RU2595952C2 - Способ символьной синхронизации при приеме сигнала кодоимпульсной модуляции - фазовой манипуляции с известной структурой - Google Patents

Способ символьной синхронизации при приеме сигнала кодоимпульсной модуляции - фазовой манипуляции с известной структурой Download PDF

Info

Publication number
RU2595952C2
RU2595952C2 RU2015102431/08A RU2015102431A RU2595952C2 RU 2595952 C2 RU2595952 C2 RU 2595952C2 RU 2015102431/08 A RU2015102431/08 A RU 2015102431/08A RU 2015102431 A RU2015102431 A RU 2015102431A RU 2595952 C2 RU2595952 C2 RU 2595952C2
Authority
RU
Russia
Prior art keywords
signal
symbol
spectral
frequency
symbols
Prior art date
Application number
RU2015102431/08A
Other languages
English (en)
Other versions
RU2015102431A (ru
Inventor
Артём Сергеевич Дуников
Александр Александрович Бянкин
Андрей Иванович Лоскутов
Марк Львович Белокопытов
Вадим Николаевич Малашенко
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации
Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации, Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации filed Critical Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации
Priority to RU2015102431/08A priority Critical patent/RU2595952C2/ru
Publication of RU2015102431A publication Critical patent/RU2015102431A/ru
Application granted granted Critical
Publication of RU2595952C2 publication Critical patent/RU2595952C2/ru

Links

Images

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к радиотехнике и может быть использовано в наземных приемно-регистрирующих станциях телеметрической информации. Технический результат - повышение помехоустойчивости приема телеметрической информации. Для этого система символьной синхронизации радиотелеметрических средств работает в частотно-временной области и заключается в применении контура двухуровневой обработки входного сигнала. На первом уровне осуществляется поиск границ следования двоичных символов с использованием образов, полученных на основе расчета спектральной плотности мощности фрагмента анализируемого сигнала и вычислении коэффициента корреляции образов с эталонным спектральным образом, соответствующим границе двоичных символов. На втором уровне с использованием двухканальной вычитающей схемы демодулятора. Затем производится расчет спектрального образа и сравнение его со спектральным образом символа на основе вычисления коэффициента корреляции. В результате процессы демодуляции и поиска границ двоичных символов переносятся из временной области в частотно-временную область. 12 ил.

Description

Изобретение относится к радиотехнике и может быть использовано в наземных приемно-регистрирующих станциях телеметрической информации.
С развитием ракетно-космической техники к радиотелеметрическим системам предъявляются все более высокие требования в отношении надежности и достоверности получения телеметрической информации. Основными причинами, влияющими на снижение достоверности получения данных телеизмерений, являются потеря и искажение телеметрической информации при малых отношениях сигнал/шум. Поэтому одним из главных направлений развития радиотелеметрических систем является разработка методов передачи и приема телеметрической информации, позволяющих обеспечить требуемую достоверность данных о функционировании бортовой аппаратуры объектов ракетно-космической техники при передаче информации по радиоканалу. Анализ процессов передачи и приема телеметрической информации по радиоканалу показал, что важным элементом, влияющим на качество приема информации, является система символьной синхронизации, которая решает задачи демодуляции и определения границ двоичных символов в групповом телеметрическом сигнале. В работах [1-3] указано, что наиболее распространенным подходом при построении систем синхронизации является шаговый поиск, основанный на анализе точек неопределенности. Вместе с тем в работе [4] подчеркнуто, что шаговый поиск и синхронизация с использованием быстрых спектральных преобразований являются универсальными методами и поэтому пригодны для любой системы. Но в данной работе они рассматриваются как отдельные методы. Перенос процесса синхронизации из временной области в частотно-временную область позволяет объединить эти два метода.
В настоящее время все существующие способы синхронизации в информационно-телеметрических системах реализованы во временной области. Разработка способа символьной синхронизации в частотно-временной области является перспективным направлением развития методов приема и обработки телеметрической информации, позволяющим повысить помехоустойчивость приема результатов телеизмерений. Анализ способов показал возможность проведения обработки сигнала в частотно-временной области [5-7]. Указанные патенты описывают способы, основанные на использовании преобразования Фурье, вейвлет-анализа, нейронных сетей, применяемые для демодуляции сигнала. Вопросы синхронизации данные способы не раскрывают.
Известен способ и система для передачи и приема сигналов [5]. Изобретение раскрывает способы и устройство работы приемника OFDM сигналов. В передаваемом сигнале используют пилот-сигналы для демодуляции символов информационного сообщения. Вхождение в синхронизации по символам в данном способе осуществляется на основе расчета быстрого преобразования Фурье и нахождения корреляции над защитными интервалами символов [5].
Данный способ применяется для синхронизации сигналов с ортогональным частотным разделением и имеющих в своем составе защитные интервалы между символами. Его недостатком является то, что он не применим для структуры символьной синхронизации группового телеметрического сигнала с модуляцией КИМ2-ФМ.
В работе [6] предлагается способ распознавания сигналов, основанный на быстром преобразовании Фурье.
Данный подход имеет недостаток, выраженный в применении нескольких контуров подстройки при полном распознавании входного сигнала. Это приводит к невозможности обработки сигналов в режиме непосредственного приема информации.
Наиболее близким по п. 1 формулы для решения вопросов синхронизации в информационно-телеметрических системах является способ распознавания и демодуляции сигнала с неизвестной структурой [7], который выбран в качестве прототипа. Данный подход к распознаванию и демодуляции сигнала основан на применении контура двухуровневой обработки сигнала. Вначале осуществляется первичная вейвлет-обработка для грубой оценки параметров сигнала (максимальная, минимальная амплитуда и частота), присутствия фазовых искажений. Для точного определения параметров сигнала применяется вторичный анализ нейронными сетями и автоматическая подстройка под каждый тип входного сигнала. Достигаемым техническим результатом является определение параметров и демодуляция сигнала с неизвестной структурой на основе самообучающейся нейронной сети. При этом точность обработки сигнала ограничена шумовыми составляющими входного сигнала [7]. Данный способ может быть использован для решения задачи повышения устойчивости синхронизации. Его недостатками является сложность разработки формализованных алгоритмов настройки и определения оптимальной структуры нейронной сети, а также необходимость больших вычислительных затрат при проведении вейвлет-обработки.
В предлагаемом способе по аналогии с прототипом осуществляется распознавание границ символов и демодуляция информационного телеметрического сигнала модуляцией КИМ2-ФМ с использованием контура двухуровневой обработки сигнала. В данном способе для устранения недостатков прототипа вместо вейвлет преобразований и нейронной сети используется анализ спектральной плотности мощности фрагментов сигнала, с помощью которого из мгновенного спектра сигнала получают информацию, необходимую для определения границ символов и демодуляции информационного сообщения в режиме непосредственного приема информации. Аналитическое представление сигнала модуляцией КИМ2-ФМ с π-манипуляцией описывается следующей математической формулой:
Figure 00000001
где f0 - несущая частота сигнала;
φm - значения фаз манипуляции двоичных символов группового телеметрического сигнала.
При двоичном кодировании в сигнале КИМ2-ФМ фазы манипуляции принимают значения 0 и π.
Графический вид смоделированного в среде Matlab R2009a сигнала модуляции КИМ2-ФМ с π-манипуляцией изображен на фиг. 1.
На фиг. 2 представлен сигнал с модуляцией КИМ2-ФМ, искаженный шумом, при отношении сигнал/шум 0 дБ.
Основным методом, позволяющим разделить двоичные символы группового телеметрического сигнала на классы и отделить их от шумов, является селекция сигнала. Аппаратом, способным выполнить селекцию сигнала, является теория цифровой обработки сигналов. Из работы [8] видно, что для решения задачи селекции сигнала целесообразно использовать методы спектрального и частотно-временного анализа сигнала.
При использовании данных методов групповой телеметрический сигнал представляется в частотной области. В предлагаемом способе перенос процесса символьной синхронизации из временной области в частотно-временную область осуществляется на основе вычисления мгновенного спектра. Простейшее определение мгновенного спектра может быть дано в следующем виде [9]:
Figure 00000002
где u(τ) - фрагмент анализируемого сигнала в интервале времени от t0 до t;
ω - угловая частота;
τ - длительность анализируемого фрагмента сигнала.
В соответствии с выражением (2) мгновенный спектр определен как спектр отрезка процесса длительностью τ. Согласно данному определению применяется «скользящее» интегрирование: интервал интегрирования имеет постоянную длину, но перемещается по оси времени.
В связи с различиями в оценивании параметров сигнала, получаемых при разных методах спектрального и частотно-временного анализа, проведено моделирование и оценка возможности их применения для поиска границ и демодуляции двоичных символов группового телеметрического сигнала в среде Matlab R2009a с использованием модели радиосигнала (1). При этом частота высокочастотного заполнения двоичных символов была кратно уменьшена, длительность символов составляла 0,01 с, на длительности двоичного символа содержалось 100 дискретных отсчетов. В результате моделирования определено, что предлагаемый способ символьной синхронизации должен основываться на анализе спектральной плотности мощности сигнала, вычисляемой по формуле
Figure 00000003
где Uτl(ω,t) - мгновенный спектр 1-й реализации анализируемого сигнала, полученный по формуле (2);
U τ l * ( ω , τ )
Figure 00000004
- комплексно-сопряженная копия мгновенного спектра l-й реализации анализируемого сигнала.
На фиг. 3 и 4 представлен вид спектральной плотности мощности фрагмента сигнала, являющегося границей двоичных символов сигнала модуляции КИМ2-ФМ, без воздействия шума на сигнал и искажения сигнала шумом (отношение сигнал/шум 0 дБ) соответственно, при этом спектральный образ границы символов содержит по 50 дискретных отсчетов символов «0» и «1».
Из фиг. 4 видно, что при воздействии на сигнал аддитивного белого гауссовского шума с мощностью, соизмеримой с мощностью сигнала, спектральная плотность мощности искажается незначительно.
В предлагаемом способе по аналогии с прототипом процесс демодуляции и определения границ двоичных символов осуществляется как процесс классификации образов.
В соответствии с постановкой задачи классификации обозначим:
- Λ - множество объектов распознавания, при этом Λ разделено на классы Λ1 и Λ2, соответствующие границе символов и отсутствию границы соответственно, и Λ3, Λ4, соответствующие номиналам двоичных символов «0», «1» соответственно;
- λτlτl∈Λ - объекты распознавания (образы).
Особенностью сигнала модуляцией КИМ2-ФМ с π-манипуляцией является отсутствие различий в образах символов «0» и «1», получаемых на основе расчета спектральной плотности мощности.
На фиг. 5 представлен спектральный образ, соответствующий двоичным символам «0» и «1».
Для устранения данного недостатка применяется двухканальная схема вычитания из принимаемого сигнала опорного сигнала с той же частотой, что и принимаемый сигнал. При этом в первом канале фаза опорного сигнала равна 0, а во втором π. В случае совпадения принимаемого сигнала с опорным по фазе на выходе устройства вычисления спектральной плотности мощности значения амплитуд спектральных составляющих при отсутствии шума равны нулю.
На фиг. 6 и 7 соответственно изображен вид спектральной плотности мощности на выходе двухканальной схемы вычитания при отсутствии шумов и в случае искажения принимаемого сигнала шумом (отношение сигнал/шум 0 дБ).
При появлении погрешности определения границы двоичных символов на выходе канала, в котором фаза опорного сигнала совпадает с фазой принимаемого сигнала, полученный спектральный образ имеет ширину спектра, превышающую ширину спектра эталонного спектрального образа двоичного символа. Это поясняется тем, что ширина спектра зависит от длительности импульса и показывает, что в анализе используется часть длительности символа противоположного номинала.
Результаты моделирования данного явления представлены на фиг. 8.
В предлагаемом способе символьной синхронизации процесс демодуляции и определения границ двоичных символов основывается на отнесении, полученных при анализе сигнала спектральных образов к одному из классов. При этом в связи с особенностями спектральных образов двоичных символов сигнала модуляцией КИМ2-ФМ с π-манипуляцией классы Λ3 и Λ4 объединяются в один класс Λ3.
В качестве классификатора в предлагаемом способе используется корреляционный классификатор, являющийся наиболее простым в реализации. При этом численную оценку связи спектральных образов дает расчет коэффициента линейной корреляции. Среди различных вариантов расчета коэффициента корреляции в данном способе целесообразнее всего использовать парный коэффициент корреляции, рассчитываемый по формуле
Figure 00000005
где uτ - неискаженные спектральные образы двоичных символов и их границы;
λτq - анализируемый спектральный образ фрагмента сигнала, q=1,2…,l.
Расчеты по формуле (4) показали, что эффективным способом классификации при определении границы двоичных символов является достижение максимального значения коэффициента парной корреляции.
На фиг. 9 представлено схематическое изображение способа символьной синхронизации в частотно-временной области сигнала модуляцией КИМ2-ФМ с π-манипуляцией, где:
ПР - приемник;
ПЧ - преобразователь частоты;
КП - контур подстройки;
Д - дискретизатор;
Г1 - генератор частоты дискретизации;
ОГ - генератор опорного сигнала;
PC - регистр сдвига;
«01» - устройство хранения частотных составляющих перепада символов;
РУ - решающее устройство;
УВ «0» - устройство вычитания из принимаемого сигнала опорного сигнала в канале определения символа «0»;
УВ «1» - устройство вычитания из принимаемого сигнала опорного сигнала в канале определения символа «1»;
УВМС - устройство вычисления мгновенного спектра;
УВКК - устройство вычисления коэффициента корреляции;
ОС - образ символа;
Г2 - генератор символьной частоты;
УСПР - устройство сравнения и принятия решения;
УФКП - устройство формирования кодовой последовательности.
В соответствии со схемой способа выполняется следующая последовательность действий:
1. Групповой телеметрический сигнал модуляции КИМ2-ФМ с π-манипуляцией поступает на вход приемного устройства.
2. В приемном устройстве сигнал подвергается фильтрации и переносу на промежуточную частоту.
3. В контуре подстройки вычисляется доплеровский сдвиг частоты. Значения доплеровского сдвига частоты передаются на устройства хранения частотных образов символа и перепада символов, где значения спектральных составляющих информационного символа пересчитываются с учетом доплеровского сдвига, а также значение доплеровского сдвига частоты учитывается при формировании опорного сигнала.
4. В дискретизаторе радиосигнал промежуточной частоты дискретизируется в соответствии с частотой, вырабатываемой генератором частоты дискретизации. В результате групповой телеметрический сигнал представляет собой дискретную последовательность {u(k)(i)}, где k=1, 2, …, n из i=1, 2, …, L отсчетов, являющихся отдельными символами информационных сообщений.
5. Значения дискретных отсчетов поступают на входы регистров сдвига демодулятора и устройства определения границ символов.
6. В устройстве определения границ символов регистр сдвига формирует множество фрагментов сигнала на основе подискретного сдвига принимаемой последовательности uτ1={u(1)(i)}, uτ2={u(1)(2, …, L), u(2)(1)}, uτ3={u(1)(3, …, L), u(2)(1, 2)},…,uτ1={u(k)(i), где i=1, 2, …, L является количеством дискретных отсчетов на один символ. После этого в устройстве вычисления мгновенного спектра производится расчет по формуле (3) спектральных образов фрагментов сигнала, представляющих собой объекты распознавания λτ1, λτ2, …, λτq, где q=1, 2, …, l.
7. В устройстве сравнения и принятия решения производится вычисление по формуле (4) коэффициента парной линейной корреляции между неискаженным спектральным образом границы символов uτ и спектральными образами фрагментов группового телеметрического сигнала. Принятие решения о наличии границы двоичных символов группового телеметрического сигнала осуществляется по следующему условию:
Figure 00000006
8. Определив моменты времени, соответствующие границе символов, устройство сравнения и принятия решения вырабатывает строб-сигналы, подаваемые на вход инерционного генератора символьной частоты Г2.
9. В инерционном генераторе символьной частоты Г2 формируются опорные импульсы символьной синхронизации, соответствующие границе символов. Импульсы символьной синхронизации подаются на устройство формирования кодовой последовательности.
10. После определения границ символов решающее устройство настраивает регистр сдвига демодулятора на анализ дискретных отсчетов, соответствующих длительности двоичного символа. Количество дискретных отсчетов определяется решающим устройством таким образом, чтобы в их число не вошли дискретные отсчеты двоичного символа противоположного номинала.
11. Дискретная последовательность {u(k)(i)}, где k=1, 2, …, n из i=1, 2, …, L отсчетов, являющихся отдельными символами информационных сообщений, поступает на входы устройств вычитания двух каналов определения номиналов символов.
12. В устройствах вычитания осуществляется подискретное вычитание из принимаемых дискретных отсчетов символов дискретных отсчетов опорного сигнала. Если в одном из каналов фаза принимаемого символа совпадет с фазой опорного сигнала, то при вычитании дискретные отсчеты выходного сигнала с устройства вычитания равны 0. Если в одном из каналов фаза принимаемого символа не совпадает с фазой опорного сигнала, то при вычитании амплитуда дискретных отсчетов выходного сигнала увеличивается в 2 раза.
13. Устройство вычисления мгновенного спектра демодулятора вычисляет мгновенный спектр выходного сигнала с устройств вычитания каналов определения символов.
14. В устройствах вычисления коэффициентов корреляции производится вычисление по формуле (4) коэффициента парной линейной корреляции между неискаженным спектральным образом символа и спектральными образами получаемых в каналах определения номиналов символов.
15. Устройство сравнения и принятия решения демодулятора принимает решение о приеме символа «0», если значение коэффициента корреляции в канале определения «1» больше, чем значение коэффициента корреляции в канале определения «0». Принятие решения о приеме символа «1» происходит, если значение коэффициента корреляции в канале определения «0» больше, чем значение коэффициента корреляции в канале определения «1».
16. Устройство сравнения и принятия решения демодулятора выдает решение о номинале принимаемого символа на устройство формирования кодовой последовательности.
17. В инерционном генераторе символьной частоты формируются опорные импульсы символьной синхронизации, соответствующие границе символов путем выделения из последовательности импульсов, управляющих дискретизацией непрерывного входного радиосигнала, полученных от генератора частоты дискретизации в моменты времени получения стробирующих сигналов. Импульсы символьной синхронизации подаются на устройство формирования кодовой последовательности. Инерционность генератора символьной частоты обусловлена необходимостью сохранения символьной частоты при приеме кодовых комбинаций с набором символов одинакового значения, когда границу символа определить невозможно.
18. Устройство формирования кодовой последовательности формирует двоичные импульсы видеочастоты с длительностью, определяемой инерционным генератором символьной частоты.
19. С выхода устройства формирования кодовой последовательности информация в виде двоичного кода в сопровождении импульсов символьной частоты поступает в контур дальнейшей обработки информации.
Показателем, характеризующим качество работы предлагаемого способа символьной синхронизации, является средняя вероятность ошибочного приема символов в тех случаях, когда погрешность оценки временной задержки принимаемых символов изменяется случайным образом, описываемая выражением
Figure 00000007
где ε - погрешность оценки временной задержки принимаемых символов;
W(ε) - плотность вероятности распределения случайной величины ε;
Р(ε) - вероятность ошибки приема символа.
В существующих способах символьной синхронизации, реализованных во временной области для обеспечения вероятности ошибки приема символа порядка 10-4, значение нестабильности символьной частоты υε не должно превышать 0,1. При этом данное значение υε может быть легко достигнуто при отношении сигнал/шум на входе системы более 7 дБ.
Целью разработки перспективных систем символьной синхронизации является минимизация вышеуказанной средней вероятности ошибочного приема символов. В работе [10] формула (5) преобразована к следующему виду:
P(vε)=P(0)+ΔP(vε),
где Р(0) - вероятность ошибочного приема двоичных символов при ε=0;
ΔР(υε) - средняя величина, на которую возрастает вероятность ошибочного приема двоичных символов при наличии случайной погрешности ε оценки временной задержки τ;
υεε/τ - относительное среднеквадратическое значение, характеризующее нестабильность символьной частоты.
На фиг. 10 приведены результаты расчетов значений υε, полученных при моделировании работы предлагаемого способа в среде моделирования Matlab R2009a.
На фиг. 11 изображены результаты расчетов значений вероятности ошибочного приема двоичных символов Р(0), полученных при моделировании работы предлагаемого способа в среде моделирования Matlab R2009a.
На фиг. 12 представлены результаты расчетов значений средней вероятности ошибочного приема символов в тех случаях, когда погрешность оценки временной задержки принимаемых символов изменяется случайным образом, полученных при моделировании работы предлагаемого способа в среде моделирования Matlab R2009a.
Результаты расчетов показывают, что предлагаемый способ символьной синхронизации является более эффективным по сравнению с существующими при работе в условиях малого отношения сигнал/шум.
Техническим результатом изобретения является способ символьной синхронизации наземной приемно-регистрирующей аппаратуры телеметрической информации при приеме сигнала с модуляцией КИМ2-ФМ в частотно-временной области.
Новизна изобретения заключается в новом подходе к процессу символьной синхронизации, переносу процесса синхронизации из временной области в частотно-временную область.
Изобретательский уровень характеризуется применением известного ранее математического аппарата теории распознавания образов и цифровой обработки сигналов для решения задачи по поиску границ и демодуляции двоичных символов группового телеметрического сигнала при малом отношении сигнал/шум.
Промышленная применимость - данное изобретение является промышленно применимым при разработке перспективных наземных приемно-регистрирующих станций телеметрической информации, так как может быть реализовано на существующих программируемых логических интегральных схемах фирмы Altera.
Источники информации
1. Варакин Л.Е. Системы связи с шумоподобными сигналами. - М.: Радио и связь, 1985. - 384 с.
2. Журавлев В.И. Поиск и синхронизация в широкополосных системах. - М.: Радио и связь, 1986. - 240 с.
3. Стиффлер Дж.Дж. Теория синхронной связи: пер. с англ. - М.: Связь, 1975. - 487 с.
4. Лосев В.В. Бродская Е.Б. Коржик И.В. Поиск и декодирование сложных дискретных сигналов / Под ред. В.И. Коржика. - М.: Радио и связь, 1988. - 225 с.
5. Заявка RU 2010105688 С2, H04L 27/26, Способ и система для передачи сигналов, опубл. 27.08.2011.
6. Патент RU 2216748 С2, G01R 23/16, Способ распознавания сигналов систем радиосвязи, опубл. 20.11.2003.
7. Патент RU 2386165 С2, G06F 17/14, G06N 3/02, G01R 23/16, Способ определения структуры и демодуляции сигнала с неизвестной структурой, опубл. 10.04.2010.
8. Сергиенко А.Б. Цифровая обработка сигналов: учебное пособие / А.Б. Сергиенко. - 3-е изд. - Спб.: БХВ-Петербург, 2011. - 768 с.
9. Харкевич А.А. Спектры и анализ. - 4-е изд. - М.: Физматгиз, 1962. - 236 с.
10. Горяинов В.Т. Требования к точности тактовой синхронизации в системах передачи двоичной информации / В.Т. Горяинов // Известия вузов СССР - Радиоэлектроника. - 1970. - N 7. С. 787-798.

Claims (1)

  1. Способ символьной синхронизации при приеме сигнала кодоимпульсной модуляции - фазовой манипуляции с известной структурой, основанный на определении границ двоичных символов кодовой последовательности и демодуляции принятых информационных символов, отличающийся тем, что процесс символьной синхронизации осуществляют в частотно-временной области с применением контура двухуровневой обработки сигнала, использующего алгоритм расчета спектральной плотности мощности дискретизированного радиосигнала, где на первом уровне обработки осуществляют поиск границ двоичных символов, основанный на вычислении коэффициентов корреляции спектральных образов с эталонным спектральным образом границы символов «01», вырабатывают строб-сигналы, подаваемые на инерционный генератор символьной частоты, а на втором уровне обработки сигнала осуществляют демодуляцию двоичных символов на основе вычисления коэффициентов корреляции спектральных образов, получаемых после вычитания из принимаемого символа опорного сигнала с эталонным спектральным образом символа.
RU2015102431/08A 2015-01-26 2015-01-26 Способ символьной синхронизации при приеме сигнала кодоимпульсной модуляции - фазовой манипуляции с известной структурой RU2595952C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015102431/08A RU2595952C2 (ru) 2015-01-26 2015-01-26 Способ символьной синхронизации при приеме сигнала кодоимпульсной модуляции - фазовой манипуляции с известной структурой

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015102431/08A RU2595952C2 (ru) 2015-01-26 2015-01-26 Способ символьной синхронизации при приеме сигнала кодоимпульсной модуляции - фазовой манипуляции с известной структурой

Publications (2)

Publication Number Publication Date
RU2015102431A RU2015102431A (ru) 2016-08-20
RU2595952C2 true RU2595952C2 (ru) 2016-08-27

Family

ID=56694705

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015102431/08A RU2595952C2 (ru) 2015-01-26 2015-01-26 Способ символьной синхронизации при приеме сигнала кодоимпульсной модуляции - фазовой манипуляции с известной структурой

Country Status (1)

Country Link
RU (1) RU2595952C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2642803C1 (ru) * 2017-01-18 2018-01-26 Евгений Тимофеевич Дюндиков Способ повышения достоверности передачи цифрового сообщения
RU2733211C1 (ru) * 2017-02-03 2020-09-30 Идак Холдингз, Инк. Передача и демодуляция в широковещательном канале
RU2738961C1 (ru) * 2020-06-08 2020-12-21 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ определения пространственных параметров элементов телекоммуникационных систем, использующих широкополосные сигналы

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2386165C2 (ru) * 2008-06-16 2010-04-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Способ определения структуры и демодуляции сигнала с неизвестной структурой
RU2013128158A (ru) * 2013-06-19 2014-12-27 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ символьной синхронизации при приеме сигнала кодоимпульсной модуляции - частотной манипуляции с известной структурой

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2386165C2 (ru) * 2008-06-16 2010-04-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Способ определения структуры и демодуляции сигнала с неизвестной структурой
RU2013128158A (ru) * 2013-06-19 2014-12-27 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ символьной синхронизации при приеме сигнала кодоимпульсной модуляции - частотной манипуляции с известной структурой

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2642803C1 (ru) * 2017-01-18 2018-01-26 Евгений Тимофеевич Дюндиков Способ повышения достоверности передачи цифрового сообщения
RU2733211C1 (ru) * 2017-02-03 2020-09-30 Идак Холдингз, Инк. Передача и демодуляция в широковещательном канале
US11943724B2 (en) 2017-02-03 2024-03-26 Interdigital Patent Holdings, Inc. Broadcast channel transmission and demodulation
RU2738961C1 (ru) * 2020-06-08 2020-12-21 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ определения пространственных параметров элементов телекоммуникационных систем, использующих широкополосные сигналы

Also Published As

Publication number Publication date
RU2015102431A (ru) 2016-08-20

Similar Documents

Publication Publication Date Title
Zheng et al. Super-resolution delay-Doppler estimation for OFDM passive radar
CN108764077B (zh) 一种基于卷积神经网络的数字信号调制分类方法
Rebeiz et al. Optimizing wideband cyclostationary spectrum sensing under receiver impairments
US8160163B1 (en) Method for OFDM signal identification and parameter estimation
Hanna et al. Signal processing-based deep learning for blind symbol decoding and modulation classification
US10855494B2 (en) Transmitter and receiver and corresponding methods
EP1953982A1 (en) Method and device for timing synchronization and neighbor scanning for cellular OFDM Systems
RU2595952C2 (ru) Способ символьной синхронизации при приеме сигнала кодоимпульсной модуляции - фазовой манипуляции с известной структурой
EP3826203B1 (en) Signal detection device, signal detecting method, control circuit and computer readable storage medium
CN112187316A (zh) 信号处理方法、装置、接收机及存储介质
CN107342960B (zh) 一种适合幅度相移键控的非数据辅助频偏估计方法
Abel et al. Noise performance of chaotic communication systems
Kadushkin et al. To the matter of optimal transfer characteristics of linear selective systems of communication channel with memory and PSK-n signals
US6263031B1 (en) Method and apparatus for signal burst classification
Wong et al. Estimation of transmitter I/Q imbalance using convolutional neural networks
Wong et al. Emitter identification using CNN IQ imbalance estimators
Lerner et al. A Numerical Method for Potential Capacity Estimating of Communication Channel with Memory and Cyclo Stationary PSK-N-Signals
RU2425394C2 (ru) Способ обнаружения искаженных импульсных сигналов
Zhang et al. Radar sensing via OTFS signaling
Lerner et al. A Numerical Method to Estimate the Potential Capacity of Communication Channels Using FSK-n-Signals with ISI
US20160248615A1 (en) Frequency Estimation
RU2543567C2 (ru) Способ символьной синхронизации при приеме сигнала кодоимпульсной модуляции -частотной манипуляции с известной структурой
Muthalagu Mitigation of DME interference in LDACS1-based future air-to-ground (A/G) communications
CN112019233A (zh) 一种短波通信的多路信号同步头快速捕获方法
Lijun et al. A signal demodulation algorithm based on generative adversarial networks

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170127

NF4A Reinstatement of patent

Effective date: 20190607

MM4A The patent is invalid due to non-payment of fees

Effective date: 20210127