синтезирования
US4220957A (en) * 1979-06-01 1980-09-02 General Electric Company Dual frequency horn antenna system
RU2278396C2 (ru) * 2004-09-03 2006-06-20 5 Центральный научно-исследовательский испытательный институт Министерства обороны Российской Федерации (5 ЦНИИИ МО РФ) Устройство калибровки наземных радиолокационных измерительных комплексов под малыми углами места
RU2335779C2 (ru) * 2006-06-01 2008-10-10 Анатолий Александрович Хрусталев Способ измерения коэффициента усиления антенны методом сравнения с эталонной антенной и устройство для его осуществления
RU2451373C1 (ru) * 2010-09-10 2012-05-20 Открытое Акционерное Общество "Уральское проектно-конструкторское бюро "Деталь" Активная фазированная антенная решетка

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2801123C2 (ru) * 2019-05-03 2023-08-02 Олл.Спейс Нетворкс Лимитед Коррекция спада коэффициента усиления в фазированной решетке гибридной линзовой антенны с механическим приводом
US11735816B2 (en) 2019-05-03 2023-08-22 All.Space Networks Limited Gain roll-off for hybrid mechanical-lens antenna phased arrays

Similar Documents

Publication Publication Date Title
RU2421744C1 (ru) Компактный полигон для измерения характеристик различных антенных систем
US7714775B2 (en) Method for accurate auto-calibration of phased array antennas
CN107918068B (zh) 天线阵列、测试系统和用于测试受测装置的方法
US20180006745A1 (en) Compact system for characterizing a device under test (dut) having integrated antenna array
ES2342197T3 (es) Antena de barrido de frecuencia.
KR102436716B1 (ko) 안테나 시험 장치 및 시험 방법
CN110612638B (zh) 一种基于阵列天线的准平面波生成器
BRPI0612978A2 (pt) radar de malha de perìmetro de abertura sintética
Camblor-Diaz et al. Sub-millimeter wave frequency scanning 8 x 1 antenna array
CN211061611U (zh) 一种车载雷达测试装置
RU2620961C1 (ru) Способ определения диаграммы направленности активной фазированной антенной решетки
US11789116B2 (en) Multi-direction phased array calibration
RU2599901C1 (ru) Антенна полигона для измерения радиолокационных характеристик целей в зоне френеля
Dahl et al. Comparison of virtual arrays for MIMO radar applications based on hexagonal configurations
Sichelstiel et al. Self-focusing array research model
RU2584260C1 (ru) Радиоизмерительная установка для измерения эффективной поверхности рассеяния объектов
Räisänen et al. Measurements of high-gain antennas at THz frequencies
RU2562068C1 (ru) Радиолокатор с фазированной антенной решеткой и системой тестирования ее каналов
RU2634735C1 (ru) Способ определения амплитудно-фазового распределения в раскрыве фазированной антенной решетки
RU2352952C1 (ru) Одноантенный измеритель поляризационной матрицы
Perera et al. A fully reconfigurable polarimetric phased array testbed: Antenna integration and initial measurements
RU2692125C1 (ru) Способ определения амплитудно-фазового распределения в раскрыве фазированной антенной решетки
Shu-Ji et al. Digital active phased array antenna measurement method based on correlation technique
Mandaris High strength electromagnetic field generation for radiated EMI measurements
RU2237253C1 (ru) Способ определения диаграмм направленности щелевой антенной решетки по результатам измерений в ближней зоне френеля

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170619