RU2596253C2 - Устройство для регулирования технологических газов в установке для получения металлов прямым восстановлением руд - Google Patents

Устройство для регулирования технологических газов в установке для получения металлов прямым восстановлением руд Download PDF

Info

Publication number
RU2596253C2
RU2596253C2 RU2014101612/05A RU2014101612A RU2596253C2 RU 2596253 C2 RU2596253 C2 RU 2596253C2 RU 2014101612/05 A RU2014101612/05 A RU 2014101612/05A RU 2014101612 A RU2014101612 A RU 2014101612A RU 2596253 C2 RU2596253 C2 RU 2596253C2
Authority
RU
Russia
Prior art keywords
gas
pressure
process gases
reduction
regulating
Prior art date
Application number
RU2014101612/05A
Other languages
English (en)
Other versions
RU2014101612A (ru
Inventor
Роберт МИЛЛЬНЕР
Норберт РАЙН
Ян-Фридеманн ПЛАУЛЬ
Геральд РОЗЕНФЕЛЛЬНЕР
Original Assignee
Прайметалз Текнолоджиз Аустриа ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Прайметалз Текнолоджиз Аустриа ГмбХ filed Critical Прайметалз Текнолоджиз Аустриа ГмбХ
Publication of RU2014101612A publication Critical patent/RU2014101612A/ru
Application granted granted Critical
Publication of RU2596253C2 publication Critical patent/RU2596253C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

Изобретение относится к устройству для регулирования технологических газов в установке для получения металлов прямым восстановлением руд. Устройство имеет восстановительный реактор, смонтированное выше по потоку относительно восстановительного реактора устройство для разделения газовых смесей с сопряженным нагнетательным устройством, установленное ниже по потоку относительно восстановительного реактора газоочистительное устройство, сконфигурированное для регулирования количества технологических газов, и устройство для регулирования давления, которое таким образом размещено перед местом присоединения подводящего трубопровода к перепускному трубопроводу для технологических газов, в частности так называемого отходящего газа, что уровень давления поддерживается постоянным в устройстве для разделения газовых смесей с сопряженным нагнетательным устройством. Изобретение обеспечивает сокращение капитальных затрат, а также эксплуатационных расходов, в частности на электроэнергию. 9 з.п. ф-лы, 1 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к устройству для регулирования технологических газов в установке для получения металлов прямым восстановлением руд. При этом установка для получения металлов прямым восстановлением руд и, соответственно, металлов, в частности, железа, имеет по меньшей мере один восстановительный реактор (например, реакторную систему с псевдоожиженным слоем, шахтный восстановительный реактор с неподвижным слоем или, например, шахтный восстановительный реактор для процесса MIDREX® и т.д.), смонтированное выше по потоку относительно восстановительного реактора устройство для разделения газовых смесей с сопряженным нагнетательным устройством и установленное ниже по потоку относительно восстановительного реактора газоочистительное устройство. При этом необходимые для получения металлов прямым восстановлением руд технологические газы частично получаются рециркуляцией из самого производственного процесса и частично подаются через подводящий трубопровод, который впадает в перепускной трубопровод для технологических газов, из установки для выплавки чугуна, например, такой как установка для восстановительной плавки.
Уровень техники
Так называемое прямое восстановление металлических руд и, соответственно, металлов, в частности, железной руды и, соответственно, оксида железа, может выполняться в одной отдельной установке, так называемой установке для прямого восстановления. Такого рода установка для получения металлов прямым восстановлением и, соответственно, губчатого железа, которое также называется железом прямого восстановления (DRI = Железо Прямого Восстановления), обычно включает по меньшей мере один восстановительный реактор, например, такой как шахтный восстановительный реактор с неподвижным слоем, реакторную систему с псевдоожиженным слоем и т.д., в зависимости от того, присутствует ли восстанавливаемый металл, например, в форме кусков или мелкозернистых частиц, или, соответственно, требуется для переработки в чугун, подобные чугуну продукты или для выплавки стали и т.д.
При прямом восстановлении металлических руд и, соответственно, железной руды восстанавливаемый материал (например, металлическая руда, железная руда, оксид железа и т.д.) в кусковой форме - например, в виде кусковой руды или окатышей - или в форме мелкозернистых частиц, вводится в содержащую по меньшей мере один восстановительный реактор установку. В этом случае материал поступает в восстановительный реактор по принципу противотока с технологическим газом - так называемым восстановительным газом. При этом материал, например, такой как оксид железа, например, полностью или частично восстанавливается до так называемого губчатого железа, и восстановительный газ при этом окисляется. Восстановленный материал, например, такой как губчатое железо, тогда имеет степень металлизации от около 45 до более 95%.
Необходимые для восстановления технологические газы, например, такие как восстановительный газ, получаются, например, в плавильном газификаторе, например, при проведении способа восстановительной плавки (например, COREX®, FINEX® и т.д.), или в установке газификации угля, и предпочтительно вводятся в восстановительный реактор в его четверти от средней до нижней, или, соответственно, в случае реакторов с псевдоожиженным слоем, предпочтительно в первый реактор с псевдоожиженным слоем. Полученный, например, в плавильном газификаторе восстановительный газ предпочтительно нагрет до температуры от 750 до 1000°С, содержит пыль, а также обогащен монооксидом углерода и водородом (например, с содержанием от около 70 до 90% СО и Н2). Восстановительный газ поднимается в восстановительном реакторе вверх или, соответственно, при реакторе с псевдоожиженным слоем пропускается из реактора в реактор и при этом восстанавливает материал (например, металлическую руду, железную руду, оксид железа и т.д.), преимущественно в режиме противотока. Затем восстановительный газ в качестве так называемого отходящего газа выводится из восстановительного реактора.
С помощью присоединенного ниже по потоку относительно восстановительного реактора газоочистительного устройства (например, газопромывателя) очищается и в качестве так называемого рециркуляционного газа, по меньшей мере частично, направляется для обработки в присоединенное выше по потоку относительно восстановительного реактора устройство для разделения газовых смесей, в частности, устройство для удаления СО2 (например, методом адсорбции при переменном давлении или вакуумной адсорбции при переменном давлении и т.д.), с использованием сопряженного нагнетательного устройства. После обработки в устройстве для разделения газовых смесей газ может быть опять введен в восстановительный реактор в качестве восстановительного газа, причем необходимое в устройстве для разделения газовых смесей давление, которое создается с помощью сопряженного нагнетательного устройства (например, компрессора), опять должно быть уменьшено или, соответственно, снижено.
Наряду, например, с частичным повторным применением использованных в установке технологических газов применяется так называемый утилизируемый газ, который, например, выводится из процесса выплавки чугуна или, соответственно, процесса восстановительной плавки, например, такого как способы COREX®, или FINEX®, поскольку там он больше не может быть использован, для процесса восстановления в восстановительном реакторе. Наименование «утилизируемый газ» служит, в частности, в качестве обозначения той части так называемого колошникового газа, которая выводится из процесса восстановительной плавки или, соответственно, процесса выплавки чугуна, как правило, охлаждается и также подвергается обеспыливанию, в частности, сухому удалению пыли и, по обстоятельствам, других технологических газов, например, таких как избыточный газ из плавильного газификатора. При этом колошниковым газом обычно обозначается использованный восстановительный газ из доменной печи, плавильного газификатора или шахтного восстановительного реактора/реактора с псевдоожиженным слоем.
Если утилизируемый газ выводится из одной или многих установок восстановительной плавки, например, на основе COREX®- и/или FINEX®-процесса, для получения металла прямым восстановлением, то подобная установка обозначается как так называемая комбинированная установка. При этом утилизируемый газ через подводящий трубопровод вводится в установку для получения металла прямым восстановлением и, соответственно, железа и используется в имеющемся в каждом случае восстановительном реакторе (например, реакторной системе с псевдоожиженным слоем, шахтной восстановительной печи, шахтном восстановительном MIDREX®-реакторе и т.д.), причем подводимый утилизируемый газ может быть смешан с рециркуляционным газом из установки для получения металлов прямым восстановлением руд и, соответственно, железа.
Правда, обычно между подводимым утилизируемым газом и технологическими газами установки для получения металла прямым восстановлением возникает разность давлений, и, соответственно, это может вести к величинам давления при введении утилизируемого газа, которые могут иметь значение от около 0,8 до около 2 бар (0,08-0,2 МПа) избыточного давления. В дополнение, количество подводимого из одной или многих установок для восстановительной плавки утилизируемого газа может колебаться, например, до 10%, вследствие чего могут возникать вариации величин расхода потока технологических газов в процессе восстановления.
Конечно, для оптимального режима функционирования процесса восстановления в установке для получения металла прямым восстановлением и, соответственно, железа необходимо приблизительно постоянное давление на входе устройства для разделения газовых смесей и, соответственно, в сопряженном нагнетательном устройстве. Обычно входное давление в нагнетательном устройстве должно быть постоянным, например, на уровне около 2 бар (0,2 МПа) избыточного давления, и, соответственно, давление на входе устройства для разделения газовых смесей должно быть постоянным на уровне, например, от около 3 до 8 бар (0,3-0,8 МПа) избыточного давления, чтобы обеспечивать эффективное и экономичное удаление СО2 из технологических газов.
В дополнение, в восстановительном реакторе предусматривается приблизительно постоянное количество восстановительного газа. Это приблизительно постоянное количество газа, и, соответственно, соотношение количества восстановительного газа и подвергаемого прямому восстановлению материала (металла, железа (DRI (железа прямого восстановления) и т.д.) при этом определяет, например, качество полученного прямым восстановлением металла или, соответственно, железа. Поэтому в зависимости от желательного качества продукта необходимо конкретно выбранное, приблизительно постоянное количество восстановительного газа в восстановительном реакторе.
Поэтому обычно в комбинированной установке для регулирования давления утилизируемого газа и, соответственно, для постоянного входного давления в сопряженном с устройством для разделения газовых смесей нагнетательном устройстве используются один или многие компрессоры. Этот компрессор или, соответственно, эти компрессоры, например, устанавливаются в перепускном трубопроводе для рециркуляционного газа и, соответственно, перед местом присоединения к подводящему трубопроводу для утилизируемого газа. В дополнение, регулирование величины расхода потока выполняется для регулировок конкретного желательного количества восстановительного газа в процессе восстановления с помощью сложного и дорогостоящего клапанного блока, который размещается между устройством для разделения газовых смесей и смонтированным выше по потоку относительно восстановительного реактора нагревательным устройством для восстановительного газа.
Этим обычно обусловливается высокий перепад давления - вследствие требуемого, относительно высокого рабочего давления в устройстве для разделения газовых смесей, в частности, при использовании вакуумной адсорбции при переменном давлении (VPSA), и относительно низкого рабочего давления в восстановительном реакторе. Так, например, при применении установки с переменным давлением и так называемого шахтного восстановительного MIDREX®-реактора в качестве восстановительного реактора вследствие необходимого в каждом случае рабочего давления теряются от около 1 до 5 бар (0,1-0,5 МПа). Наряду со значительной потерей давления вследствие регулирования величины расхода потока с помощью клапанного блока, применение одного или более компрессоров в трубопроводе для рециркуляционного газа имеет тот недостаток, что становятся относительно высокими как капиталовложения, так и расходы на техническое обслуживание установки.
Сущность изобретения
Поэтому в основу изобретения положена задача найти простое устройство для регулирования технологических газов в установке для получения металлов прямым восстановлением руд и, соответственно, железа, с помощью которого простым путем сокращается или, соответственно, предотвращается потеря давления внутри установки, а также сокращаются затраты.
Решение этой задачи достигнуто с помощью устройства указанного вначале типа, причем для регулирования количества технологических газов приспособлено газоочистительное устройство, которое подключено ниже по потоку относительно по меньшей мере одного восстановительного реактора. В дополнение, устройство включает регулятор давления, который таким образом размещен перед местом присоединения подводящего трубопровода к перепускному трубопроводу для технологических газов, в частности, так называемого отходящего газа, что поддерживается постоянным уровень давления в устройстве для разделения газовых смесей с сопряженным нагнетательным устройством.
Основной аспект предлагаемого согласно изобретению технического решения состоит в том, что регулирование давления технологических газов, в частности, для смеси рециркуляционного газа (= отходящего газа в перепускном трубопроводе и, соответственно, трубопроводе для рециркуляционного газа установки) и подводимого утилизируемого газа из установки для выплавки чугуна, в частности, установки для восстановительной плавки, например, на основе COREX®- и/или FINEX®-процесса, производится посредством устройства для регулирования давления, например, такого как управляемый редукционный клапан, турбодетандер и т.д. Тем самым, несмотря на колебания давления, прежде всего в подводящем трубопроводе для утилизируемого газа, обеспечивается постоянство давления на уровне около 2 бар (0,2 МПа) избыточного давления на входе сопряженного с устройством для разделения газовых смесей нагнетательного устройства (например, компрессора) и, соответственно, постоянство уровня давления в устройстве для разделения газовых смесей (например, на адсорбционной основе (V)PSA и т.д.). Благодаря этому не требуются компрессоры в перепускном трубопроводе и, соответственно, трубопроводе для рециркуляционного газа, и снижаются как капитальные затраты, так и расходы на техническое обслуживание установки для получения металлов прямым восстановлением руд и, соответственно, железа. Также сокращаются текущие эксплуатационные затраты благодаря уменьшенному потреблению электроэнергии в установке.
Для управления и, соответственно, регулирования количества технологических газов, в частности, восстановительного газа, который в конечном итоге поступает в восстановительный реактор, используется присоединенное ниже по потоку относительно восстановительного реактора газоочистительное устройство (например, газопромыватель и т.д.). Для этого газоочистительное устройство имеет устройство для регулирования величины расхода потока, например, такое как проходной клапан, регулируемая трубка Вентури и т.д. С помощью этого устройства для регулирования величины расхода потока тогда определяется то количество технологических газов, которое очищается в газоочистительном устройстве и протекает через него. Тем самым может быть достигнута экономия на сложном и дорогостоящем клапанном блоке, который устанавливается для регулирования величины расхода потока между устройством для разделения газовых смесей и присоединенным выше по потоку относительно восстановительного реактора нагревательным устройством для восстановительного газа. Наряду с экономией затрат, благодаря регулированию количества и величины расхода потока посредством газоочистительного устройства, могут сокращены или, соответственно, предотвращены потери давления внутри установки для получения металлов прямым восстановлением руд и, соответственно, железа. В идеальном случае, соответствующее изобретению устройство также может быть использовано в разнообразных восстановительных реакторах, например, таких как реакторные системы с псевдоожиженным слоем, шахтный восстановительный реактор с неподвижным слоем или шахтный восстановительный MIDREX®-реактор.
Кроме того, также является предпочтительным, когда регулирование количества технологических газов в газоочистительном устройстве конфигурировано таким образом, что подводимое в восстановительный реактор количество технологических газов регулируется и поддерживается постоянным. С помощью устройства для регулирования величины расхода потока, предусмотренного в газоочистительном устройстве, может быть очень простым путем установлено количество восстановительного газа для применяемого в данной ситуации восстановительного реактора. В дополнение, регулирование количества и, соответственно, величины расхода потока в присоединенном ниже по потоку относительно восстановительного реактора газоочистительном устройстве имеет то преимущество, что может быть оптимизирована разность давлений (например, типично между 0,3 и 0,5 бар (0,03-0,05 МПа)) для газоочистительного устройства в отношении промывающей способности.
Одно предпочтительное усовершенствование соответствующего изобретению устройства дополнительно для регулирования давления имеет перед устройством для регулирования давления выпускной трубопровод, через который могут быть отведены избыточные количества технологического газа, в частности, в качестве утилизируемого газа из установки для получения металлов прямым восстановлением и, соответственно, железа. При этом предпочтительно, чтобы в выпускном трубопроводе для избыточных количеств технологического газа был предусмотрен регулировочный клапан. С помощью выпускного трубопровода, с одной стороны, может быть установлен оптимальный уровень давления в устройстве для разделения газовых смесей. В дополнение, могут быть отведены избыточные количества газа, в частности, избыточного рециркуляционного газа, в качестве так называемого утилизируемого газа установки для получения металлов прямым восстановлением руд. Тем самым может быть дополнительно отрегулировано еще более точное количество газа для восстановительного реактора, и могут быть простым путем компенсированы колебания количества утилизируемого газа, подводимого из установки для выплавки чугуна.
Является предпочтительным, когда устройство для разделения газовых смесей конфигурировано как устройство для адсорбции при переменном давлении (PSA) или как устройство для вакуумной адсорбции при переменном давлении (VPSA). Под адсорбцией при переменном давлении обычно понимается способ физического разделения газовых смесей под давлением с помощью так называемой адсорбции (= связывания, например, определенных газообразных компонентов газовой смеси, например, таких как Н2О, СО2 и т.д., веществом или так называемым адсорбентом). При получении металлов прямым восстановлением руд и, соответственно, железа с помощью устройства для адсорбции при переменном давлении из технологических газов удаляется СО2, и тем самым они опять могут быть использованы для процесса восстановления в восстановительном реакторе и могут быть окислены.
В устройстве для адсорбции при переменном давления или «короткоциклового безнагревного адсорбционного разделения при переменном давлении» (PSA) разделяемая газовая смесь подается при повышенном давлении (например, от около 6 до 10 бар (0,6-1,0 МПа)) в устройство, которое заполнено адсорбентом, таким образом, что она протекает через него, и один или многие удаляемые компоненты (например, Н2О, СО2) адсорбируются. Оставшаяся газовая смесь покидает устройство через выпускной канал. Когда адсорбент насыщается, процесс, например, с помощью клапана или сбросом давления, переключается таким образом, что адсорбированный(-ные) компонент или, соответственно, компоненты опять десорбируются, и этот(эти) компонент или, соответственно, компоненты высвобождаются из адсорбента. Точная настройка момента переключения обычно зависит от желательной чистоты газа или, соответственно, компонента. Если действие происходит по меньшей мере при одном давлении ниже атмосферного давления, то метод называется также вакуумной адсорбцией при переменном давлении (VPSA), причем в этом методе, как правило, дополнительно требуются один или многие вакуумные насосы. При этом входное давление технологического газа для PSA- и, соответственно, VPSA-устройства создается с помощью по меньшей мере одного нагнетательного устройства, в частности компрессора, присоединенного выше по потоку относительно PSA- и, соответственно, VPSA-устройства.
Конечно, соответствующее изобретению устройство обеспечивает то преимущество, что посредством регулирования количества в газоочистительном устройстве и/или устройстве для регулирования давления может быть достигнуто более высокое так называемое давление сырьевого газа для сжатия перед разделением газовых смесей. Тем самым существует возможность использовать PSA-устройство, благодаря чему могут быть сэкономлены затраты на VPSA-устройство и, соответственно, на вакуумные насосы.
Одно целесообразное усовершенствование соответствующего изобретению устройства отличается тем, что устройство для регулирования давления состоит по меньшей мере из одного управляемого редукционного клапана, который установлен перед местом присоединения подводящего трубопровода для так называемого утилизируемого газа из установки для выплавки чугуна, например, такой как установка для восстановительной плавки, или между первой и второй ступенями компрессора. С помощью управляемого редукционного клапана давление технологических газов, в частности, подводимого утилизируемого газа из установки для выплавки чугуна, может быть простым и экономичным путем отрегулировано на постоянный и желательный для устройства для разделения газовых смесей и, соответственно, удаления СО2 уровень давления. При этом к утилизируемому газу из подводящего трубопровода целенаправленно подводится отходящий газ или, соответственно, рециркуляционный газ из трубопровода для рециркуляционного газа, который имеет несколько более высокое давление, чтобы достигнуть желательного уровня давления на входе нагнетательного устройства, размещенного выше по потоку относительно устройства для разделения газовых смесей.
В зависимости от выбранного уровня давления в устройстве для разделения газовых смесей и используемого в данном случае восстановительного реактора (например, шахтного восстановительного реактора с неподвижным слоем, реакторной системы с псевдоожиженным слоем и т.д.), устройство для регулирования давления также может быть предпочтительно выполнено в виде турбодетандера, который установлен перед местом присоединения подводящего трубопровода для утилизируемого газа. При этом с помощью турбодетандера может быть не только отрегулировано давление, но также может быть одновременно произведена электрическая энергия или, соответственно, компенсирована по меньшей мере часть механической энергии для сопряженного с устройством для разделения газовых смесей нагнетательного устройства (например, компрессора), например, посредством механического соединения. Этим путем может быть дополнительно сокращено потребление электроэнергии установкой для получения металлов прямым восстановлением руд и, соответственно, железа.
Краткое описание чертежа
Далее изобретение будет разъяснено в порядке примера с помощью сопроводительной Фигуры. Фигура 1 в качестве примера и схематически показывает конструкцию соответствующего изобретению устройства для регулирования технологических газов в установке для получения металлов прямым восстановлением, в частности, железа.
Варианты осуществления изобретения
В Фигуре 1 схематически и в качестве примера представлена конструкция так называемой комбинированной установки для получения металлов прямым восстановлением руд, в частности, железа, которая включает соответствующее изобретению устройство. В комбинированной установке утилизируемый газ 7 из установки 1 для выплавки чугуна, в частности, установки для восстановительной плавки, обычно используется в качестве восстановительного газа 9 для восстановления металлических руд, железной руды и т.д., в установке для получения металлов прямым восстановлением руд, железа и т.д.
Установка 1 для выплавки чугуна, например, такая, как представленная в Фигуре 1 установка 1 для восстановительной плавки на основе так называемого COREX®-процесса, включает по меньшей мере один шахтный восстановительный реактор 3, в котором носитель металлической руды, в частности, железной руды (кусковой руды, окатышей, агломерата), восстанавливается восстановительным газом 5 из установки 1 для восстановительной плавки. Восстановительный газ 5 из установки 1 для восстановительной плавки при этом получается в плавильном газификаторе 4 в результате газификации угля из бункера 2 с углем и рудной мелочью (и, при необходимости, с небольшим содержанием кокса) действием кислорода (90% или более).
Восстановительный газ 5 из плавильного газификатора 4 частично вводится в нижнюю часть восстановительного реактора 3 и опять выводится наверху в виде так называемого колошникового газа 6. Колошниковый газ 6 затем освобождается от грубой пыли в пылеуловителе или циклоне, охлаждается в охлаждающем устройстве и очищается в газоочистительном устройстве или газопромывателе. В трубопровод 6 для колошникового газа из установки для восстановительной плавки также впадает трубопровод, который отводит часть восстановительного газа 5 (так называемого избыточного газа). Восстановительный газ 5 также охлаждается и очищается в газопромывателе. Колошниковый газ 6 и подводимый восстановительный газ 5 затем выводятся в качестве так называемого утилизируемого газа 7 установки 1 для восстановительной плавки или, соответственно, COREX®-установки, и через подводящий трубопровод 16 подается в установку 8 для получения металлов прямым восстановлением руд.
Наряду с COREX®-процессом, в котором в ходе двухстадийного способа восстановительной плавки (= комбинации процесса прямого восстановления (предварительного восстановления, например, железной руды до губчатого железа) с плавильным процессом (основным восстановлением)) вводится металлическая руда (например, железная руда) в кусковой форме, например, такой как кусковая руда, окатыши и т.д., утилизируемый газ 7 также может быть выведен из установки 1 для восстановительной плавки на основе FINEX®-процесса или из установки для газификации угля. В FINEX®-процессе металлическая руда или, соответственно, железная руда вводится в форме рудной мелочи, и предварительное восстановление производится, например, в реакторной системе с псевдоожиженным слоем.
Утилизируемый газ 7 поступает в качестве технологического газа через подводящий трубопровод 16 в установку 8 для получения металлов прямым восстановлением руд или, соответственно, в DR-установку 8 (прямого восстановления). При этом подводящий трубопровод 16 впадает в перепускной трубопровод 14, в котором так называемый отходящий газ или рециркуляционный газ 11 из DR-установки 8 подготавливается и опять возвращается в процесс восстановления.
Утилизируемый газ 7 и рециркуляционный газ 11 вводятся в нагнетательное устройство 17, например компрессор. При этом следует отметить, что между утилизируемым газом 7 и рециркуляционным газом 11 имеется разность давлений. Утилизируемый газ при этом имеет, например, давление от 1 до 2 бар (0,1-0,2 МПа) избыточного давления. Рециркуляционный газ 11 имеет, например, давление около 2,5 бар (0,25 МПа) избыточного давления. К тому же варьирует также количество подводимого утилизируемого газа 7 (например, на 10%). Чтобы выдерживать постоянным давление на входе компрессора 17 и тем самым также в присоединенном ниже по потоку устройстве 18 для разделения газовых смесей, для которого требуется постоянное давление, например, 6 бар (0,6 МПа) избыточного давления, перед местом присоединения подводящего трубопровода 16 к перепускному трубопроводу 14 предусмотрено устройство 15 для регулирования давления. В качестве устройства 15 для регулирования давления может быть предусмотрен, например, управляемый редукционный клапан 15. Ненужный для регулирования давления и количественного выравнивания рециркуляционный газ 11 может быть, например, выведен через выпускной трубопровод 19 в качестве так называемого утилизируемого газа DR-установки 8. Этот выпускной трубопровод 19 также имеет вентиль для контроля давления.
После компрессора 17 технологический газ 7 поступает в устройство 18 для разделения газовых смесей, чтобы удалить СО2. Это устройство 18, например, при достаточно высоком уровне давления может быть конфигурировано как устройство 18 для адсорбции при переменном давлении (Адсорбция при переменном давлении (PSA)). Если, например, с учетом используемого восстановительного реактора 10 выбирается более низкое давление в устройстве 18 для разделения газовых смесей, то также может быть применено устройство 18 для так называемой вакуумной адсорбции при переменном давлении (VPSA). Затем очищенный от СО2 технологический газ нагревается в нагревательном устройстве 20 для процесса восстановления и в качестве восстановительного газа 9 направляется в восстановительный реактор 10. Часть технологического газа используется термически в печи для нагревания восстановительного газа, чтобы нагревать в значительной мере очищенный от СО2 технологический газ, и в качестве отходящего газа выдувается наружу через устройство 21 для утилизации отходящего газа.
К восстановительному газу 9 также может быть примешан еще и кислород О2 с целью частичного сгорания и связанного с этим повышения температуры. Затем восстановительный газ 9 вводится в восстановительный реактор 10, в котором находится поступающий через устройство для введения материала восстанавливаемый материал, например металлическая руда, железная руда и т.д., чтобы восстанавливать этот материал в режиме противотока. В качестве восстановительного реактора 10, в зависимости от имеющегося восстанавливаемого материала (руды в кусковой форме, окатышей, рудной мелочи и т.д.), могут быть применены шахтный восстановительный реактор с неподвижным слоем, шахтный восстановительный MIDREX®-реактор, или реакторная система с псевдоожиженным слоем.
Затем восстановительный газ 9 выводится из верхней части восстановительного реактора 10 как отходящий газ, колошниковый газ или рециркуляционный газ 11 и охлаждается в охлаждающем устройстве 12. Для очистки рециркуляционного газа 11 предусмотрено газоочистительное устройство 13, смонтированное ниже по потоку относительно восстановительного реактора 10. Газоочистительное устройство 13 имеет устройство для регулирования величины расхода потока, например, такое как проходной клапан или, соответственно, кольцевой скруббер и т.д. С помощью этого клапана в газоочистительном устройстве 13 тогда устанавливается то количество технологических газов 7, 11, которое необходимо или, соответственно, желательно для регулирования величины расхода потока или, соответственно, количества для восстановительного реактора 10. Очищенный рециркуляционный газ 11 затем через перепускной трубопровод 14 и через устройство 15 для регулирования давления опять направляется в процесс восстановления.
В зависимости от выбранного уровня давления в устройстве 18 для разделения газовых смесей и, соответственно, для удаления СО2, и в восстановительном реакторе 10 вместо управляемого редукционного клапана 15 также возможно применение турбодетандера в качестве устройства 15 для регулирования давления в перепускном трубопроводе 14. При этом с помощью турбодетандера одновременно регулируется давление и, например, производится электрическая энергия, которая может быть использована в DR-установке 8, например, для компрессора 17. Дополнительно, при более высоком выбранном давлении (например, от 3 до 6 бар (0,3-0,6 МПа) для восстановительного реактора 10 он, к примеру, может иметь меньшие габаритные размеры, и, например, выбираются меньшими габаритные размеры также устройства 18 для разделения газовых смесей, поскольку гидравлическое ограничение, в значительной мере представляющее собой обычно рабочий объемный расход потока, имеет решающее значение для пределов пропускной способности.
Список условных обозначений
1 Установка для выплавки чугуна, в частности, установка для восстановительной плавки
2 Бункер для угля и рудной мелочи
3 Шахтный восстановительный реактор
4 Плавильный газификатор
5 Восстановительный газ установки для восстановительной плавки
6 Колошниковый газ установки для восстановительной плавки
7 Утилизируемый газ установки для восстановительной плавки
8 Установка для получения металлов прямым восстановлением руд и, соответственно, железа (DR-установка)
9 Восстановительный газ
10 Восстановительный реактор с подачей материала
11 Отходящий газ, колошниковый газ или рециркуляционный газ
12 Охлаждающее устройство
13 Газоочистительное устройство с регулятором количества (например, кольцевым скруббером)
14 Перепускной трубопровод
15 Устройство для регулирования давления
16 Подводящий трубопровод для утилизируемого газа установки для восстановительной плавки
17 Нагнетательное устройство (например, компрессор)
18 Устройство для разделения газовых смесей - удаления СО2
19 Выпускной трубопровод для утилизируемого газа из DR-установки
20 Нагревательное устройство для восстановительного газа (например, печь для нагревания восстановительного газа)
21 Устройство для утилизации отходящего газа

Claims (10)

1. Устройство для регулирования технологических газов в установке (8) для получения металлов прямым восстановлением руд по меньшей мере с одним восстановительным реактором (10), смонтированным выше по потоку относительно восстановительного реактора (10) устройством (18) для разделения газовых смесей с сопряженным нагнетательным устройством (17), и установленным ниже по потоку относительно восстановительного реактора (10) газоочистительным устройством (13), причем по меньшей мере часть технологических газов (7) подается через подводящий трубопровод (16) из установки (1) для выплавки чугуна, в частности, установки для восстановительной плавки, отличающееся тем, что газоочистительное устройство (13) конфигурировано для регулирования количества технологических газов (11) и что устройство имеет устройство (15) для регулирования давления, которое таким образом размещено перед местом присоединения подводящего трубопровода (16) к перепускному трубопроводу (14) для технологических газов (11), в частности, так называемого отходящего газа (11), что уровень давления поддерживается постоянным в устройстве (18) для разделения газовых смесей с сопряженным нагнетательным устройством (17).
2. Устройство по п. 1, отличающееся тем, что регулирование количества технологических газов (11) газоочистительным устройством (13) выполняется таким образом, что устанавливается и поддерживается постоянным подаваемое в восстановительный реактор (10) количество технологических газов (7, 9, 11).
3. Устройство по п. 1, отличающееся тем, что дополнительно для регулирования давления перед устройством (15) для регулирования давления предусмотрен выпускной трубопровод (19), через который могут выводиться избыточные количества технологических газов (11).
4. Устройство по п. 3, отличающееся тем, что выпускной трубопровод (19) для избыточных количеств технологических газов (11) имеет регулировочный вентиль.
5. Устройство по любому из пп. 1-3, отличающееся тем, что устройство (18) для разделения газовых смесей выполнено как устройство для адсорбции при переменном давлении или как устройство для вакуумной адсорбции при переменном давлении.
6. Устройство по любому из пп. 1-3, отличающееся тем, что устройство (15) для регулирования давления состоит по меньшей мере из одного управляемого редукционного клапана, который установлен перед местом присоединения подводящего трубопровода (16).
7. Устройство по любому из пп. 1-3, отличающееся тем, что устройство (15) для регулирования давления выполнено в виде турбодетандера, который установлен перед местом присоединения подводящего трубопровода (16).
8. Устройство по п. 4, отличающееся тем, что устройство (18) для разделения газовых смесей выполнено как устройство для адсорбции при переменном давлении или как устройство для вакуумной адсорбции при переменном давлении.
9. Устройство по п. 4 или 8, отличающееся тем, что устройство (15) для регулирования давления состоит по меньшей мере из одного управляемого редукционного клапана, который установлен перед местом присоединения подводящего трубопровода (16).
10. Устройство по п. 4 или 8, отличающееся тем, что устройство (15) для регулирования давления выполнено в виде турбодетандера, который установлен перед местом присоединения подводящего трубопровода (16).
RU2014101612/05A 2011-06-21 2012-06-01 Устройство для регулирования технологических газов в установке для получения металлов прямым восстановлением руд RU2596253C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ATA906/2011 2011-06-21
ATA906/2011A AT510565B1 (de) 2011-06-21 2011-06-21 Vorrichtung zur regelung von prozessgasen in einer anlage zur herstellung von direkt reduzierten metallerzen
PCT/EP2012/060355 WO2012175313A1 (de) 2011-06-21 2012-06-01 Vorrichtung zur regelung von prozessgasen in einer anlage zur herstellung von direkt reduzierten metallerzen

Publications (2)

Publication Number Publication Date
RU2014101612A RU2014101612A (ru) 2015-07-27
RU2596253C2 true RU2596253C2 (ru) 2016-09-10

Family

ID=46052380

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014101612/05A RU2596253C2 (ru) 2011-06-21 2012-06-01 Устройство для регулирования технологических газов в установке для получения металлов прямым восстановлением руд

Country Status (10)

Country Link
US (1) US9400139B2 (ru)
KR (1) KR20140039315A (ru)
CN (1) CN103608089B (ru)
AT (1) AT510565B1 (ru)
BR (1) BR112013032628A2 (ru)
CA (1) CA2839975A1 (ru)
RU (1) RU2596253C2 (ru)
UA (1) UA110382C2 (ru)
WO (1) WO2012175313A1 (ru)
ZA (1) ZA201309058B (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT510565B1 (de) * 2011-06-21 2012-05-15 Siemens Vai Metals Tech Gmbh Vorrichtung zur regelung von prozessgasen in einer anlage zur herstellung von direkt reduzierten metallerzen
UA111685C2 (uk) 2012-10-01 2016-05-25 Мідрекс Текнолоджиз, Інк. Пристрій та спосіб для поліпшення однорідності шихти в шахтній печі для комбінованого риформінгу/відновлення
US11427877B2 (en) 2017-09-21 2022-08-30 Nucor Corporation Direct reduced iron (DRI) heat treatment, products formed therefrom, and use thereof
CN109126418B (zh) * 2018-10-12 2024-02-27 厦门世纪兴源环境工程有限公司 组合式气体净化设备及其净化工艺
CN111211029B (zh) * 2018-11-21 2023-09-01 中微半导体设备(上海)股份有限公司 一种多区控温等离子反应器
CN112522727B (zh) * 2020-12-02 2021-11-12 上海毅镤新能源科技有限公司 制氢装置
SE2250625A1 (en) * 2022-05-25 2023-05-16 Hybrit Dev Ab A method and an arrangement for a continuous production of sponge iron from iron ore

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2060281C1 (ru) * 1991-10-03 1996-05-20 Каргилл, Инкорпорейтед Способ производства железоуглеродистого сплава (его варианты) и устройство для его осуществления
WO2009037587A2 (en) * 2007-08-08 2009-03-26 Hyl Technologies, S.A. De C.V Method and apparatus for the direct reduction of iron ores utilizing gas from a melter-gasifier
WO2009146982A1 (de) * 2008-06-06 2009-12-10 Siemens Vai Metals Technologies Gmbh & Co Verfahren und vorrichtung zur herstellung von roheisen oder flüssigen stahlvorprodukten
WO2010046211A1 (de) * 2008-10-23 2010-04-29 Siemens Vai Metals Technologies Gmbh & Co Verfahren und vorrichtung zum betrieb eines schmelzreduktionsverfahrens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199611A (ja) * 1984-10-22 1986-05-17 Nippon Steel Corp 直接還元装置における再循環ガス処理装置
US5234490A (en) * 1991-11-29 1993-08-10 Armco Inc. Operating a blast furnace using dried top gas
DE4326562C2 (de) * 1993-08-07 1995-06-22 Gutehoffnungshuette Man Verfahren und Vorrichtung zur Direktreduktion von Feinerzen bzw. Feinerzkonzentraten
AT408348B (de) * 1999-12-20 2001-10-25 Voest Alpine Ind Anlagen Verfahren und vorrichtung zum zuführen eines gases in ein metallurgisches gefäss
FR2898134B1 (fr) * 2006-03-03 2008-04-11 Air Liquide Procede d'integration d'un haut-fourneau et d'une unite de separation de gaz de l'air
US20100162852A1 (en) * 2007-05-25 2010-07-01 Jorge Octavio Becerra-Novoa Method and apparatus for the direct reduction of iron ores utilizing syngas
AT508770B1 (de) * 2009-09-11 2011-04-15 Siemens Vai Metals Tech Gmbh Verfahren zur entfernung von co2 aus abgasen von anlagen zur roheisenherstellung
AT510565B1 (de) * 2011-06-21 2012-05-15 Siemens Vai Metals Tech Gmbh Vorrichtung zur regelung von prozessgasen in einer anlage zur herstellung von direkt reduzierten metallerzen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2060281C1 (ru) * 1991-10-03 1996-05-20 Каргилл, Инкорпорейтед Способ производства железоуглеродистого сплава (его варианты) и устройство для его осуществления
WO2009037587A2 (en) * 2007-08-08 2009-03-26 Hyl Technologies, S.A. De C.V Method and apparatus for the direct reduction of iron ores utilizing gas from a melter-gasifier
WO2009146982A1 (de) * 2008-06-06 2009-12-10 Siemens Vai Metals Technologies Gmbh & Co Verfahren und vorrichtung zur herstellung von roheisen oder flüssigen stahlvorprodukten
WO2010046211A1 (de) * 2008-10-23 2010-04-29 Siemens Vai Metals Technologies Gmbh & Co Verfahren und vorrichtung zum betrieb eines schmelzreduktionsverfahrens

Also Published As

Publication number Publication date
BR112013032628A2 (pt) 2017-01-24
US20140138884A1 (en) 2014-05-22
CN103608089B (zh) 2016-03-23
CN103608089A (zh) 2014-02-26
ZA201309058B (en) 2014-08-27
UA110382C2 (uk) 2015-12-25
AT510565A4 (de) 2012-05-15
WO2012175313A1 (de) 2012-12-27
RU2014101612A (ru) 2015-07-27
AT510565B1 (de) 2012-05-15
CA2839975A1 (en) 2012-12-27
KR20140039315A (ko) 2014-04-01
US9400139B2 (en) 2016-07-26

Similar Documents

Publication Publication Date Title
RU2596253C2 (ru) Устройство для регулирования технологических газов в установке для получения металлов прямым восстановлением руд
RU2515974C2 (ru) Способ и устройство для управления процессом восстановительной плавки
RU2609116C2 (ru) Система энергетической оптимизации установки для получения металлов прямым восстановлением руд
RU2490333C2 (ru) Способ и устройство для получения чугуна или жидких стальных полупродуктов
CN103261446B (zh) 用含氢和co的还原气体源生产直接还原铁的方法和装置
CN103764854B (zh) 用于处理来自生铁制造设备的排气和/或合成气的方法
WO1999042624A1 (en) Method and apparatus for producing direct reduced iron with improved reducing gas utilization
RU2006119217A (ru) Установка для изготовления жидкого чугуна, непосредственно использующая мелкие или кусковые угли и пылевидные железные руды, способ его изготовления, комплексный сталелитейный завод, использующий эту установку, и этот способ изготовления
CN101638702B (zh) 一种煤气作还原气的直接还原工艺出口煤气的回用方法
UA110960C2 (uk) Спосіб регулювання теплоти згорання відхідних газів з установок для одержання чавуну або синтез-газу
KR101829088B1 (ko) 철-야금 유닛의 폐가스로부터 이산화탄소 농축 유체를 생성하기 위한 방법 및 장치
AU2010215728B2 (en) Method and apparatus for separating a gaseous component
CN101879397A (zh) 用于从高炉气中分离氮气的氧气浓缩器的使用
RU2014136991A (ru) Способ и устройство для восстановления содержащего оксиды железа исходного сырья в восстановительном реакторе высокого давления

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180602