RU2594951C2 - Измеритель скорости потока, работающий по принципу дифференцированного давления, с резервными датчиками давления, позволяющими обнаружить отказ датчиков и снижение производительности - Google Patents

Измеритель скорости потока, работающий по принципу дифференцированного давления, с резервными датчиками давления, позволяющими обнаружить отказ датчиков и снижение производительности Download PDF

Info

Publication number
RU2594951C2
RU2594951C2 RU2014145628/28A RU2014145628A RU2594951C2 RU 2594951 C2 RU2594951 C2 RU 2594951C2 RU 2014145628/28 A RU2014145628/28 A RU 2014145628/28A RU 2014145628 A RU2014145628 A RU 2014145628A RU 2594951 C2 RU2594951 C2 RU 2594951C2
Authority
RU
Russia
Prior art keywords
pressure
primary
outlet
inlet
process fluid
Prior art date
Application number
RU2014145628/28A
Other languages
English (en)
Other versions
RU2014145628A (ru
Inventor
Фред С. СИТТЛЕР
Original Assignee
Росемоунт Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Росемоунт Инк. filed Critical Росемоунт Инк.
Publication of RU2014145628A publication Critical patent/RU2014145628A/ru
Application granted granted Critical
Publication of RU2594951C2 publication Critical patent/RU2594951C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/38Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule
    • G01F1/383Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Изобретение относится к системам управления и контроля процесса производства того типа, который применяется для измерения и контроля процессов производства. В частности, данное изобретение относится к измерению скорости потока в процессах производства по принципу дифференцированного давления. Система 100 измерения скорости потока технической жидкости в технологическом трубопроводе 102 включает в себя ограничитель потока 108 в технологическом трубопроводе, создающий дифференцированное давление между входной стороной ограничителя 108 и выходной стороной ограничителя 108. Дифференцированное давление зависит от скорости потока технической жидкости. Измерители первичного и вторичного давления на входе 104С, 104D соединены с технологическим трубопроводом 102 на входной стороне ограничителя потока 108 и измеряют первичное и вторичное давление на входе. Измерители первичного и вторичного давления на выходе 104А, 104В соединены с технологическим трубопроводом 102 на выходной стороне ограничителя потока 108 и измеряют соответствующее первичное и вторичное давление на выходе технической жидкости. Скорость потока технической жидкости рассчитывается на основании по меньшей мере одного давления на входе и одного давления на выходе. Технический результат - создание метода и приспособления для измерения дифференцированного давления, вместе с тем предоставляя диагностические данные, которые могут применяться для обнаружения неисправного датчика. 3 н. и 22 з.п. ф-лы, 3 ил.

Description

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
[0001] Настоящее изобретение относится к системам управления и контроля процесса производства того типа, который применяется для измерения и контроля процессов производства. В частности, данное изобретение относится к измерению скорости потока в процессах производства по принципу дифференцированного давления.
[0002] Измерители с переменными процесса используются для измерения переменных процесса различных технических жидкостей в процессе производства. Типичные переменные процесса включают в себя давление, температуру или уровень технической жидкости в баке, скорость потока, pH и т.п. Данные измерения могут использоваться для контроля производства процесса и в дальнейшем в качестве основы для управления процессом. Как правило, измерители расположены удаленно и передают измеренную переменную процесса в централизованный пункт.
[0003] Один метод, используемый для измерения скорости потока в процессах производства, основывается на дифференцированном давлении. Ограничительный элемент размещается в середине потока, например штуцер меньшего размера в технологическом трубопроводе. Таким образом, создается дифференцированное давление вокруг ограничителя, который связан со скоростью потока. Датчик дифференцированного давления может применяться для измерения дифференцированного давления вокруг ограничительного элемента. Такое дифференцированное давление может быть соотнесено со скоростью потока посредством измерителя, или исходные данные могут быть переданы для обработки в централизованный пункт. В другой конфигурации, в отличие от датчика дифференцированного давления используются два отдельных датчика абсолютного или манометрического давления. Затем два измеренных давления могут быть вычтены, например, при помощи цифровой схемы, для определения дифференцированного давления.
[0004] В системе измерения скорости потока, которая применяет два датчика давления для определения дифференцированного давления, могут быть допущены погрешности, если один из датчиков давления выйдет из строя или если его точность будет иметь значительное отклонение. Такая неисправность может привести к нарушению контроля процесса или может вызвать сбор неверных данных.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0005] Система измерения скорости потока технической жидкости в технологическом трубопроводе включает ограничитель потока в технологическом трубопроводе, создающий дифференцированное давление между входной стороной ограничителя и выпускной стороной ограничителя. Дифференцированное давление зависит от скорости потока технической жидкости. Измерители первичного и вторичного давления на входе соединены с технологическим трубопроводом на входной стороне ограничителя потока и измеряют соответствующее первичное и вторичное давление на входе. Измерители первичного и вторичного давления на выходе соединены с технологическим трубопроводом на выходной стороне ограничителя потока и измеряют соответствующее первичное и вторичное давление на выходе технической жидкости. Скорость потока технической жидкости рассчитывается на основании, по меньшей мере, одного давления на входе и одного давления на выходе. Кроме того, снижение производительности, по меньшей мере, одного из измерителей давления обнаруживается на основании результатов, по меньшей мере, двух измерений давления.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0006] На рисунке 1 представлена упрощенная блок-схема, показывающая систему измерения скорости потока по принципу дифференцированного давления.
[0007] На рисунке 2 показана упрощенная блок-схема измерителя давления по рисунку 1.
[0008] На рисунке 3 показано боковое поперечное сечение датчика давления измерителя по рисунку 2.
ПОДРОБНОЕ ОПИСАНИЕ ПОЯСНИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
[0009] Как указано в разделе «Уровень техники изобретения», дифференцированное давление представляет собой известный метод измерения скорости потока технической жидкости. Данное дифференцированное давление может быть измерено посредством одного датчика, который имеет конфигурацию для измерения дифференцированного давления, или может быть измерено путем применения двух датчиков давления. В случае применения двух датчиков, разница давления между двумя датчиками рассчитывается или в противном случае измеряется и используется для установления соотношения со скоростью потока. В некоторых случаях, датчики подвергаются воздействию особо суровых условий, таких как высокое давление или предельные значения температуры. Кроме того, датчики давления могут находиться удаленно, что затрудняет возможность их контроля или иного обслуживания. Например, измерение скорости потока масла под водой может быть затруднено и требует от датчика давления способности применения чрезвычайно высокого давления в трубопроводе, например 20 тыс. фунт/кв. дюйм. В такой конфигурации, два датчика давления в трубопроводе могут быть предпочтительным методом измерения дифференцированного давления. Датчики давления в трубопроводе могут иметь конфигурацию для работы на высоком давлении, в то же время предоставляя больше данных, чем один датчик дифференциального давления. Один датчик давления, который особенно хорошо подходит для работы при таком высоком давлении, представлен в патенте США №6,089,097 под названием «УДЛИНЕННЫЙ ДАТЧИК ДЛЯ ИЗМЕРИТЕЛЯ ДАВЛЕНИЯ», переданном компании Rosemount Inc.
[0010] Настоящее изобретение предусматривает метод и приспособление для измерения дифференцированного давления, вместе с тем предоставляя диагностические данные, которые могут применяться для обнаружения неисправного датчика. Например, если один из датчиков давления выходит из строя или выводит неточные показания, расчет скорости потока будет неточным. Ограниченное обнаружение неисправностей может осуществляться путем сравнения отдельных уровней выходных сигналов датчика или путем определения чрезмерно высокого дифференцированного давления. Однако это не дает информацию о том, какие из датчиков вышли из строя. Настоящее изобретение представляет метод проверки надежности измерений и изоляции неисправного датчика.
[0011] В соответствии с настоящим изобретением используются четыре измерителя абсолютного манометрического давления, которые приведены в резервной конфигурации. Два измерителя установлены на входной стороне высокого давления ограничителя потока и два измерителя установлены на выходной стороне низкого давления ограничителя потока.
[0012] На рисунке 1 представлена упрощенная схема процесса производства, сконфигурированная система управления или контроля 100 для контроля скорости потока технической жидкости в технологическом трубопроводе 102. Ограничитель (ограничительный элемент) 108 расположен в потоке. Он может включать, например, мерное сопло, расходомер, измерительную диафрагму и т.п. Так как поток перемещается через ограничитель 108, создается дифференцированное давление с высоким давлением Дв на входной стороне ограничителя и низким давлением Дн на стороне низкого давления ограничителя 108. В конфигурации согласно рис. 1, четыре датчика абсолютного давления установлены для измерения четырех давлений. Измеритель низкого давления 104А включает датчик низкого давления 106А, предназначенный для измерения первичного низкого давления Дн А. Резервный измеритель вторичного низкого давления 104В включает в себя датчик давления 106В, установленный для измерения вторичного низкого давления Дн В. Аналогичным образом, измеритель первичного высокого давления 104С включает датчик первичного высокого давления 106С, установленный для измерения части первичного высокого давления Дв С. Резервный измеритель высокого давления 104D, включающий датчик высокого давления 106D, установлен для измерения части вторичного высокого давления Дв D. Как показано на рис. 1, это позволяет выполнять измерения четырех различных дифференцированных давлений: Дд 1 между датчиками 106С и 106А, Дд 2 между датчиками 106D и 106В, Дд 3 между датчиками 106D и 104А и Дд 4 между датчиками 106С и 106В.
[0013] Измерители давления 104A-D могут быть подключены к отдельному микропроцессору, который выполняет математические соотношения степенного ряда. Если два измерителя на стороне высокого давления (104С и 104D) и два измерителя на стороне низкого давления (104А и 104В) характерны для дифференцированного давления, они указывают качество измерения дифференцированного давления. В частности, вариации между четырьмя различными измерениями дифференцированного давления могут применяться для указания качества или точности измерения дифференцированного давления. В идеале, дифференцированные давления Дд 1 и Дд 2 всегда должны быть одинаковыми. Однако любое смещение одного из четырех датчиков (106A-D) приведет к разнице между этими двумя дифференцированными давлениями. Величина разницы между двумя измерениями дифференцированного давления Дд 1 и Дц 2 указывает на ошибку, которая может присутствовать в измерении дифференцированного давления. Таким образом, данная разница дает представление о качестве полученных измерений. Аналогичным образом, такое указание качества может быть получено путем наблюдения разницы между давлениями Дн А и Дн В, измеренными датчиками 106А и 106В, соответственно, а также давлением Дв С и Дв D, измеренным датчиками 106С и 106D, соответственно. В дополнение к этому, между парами датчиков на входе и выходе может осуществляться контроль нуля. В частности, разницы между выходными сигналами измерителей 104А и 104В должны равняться нулю, как и разница между выходными сигналами измерителей 104С и 104D.
[0014] На рисунке 2 представлена упрощенная схема измерителя абсолютного давления 104. Как указано выше, измеритель 104 включает в себя датчик абсолютного давления 106. Кроме того, также могут быть предусмотрены дополнительные датчики 200. Они могут включать в себя дополнительные датчики давления, которые включают в себя датчики дифференцированного давления, датчики абсолютного давления, датчики температуры или другие типы датчиков. Схема измерения 202 предназначена для приема выходного сигнала от датчика давления и передачи выходного сигнала микропроцессору 208, связанного с измеренным давлением. Например, схема измерения может усиливать сигнал от датчика, преобразовывать сигнал в цифровой сигнал, повышать качество измерения давления и т.п. Микропроцессор 208 работает в соответствии с командами, которые хранятся в запоминающем устройстве 206, и предназначен для установления связи посредством схемы входных/выходных сигналов 210. Эта схема входных/выходных сигналов может быть предназначена для локальной связи, например, с другим измерителем 104 и/или для установления связи с удаленным устройством. Связь устанавливается через канал связи 212, который может быть проводным, беспроводным или их сочетанием. Типовые технологии проводной связи включают двухпроводные контуры управления процессом, как те, которые работают в соответствии со стандартом связи HART®. Беспроводные технологии, такие как протокол связи HART®, также могут применяться в соответствии с требованиями стандарта IEC 62591. Измеритель 104 может дополнительно включать в себя внутренний источник питания 214 для электропитания устройства. Это может быть аккумулятор, генераторная установка, такая как генератор на солнечных батареях, тепловой генератор, механический генератор и т.п. В другой конфигурации питание подается от внешнего источника, который может включать в себя, например, прием питания через канал связи 212. В этих конфигурациях микропроцессор 208 предусматривает контроллер в соответствии с настоящим изобретением и может рассчитывать скорость потока технической жидкости на основании, по меньшей мере, одного давления на входе и одного давления на выходе. Микропроцессор может дополнительно определять снижение производительности, по меньшей мере, одного из измерителей давления 104A-D на основании результатов, как минимум, двух отдельных измерений. Также следует принять во внимание, что микропроцессор может использовать измерения от всех четырех датчиков давления и сравнивать четыре отдельных разных давления (см. рис. 1) для определения снижения производительности, по меньшей мере, одного из датчиков давления.
[0015] В одной из конфигураций микропроцессор 208 может рассчитывать дифференцированное давление и выполнять диагностику, как приведено выше. В другой типовой конфигурации, любое количество отдельных измерителей 104A-D включают в себя только основную схему, которая предназначена для передачи измеренного давления. Фактическое определение и/или диагностика дифференцированного давления производятся отдельным устройством. В такой конфигурации, схема представленная на рисунке 2, может содержать такую дистанционную систему дифференцированного давления/диагностирования. В данной конфигурации датчик давления 106 и схема измерения 202 могут быть необязательны. Между тем, отдельные сигналы датчика давления возвращаются от различных измерителей давления по каналу связи 212 через схему входных/выходных сигналов 210.
[0016] Отдельные датчики давления 106 могут соответствовать любой технологии. В одной предпочтительной конфигурации датчики давления 106 изготовлены из хрупкого материала, такого как сапфир. Например, рисунок 3 представляет конфигурацию датчика давления 106, изготовленного из хрупкого материала, включая две половины датчика 250, 252. Между двумя половинами 250, 252 образована полость 254. Так как на датчик 106 оказывается давление, размер полости 254 слегка деформируется. Эта деформация может быть измерена путем применения технологий измерения. В одной типовой конфигурации, в полости 254 применяются емкостные пластины 256 и 258. Емкостное сопротивление между пластинами 256, 258 указывает на деформацию полости 254 и поэтому может быть связано с прилагаемым давлением. Электрические соединители 260 предназначены для соединения с платами 256, 258. Такой датчик представлен и описан в патенте США №6,089,097 под названием «УДЛИНЕННЫЙ ДАТЧИК ДЛЯ ИЗМЕРИТЕЛЯ ДАВЛЕНИЯ».
[0017] Хотя настоящее изобретение описано с учетом предпочтительных вариантов осуществления изобретения, специалисты в данной отрасли признают, что в форму и содержание можно вносить изменения без отступления от существа и объема настоящего изобретения. В одном примере шумовые сигналы, одинаковые в нескольких датчиках, могут использоваться для диагностики других компонентов в процессе, а также самого устройства.

Claims (25)

1. Система измерения скорости потока технической жидкости в технологическом трубопроводе, включающая:
ограничитель потока в технологическом трубопроводе, создающий в технической жидкости между входной стороной ограничителя и выходной стороной ограничителя дифференцированное давление, связанное со скоростью потока технической жидкости;
измерители первичного и вторичного давления на входе, каждый из которых соединен с технологическим трубопроводом на входной стороне ограничителя потока, измеряющие первичное и вторичное давления на входе технической жидкости соответственно и быстро передающие выходные сигналы, связанные с измеренным первичным и вторичным давлениями на входе;
измерители первичного и вторичного давления на выходе, каждый из которых соединен с технологическим трубопроводом на выходной стороне ограничителя потока, измеряющие первичное и вторичное давление на выходе технической жидкости и быстро передающие выходные сигналы, связанные с измеренным первичным и вторичным давлением на выходе;
контроллер, предназначенный для расчета скорости потока технической жидкости на основании по меньшей мере одного давления на входе и одного давления на выходе и дополнительно предназначенный для определения снижения производительности по меньшей мере в одном из измерителей давления на основании результатов по меньшей мере двух измерений.
2. Система по п. 1, отличающаяся тем, что результаты по меньшей мере двух измерений давления включают в себя первичное давление на входе и первичное давление на выходе.
3. Система по п. 1, отличающаяся тем, что результаты по меньшей мере двух измерений давления включают в себя первичное давление на входе и вторичное давление на выходе.
4. Система по п. 1, отличающаяся тем, что результаты по меньшей мере двух измерений давления включают в себя первичное давление на выходе и вторичное давление на входе.
5. Система по п. 1, отличающаяся тем, что результаты по меньшей мере двух измерений давления включают в себя вторичное давление на входе и вторичное давление на выходе.
6. Система по п. 1, отличающаяся тем, что контроллер сопоставляет дифференцированные давления, рассчитанные датчиками первичного и вторичного давлений на входе и датчиками первичного и вторичного давлений на выходе для определения снижения производительности по меньшей мере в одном из измерителей.
7. Система по п. 1, отличающаяся тем, что каждый из измерителей давления включает схему связи, предназначенную для передачи соответствующего измеренного давления на контроллер.
8. Система по п. 7, отличающаяся тем, что контроллер расположен внутри по меньшей мере одного из измерителей давления.
9. Система по п. 7, отличающаяся тем, что контроллер находится удаленно.
10. Система по п. 7, отличающаяся тем, что схема связи имеет конфигурацию для беспроводной связи.
11. Система по п. 7, отличающаяся тем, что схема связи имеет конфигурацию для проводной связи.
12. Система по п. 1, отличающаяся тем, что контроллер предназначен для выполнения контроля нуля между измеренным первичным давлением на входе и измеренным вторичным давлением на входе.
13. Система по п. 1, отличающаяся тем, что контроллер предназначен для выполнения контроля нуля между измеренным первичным давлением на выходе и измеренным вторичным давлением на выходе.
14. Система по п. 1, отличающаяся тем, что измерители давления включают в себя датчики давления, непосредственно подвергающиеся воздействию технической жидкости.
15. Система по п. 1, отличающаяся тем, что измерители давления включают в себя датчики давления, изготовленные из хрупкого материала, в котором имеется образованная полость, при этом полость адаптируется к прилагаемому давлению.
16. Система по п. 1, отличающаяся тем, что по меньшей мере один из измерителей давления включает в себя дополнительный датчик.
17. Система по п. 16, отличающаяся тем, что дополнительный датчик содержит датчик температуры.
18. Система по п. 7, отличающаяся тем, что электропитание для измерителей давления обеспечивается схемой связи.
19. Способ измерения скорости потока технической жидкости в технологическом трубопроводе, включающий:
обеспечение ограничителя потока в технологическом трубопроводе, создающем между входной стороной ограничителя и выходной стороной ограничителя дифференцированное давление в технической жидкости, связанное со скоростью потока технической жидкости;
измерение первичного и вторичного давлений на входе технической жидкости при помощи измерителей первичного и вторичного давлений на входе, каждый из которых соединен с технологическим трубопроводом на входной стороне ограничителя потока, измерители первичного и вторичного давлений на входе измеряют первичное и вторичное давления на входе технической жидкости соответственно и быстро передают выходной сигнал, связанный с измеренным первичным и вторичным давлением на входе;
измерение первичного и вторичного давления на выходе технической жидкости при помощи измерителей первичного и вторичного давления на выходе, каждый из которых соединен с технологическим трубопроводом на входной стороне ограничителя потока, измерители первичного и вторичного давления на выходе измеряют первичное и вторичное давление на выходе технической жидкости и быстро передают выходные сигналы, связанные с измеренным первичным и вторичным давлением на выходе;
расчет скорости потока технической жидкости на основании по меньшей мере одного давления на входе и одного давления на выходе и дополнительного определения снижения производительности по меньшей мере в одном из измерителей давления на основании результатов по меньшей мере двух измерений.
20. Способ по п. 19, отличающийся тем, что результаты по меньшей мере двух измерений давления включают в себя первичное давление на входе и первичное давление на выходе.
21. Способ по п. 19, отличающийся тем, что результаты по меньшей мере двух измерений давления включают в себя первичное давление на входе и вторичное давление на входе.
22. Способ по п. 19, отличающийся тем, что результаты по меньшей мере двух измерений давления включают в себя первичное давление на выходе и вторичное давление на выходе.
23. Способ по п. 19, включающий выполнение контроля нуля между измеренным первичным давлением на входе и измеренным вторичным давлением на входе.
24. Способ по п. 19, включающий выполнение контроля нуля между измеренным первичным давлением на выходе и измеренным вторичным давлением на выходе.
25. Система измерения скорости потока технической жидкости в технологическом трубопроводе, включающая:
ограничитель потока в технологическом трубопроводе, создающий в технической жидкости между входной стороной ограничителя и выходной стороной ограничителя дифференцированное давление, связанное со скоростью потока технической жидкости;
датчики первичного и вторичного давления на входе, каждый из которых соединен с технологическим трубопроводом на входной стороне ограничителя потока, измеряющие первичное и вторичное давление на входе технической жидкости соответственно и быстро передающие выходные сигналы, связанные с измеренным первичным и вторичным давлением на входе;
датчики первичного и вторичного давления на выходе, каждый из которых соединен с технологическим трубопроводом на выходной стороне ограничителя потока, измеряющие первичное и вторичное давление на выходе технической жидкости и быстро передающие выходные сигналы, связанные с измеренным первичным и вторичным давлением на выходе;
контроллер, предназначенный для расчета скорости потока технической жидкости на основании по меньшей мере одного давления на входе и одного давления на выходе и дополнительно предназначенный для определения снижения производительности по меньшей мере в одном из датчиков давления на основании результатов по меньшей мере двух измерений давления.
RU2014145628/28A 2012-05-29 2013-04-18 Измеритель скорости потока, работающий по принципу дифференцированного давления, с резервными датчиками давления, позволяющими обнаружить отказ датчиков и снижение производительности RU2594951C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/482,167 US9200932B2 (en) 2012-05-29 2012-05-29 Differential pressure transmitter with redundant sensors
US13/482,167 2012-05-29
PCT/US2013/037096 WO2013180843A2 (en) 2012-05-29 2013-04-18 Differential pressure transmitter with redundant sensors

Publications (2)

Publication Number Publication Date
RU2014145628A RU2014145628A (ru) 2016-07-20
RU2594951C2 true RU2594951C2 (ru) 2016-08-20

Family

ID=48227567

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014145628/28A RU2594951C2 (ru) 2012-05-29 2013-04-18 Измеритель скорости потока, работающий по принципу дифференцированного давления, с резервными датчиками давления, позволяющими обнаружить отказ датчиков и снижение производительности

Country Status (9)

Country Link
US (1) US9200932B2 (ru)
EP (1) EP2856087B1 (ru)
JP (1) JP5974168B2 (ru)
CN (2) CN203053490U (ru)
AU (1) AU2013267918B2 (ru)
CA (1) CA2873030C (ru)
IN (1) IN2014MN02241A (ru)
RU (1) RU2594951C2 (ru)
WO (1) WO2013180843A2 (ru)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088850A1 (en) * 2015-04-27 2016-11-02 Siemens Aktiengesellschaft Subsea flow meter assembly
CN104964720A (zh) * 2015-07-07 2015-10-07 成都国光电子仪表有限责任公司 便于选取安装点的燃气流量检测装置
CN104964716A (zh) * 2015-07-07 2015-10-07 成都国光电子仪表有限责任公司 便于选取监控点位置的流体流量检测装置
CN105181034A (zh) * 2015-08-12 2015-12-23 成都国光电子仪表有限责任公司 适用于凝析天然气管路的流量计量方法
DE102015225654B4 (de) * 2015-12-17 2021-08-26 Rolls-Royce Deutschland Ltd & Co Kg Verfahren und Vorrichtung zur Bestimmung des Zustandes eines Messdatenkanals in einem Duplex-Messdatenkanal
EP3232173B1 (de) * 2016-04-11 2018-09-26 VEGA Grieshaber KG Differenzdrucksensor
EP3232174B1 (de) * 2016-04-11 2018-10-31 VEGA Grieshaber KG Drucksensor
US10240967B2 (en) 2016-06-08 2019-03-26 Saudi Arabian Oil Company Systems and methods to obtain diagnostic information related to a bi-directional prover
CN106289415A (zh) * 2016-08-30 2017-01-04 新奥泛能网络科技股份有限公司 一种管路流量计算方法、装置及管路系统
DE102017205837A1 (de) * 2017-04-05 2018-10-11 Robert Bosch Gmbh Sensorelement zur Erfassung mindestens einer Eigenschaft eines fluiden Mediums
DE102017012067A1 (de) 2017-12-29 2019-07-04 Endress+Hauser Flowtec Ag Rohr für einen Meßwandler, Meßwandler mit einem solchen Rohr sowie damit gebildetes Meßsystem
US20190234209A1 (en) * 2018-01-30 2019-08-01 Saudi Arabian Oil Company Measuring fluid density in a fluid flow
DE102018110456A1 (de) * 2018-05-02 2019-11-07 Endress + Hauser Flowtec Ag Meßsystem sowie Verfahren zum Messen einer Meßgröße eines strömenden Fluids
NL2022125B1 (en) * 2018-12-03 2020-06-30 Suss Microtec Lithography Gmbh Apparatus for measuring a fluid flow through a pipe of a semiconductor manufacturing device
US11009897B2 (en) * 2018-12-28 2021-05-18 Rosemount Inc. Remote seal system with improved temperature compensation
DE102019201429B3 (de) 2019-02-05 2020-06-04 Vitesco Technologies GmbH Batteriemodul für Fahrzeuge mit redundanter Druckerfassung
CN111024170B (zh) * 2019-12-18 2021-09-14 沈阳鼓风机集团股份有限公司 一种孔板流量计
US11371326B2 (en) 2020-06-01 2022-06-28 Saudi Arabian Oil Company Downhole pump with switched reluctance motor
US20210396560A1 (en) * 2020-06-17 2021-12-23 Rosemount Inc Subsea multivariable transmitter
US11499563B2 (en) 2020-08-24 2022-11-15 Saudi Arabian Oil Company Self-balancing thrust disk
US11920469B2 (en) 2020-09-08 2024-03-05 Saudi Arabian Oil Company Determining fluid parameters
CN112696520A (zh) * 2020-12-08 2021-04-23 江苏中电创新环境科技有限公司 一种气动调节阀的控制系统及其方法
CN112959870A (zh) * 2021-03-16 2021-06-15 成都格力新晖医疗装备有限公司 一种移动实验室、移动实验室的负压控制方法及装置
US11644351B2 (en) 2021-03-19 2023-05-09 Saudi Arabian Oil Company Multiphase flow and salinity meter with dual opposite handed helical resonators
US11591899B2 (en) 2021-04-05 2023-02-28 Saudi Arabian Oil Company Wellbore density meter using a rotor and diffuser
US11913464B2 (en) 2021-04-15 2024-02-27 Saudi Arabian Oil Company Lubricating an electric submersible pump
US11994016B2 (en) 2021-12-09 2024-05-28 Saudi Arabian Oil Company Downhole phase separation in deviated wells
CN117740121B (zh) * 2024-02-20 2024-06-04 成都睿宝电子科技有限公司 一种流量计自动校准标定装置及校准标定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591922A (en) * 1994-05-27 1997-01-07 Schlumberger Technology Corporation Method and apparatus for measuring multiphase flows
US5886267A (en) * 1995-02-03 1999-03-23 Lockheed Martin Idaho Technologies Company System and method for bidirectional flow and controlling fluid flow in a conduit
US6089097A (en) * 1995-02-28 2000-07-18 Rosemount Inc. Elongated pressure sensor for a pressure transmitter
US8132464B2 (en) * 2010-07-12 2012-03-13 Rosemount Inc. Differential pressure transmitter with complimentary dual absolute pressure sensors

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107090A (ja) * 1991-10-21 1993-04-27 Nissan Motor Co Ltd 差圧流量計
US5459675A (en) * 1992-01-29 1995-10-17 Arch Development Corporation System for monitoring an industrial process and determining sensor status
US5534107A (en) 1994-06-14 1996-07-09 Fsi International UV-enhanced dry stripping of silicon nitride films
US5672808A (en) * 1996-06-11 1997-09-30 Moore Products Co. Transducer having redundant pressure sensors
US7261002B1 (en) * 1999-07-02 2007-08-28 Cidra Corporation Flow rate measurement for industrial sensing applications using unsteady pressures
US7255012B2 (en) * 2004-12-01 2007-08-14 Rosemount Inc. Process fluid flow device with variable orifice
US8200783B2 (en) 2005-08-09 2012-06-12 Fisher-Rosemount Systems, Inc. Field-based asset management device and architecture
CN1332183C (zh) 2005-08-10 2007-08-15 陈宇 流体的流量检测装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591922A (en) * 1994-05-27 1997-01-07 Schlumberger Technology Corporation Method and apparatus for measuring multiphase flows
US5886267A (en) * 1995-02-03 1999-03-23 Lockheed Martin Idaho Technologies Company System and method for bidirectional flow and controlling fluid flow in a conduit
US6089097A (en) * 1995-02-28 2000-07-18 Rosemount Inc. Elongated pressure sensor for a pressure transmitter
US8132464B2 (en) * 2010-07-12 2012-03-13 Rosemount Inc. Differential pressure transmitter with complimentary dual absolute pressure sensors

Also Published As

Publication number Publication date
RU2014145628A (ru) 2016-07-20
JP5974168B2 (ja) 2016-08-23
CN103453947B (zh) 2016-12-07
WO2013180843A3 (en) 2014-01-23
EP2856087A2 (en) 2015-04-08
US20130319074A1 (en) 2013-12-05
IN2014MN02241A (ru) 2015-10-09
CN103453947A (zh) 2013-12-18
JP2015521290A (ja) 2015-07-27
AU2013267918A1 (en) 2014-11-27
US9200932B2 (en) 2015-12-01
AU2013267918B2 (en) 2016-03-03
CA2873030A1 (en) 2013-12-05
CA2873030C (en) 2016-11-22
CN203053490U (zh) 2013-07-10
EP2856087B1 (en) 2021-08-11
WO2013180843A2 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
RU2594951C2 (ru) Измеритель скорости потока, работающий по принципу дифференцированного давления, с резервными датчиками давления, позволяющими обнаружить отказ датчиков и снижение производительности
US8752433B2 (en) Differential pressure transmitter with pressure sensor
RU2453931C1 (ru) Улучшенная компенсация температуры многопараметрического датчика давления
US10401250B2 (en) Leakage detection and leakage location in supply networks
US7458280B2 (en) Wet gas indication using a process fluid differential pressure transmitter
CN104048705B (zh) 采用主元件连接平台的过程变量测量
US9683876B2 (en) Differential-pressure measuring assembly having effective-pressure lines and method for detecting plugged effective-pressure lines
US8448525B2 (en) Differential pressure based flow measurement
JP2012113581A (ja) 流量制御システムの異常監視方法
JP3538989B2 (ja) 配管漏洩監視装置
CN107655624B (zh) 压力变送器监测方法
JP3322939B2 (ja) プロセス計装ラック
JP3901159B2 (ja) ガス配管漏洩監視装置
JP2008202947A (ja) ガスメータ装置
CN102840192A (zh) 液压系统的功率监测系统及方法
CN212082474U (zh) 一体化孔板流量计和气体流量监测设备
US11454529B2 (en) Augmented flowmeter with a system for simulating fluid parameters
RU2143669C1 (ru) Способ метрологической диагностики расходомеров
US20170219412A1 (en) Method and a system for metering flow through a fluid conduit

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200419