RU2593819C1 - Инфракрасный твердотельный лазер - Google Patents

Инфракрасный твердотельный лазер Download PDF

Info

Publication number
RU2593819C1
RU2593819C1 RU2015119135/28A RU2015119135A RU2593819C1 RU 2593819 C1 RU2593819 C1 RU 2593819C1 RU 2015119135/28 A RU2015119135/28 A RU 2015119135/28A RU 2015119135 A RU2015119135 A RU 2015119135A RU 2593819 C1 RU2593819 C1 RU 2593819C1
Authority
RU
Russia
Prior art keywords
laser
crystal
znse
resonator
passive
Prior art date
Application number
RU2015119135/28A
Other languages
English (en)
Inventor
Алексей Александрович Воробьев
Йонос Ионо Астраускас
Борис Николаевич Дуванов
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации filed Critical Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации
Priority to RU2015119135/28A priority Critical patent/RU2593819C1/ru
Application granted granted Critical
Publication of RU2593819C1 publication Critical patent/RU2593819C1/ru

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

Изобретение относится к лазерной технике. Инфракрасный твердотельный лазер содержит лазер накачки, кристалл Fe2+:ZnSe - пассивный модулятор добротности и дополнительный резонатор. Резонатор лазера накачки выполнен «глухим», а пассивный модулятор добротности имеет вид кристалла Fe2+:ZnSe, установленного между зеркалами дополнительного резонатора внутри лазера накачки. Технический результат заключается в обеспечении компактности устройства, за счет использования одного кристалла Fe2+:ZnSe одновременно в качестве пассивного модулятора добротности и активного элемента. 1 ил.

Description

Изобретение относится к области лазерной физики и может быть использовано при разработке источников лазерного излучения среднего инфракрасного (ИК) диапазона (3,95…5,05 мкм).
В [1] предлагается дисковый лазер с модулированной добротностью резонатора, содержащий оптически связанные дисковый активный элемент, резонатор, модулятор добротности резонатора, источник накачки активного элемента и систему охлаждения активного элемента. Новым, по мнению авторов, является то, что устройство дополнительно снабжено модулятором добротности с боковым выводом излучения, размещенным в дополнительном полуконцентрическом резонаторе, при этом плоское зеркало дополнительного резонатора имеет 100% отражение на длине волны лазерного излучения.
Данное техническое решение не позволяет получать длину волны излучения среднего ИК-диапазона.
В рамках работы [2] реализована генерация мощного малогабаритного Er:YLF-лазера с диодной накачкой в режиме модуляции добротности пассивным затвором на кристалле Fe2+:ZnSe. В качестве источника накачки использовалась матрица лазерных диодов Активный элемент лазера (Er:YLF, концентрация активатора 15 ат.%) имел форму цилиндра с размерами ⌀2×35 мм. На один из торцов активного элемента было нанесено диэлектрическое покрытие, выполняющее роль глухого зеркала для излучения генерации и просветляющего покрытия для излучения накачки. На второй торец было нанесено просветляющее покрытие.
Ввод излучения накачки в активный элемент осуществлялся по продольно-поперечной схеме, реализованной с помощью системы призм полного внутреннего отражения. Резонатор лазера был образован плоским глухим зеркалом, напыленным на торце активного элемента, и внешним сферическим выходным зеркалом (радиус кривизны 1,2 м, коэффициент отражения 0,85 или 0,95). В экспериментах использовались два Fe:2+ZnSe-затвора с различным начальным пропусканием.
В устройстве [3] излучение лазера на основе кристалла YAG:Er3+ с длиной волны генерации 2,94 мкм, работавшего в режиме активной модуляции добротности, фокусировалось цилиндрической линзой (в линию длиной около 10 мм и шириной ~100 мкм) на поверхность кристалла ZnSe, содержавшую обогащенный ионами Fe2+ слой, длительность импульса накачки составляла ~ 100 нс. Излучение суперлюминесценции регистрировалось в направлении вдоль линии фокусировки накачки в области кристалла, непосредственно прилегающей к его поверхности. Грани, через которые излучение выходило из кристалла, скалывались. Ось пучка излучения являлась продолжением линии накачки с учетом преломления на грани кристалла. Поэтому резонатор, обеспечивающий обратную связь для излучения, отсутствовал.
В работе [4] приведена схема установки по исследованию Fe:ZnSe-лазера (концентрация ионов Fe2+ составляла 2,5×1018 см-3) при накачке излучением Er:YAG-лазера, работающего в режиме свободной генерации. Активный элемент представлял собой параллелепипед с поперечными размерами 9,7×10,1 мм и длиной (длина усиления) 7,7 мм, торцы которого полировались и не просветлялись. Чтобы уменьшить сброс инверсии усиленным спонтанным шумом, распространяющимся в поперечном к оптической оси резонатора направлении, боковые поверхности кристалла были заматированы и покрыты (зачернены) аквадагом. Резонатор лазера Fe:ZnSe образован «глухим» сферическим зеркалом с радиусом кривизны 1000 мм и плоским полупрозрачным зеркалом. Коэффициент пропускания выходного зеркала на длине волны генерации составлял 72%, длина резонатора - 350 мм. Пучок излучения Er:YAG-лазера, сфокусированный в пятно диаметром 6 мм (95% энергии), падал на кристалл Fe:ZnSe под улом 3° к оптической оси резонатора.
Наиболее близким к предлагаемому изобретению является устройство, описанное в [5, 6], где указано, что впервые достигнута генерация на кристалле Fe2+:ZnSe при комнатной температуре при накачке короткими (50 нс) импульсами лазера Er:YAG (2,94 мкм), запущенного в режиме модулированной добротности с помощью также кристалла Fe2+:ZnSe, но с меньшей концентрацией Fe [5].
В устройстве [6] активный элемент для Fe2+:ZnSe-лазера был изготовлен из монокристалла Fe2+:ZnSe, выращенного из паровой фазы методом свободного роста на монокристаллическую затравку. Легирование ионами Fe2+ до концентрации ~ 1×1018 см-3 проводилось непосредственно в процессе роста. Активный элемент лазера накачки имел длину 10 мм в поперечный размер 17×10 мм. Резонатор был образован задним сферическим зеркалом (радиус кривизны 50 см) и плоским выходным зеркалом с интерференционными покрытиями, нанесенными на подложку из CaF2. Кристалл Fe2+:ZnSe был установлен вблизи выходного зеркала под углом Брюстера к оптической оси резонатора. Накачка Fe2+:ZnSe-лазера осуществлялась излучением Er:YAG-лазера с длиной волны излучения 2,94 мкм в режиме пассивной модуляции добротности резонатора. Пассивным затвором в Er:YAG-лазере служила плоскопараллельная пластинка из монокристалла Fe2+:ZnSe.
Общим недостатком устройств [2-6] является использование двух кристаллов Fe2+:ZnSe для получения лазерного излучения среднего ИК-диапазона. Один кристалл используется в качестве пассивного модулятора добротности резонатора лазера накачки для увеличения мощности импульса накачки. Второй - для непосредственного получения генерации лазерного излучения в среднем ИК-диапазоне. Причем в устройстве [4] специально предпринимают меры для срыва генерации в кристалле Fe2+:ZnSe в направлении, поперечном к оптической оси резонатора лазера накачки.
Задачей изобретения является получение компактного ИК-излучателя, в котором один кристалл Fe2+:ZnSe используется одновременно как пассивный модулятор добротности и как активный элемент. Для этого кристалл Fe2+:ZnSe имеет форму параллелепипеда и располагается внутри резонатора лазера накачки. Причем на грани кристалла, перпендикулярные оптической оси лазера накачки, наносится просветляющее диэлектрическое покрытие с максимумом пропускания на длине волны лазера накачки. На грани кристалла, параллельные оптической оси лазера накачки, наносится просветляющее диэлектрическое покрытие с максимумом пропускания на требуемой длине волны среднего ИК-диапазона (3,95…5,05 мкм). Для более эффективного использования кристалла Fe2+:ZnSe концентрация ионов Fe2+ может быть не равномерной вдоль оси накачки и иметь строго заданный закон распределения в зависимости от требований, предъявляемым к предполагаемому изобретению.
Резонатор лазера накачки представляет собой заднее сферическое и переднее плоскопараллельное зеркала с интерференционными покрытиями, нанесенными на подложку из CaF2 либо какой-либо другой оптический материал, прозрачный в ИК-области спектра. Покрытия обоих зеркал имеют максимум отражения на длине волны лазера накачки, образуя «глухой» полуконфокальный резонатор. Резонатор и активная среда, выполненная из кристалла Er:YAG, представляют собой лазер накачки.
Для вывода излучения среднего ИК-диапазона устанавливают резонатор, параллельно граням кристалла Fe2+:ZnSe с нанесенным просветляющим диэлектрическим покрытием с максимумом пропускания на требуемой длине волны среднего ИК-диапазона (3,95…5,05 мкм). На фиг. 1 представлена схема предлагаемого изобретения, где цифрами обозначены: 1 - активная среда - кристалл Er:YAG; 2 - излучение накачки; 3 - полуконфокальный «глухой» резонатор для длины волны 2,94 мкм; 4 -кристалл Fe2+:ZnSe (пассивный модулятор добротности - лазерная активная среда); 5 - дополнительный резонатор для длины волны среднего ИК-диапазона (3,95…5,05 мкм); 6 - грани кристалла Fe2+:ZnSe, просветленные для длины волны 2,94 мкм; 7 - грани кристалла Fe2+:ZnSe, просветленные для длины волны среднего ИК-диапазона; 8 - излучение лазера накачки (2,94 мкм); 9 - лазерное излучение среднего ИК-дипазона.
Литература
1. Чивель Ю.А., Затягин Д.А., Никончук И.С. Дисковый лазер с модулированной добротностью резонатора (варианты). Патент на изобретение RU 2365006. Опубликовано 20.08.2009. Бюл. №23.
2. Иночкин М.В., Назаров В.В., Сачков Д.Ю., Хлопонин Л.В., Храмов В.Ю., Коростелин Ю.В., Ландман А.И., Подмарьков Ю.П., Фролов М.П. Малогабаритный Er:YLF-лазер с пассивным Fe2+:ZnSe-затвором. "Оптический журнал", 79, 6, 2012, с. 31-35.
3. Ильичев Н.Н., Данилов В.П., Калинушкин В.П., Студеникин М.И., Шапкин П.В., Насибов А.С. Суперлюминесцентный ИК-излучатель на кристалле ZnSe:Fe2+, работающий при комнатной температуре. Квантовая электроника. 2008, том 38, №2, с. 95-96.
4. Великанов С.Д., Зарецкий Н.А., Зотов Е.А., Козловский В.И., Коростелин Ю.В., Крохин О.Н., Манешкин А.А., Подмарьков Ю.П., Савинова С.А., Скасырский Я.К., Фролов М.П., Чуваткин Р.С., Юткин И.М. Исследование работы Fe:ZnSe-лазер в импульсном и импульсно-периодическом режимах. Квантовая электроника. 45, №1 (2015), С. 1-7.
5. Ландман А.И. Парофазный рост монокристаллов соединений AIIBVI, легированных переходными металлами, для лазеров среднего ИК-диапазона. Диссертации на соискание ученой степени кандидата физико-математических наук. М.: Физический институт им. П.Н. Лебедева РАН. 2008 г. 118 с.
6. Акимов В.А., Воронов А.А., Созловский В.И., Соростелин Ю.В., Ландман А.И., Подмарысов Ю.П., Фролов М.П. Эффективная лазерная генерация кристалла Fe2+:ZnSe при комнатной температуре. Квантовая электроника. 36, №4 (2006).

Claims (1)

  1. Инфракрасный твердотельный лазер, содержащий лазер накачки, кристалл Fe2+:ZnSe - пассивный модулятор добротности, дополнительный резонатор, отличающийся тем, что резонатор лазера накачки выполнен «глухим», а пассивный модулятор добротности имеет вид кристалла Fe2+:ZnSe, установленного между зеркалами дополнительного резонатора внутри лазера накачки.
RU2015119135/28A 2015-05-21 2015-05-21 Инфракрасный твердотельный лазер RU2593819C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015119135/28A RU2593819C1 (ru) 2015-05-21 2015-05-21 Инфракрасный твердотельный лазер

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015119135/28A RU2593819C1 (ru) 2015-05-21 2015-05-21 Инфракрасный твердотельный лазер

Publications (1)

Publication Number Publication Date
RU2593819C1 true RU2593819C1 (ru) 2016-08-10

Family

ID=56613155

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015119135/28A RU2593819C1 (ru) 2015-05-21 2015-05-21 Инфракрасный твердотельный лазер

Country Status (1)

Country Link
RU (1) RU2593819C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638078C1 (ru) * 2016-08-25 2017-12-11 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Военная академия Ракетных войск стратегического назначения имени Петра Великого" МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ Малогабаритный инфракрасный твердотельный лазер
RU2757033C2 (ru) * 2017-11-27 2021-10-11 Булат Малихович Абдрашитов Система лазерного охлаждения
CN117477338A (zh) * 2023-12-28 2024-01-30 长春理工大学 一种径向浓度渐变高光束质量中红外激光器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101591A1 (en) * 2003-11-24 2005-10-27 Raytheon Company Slab laser and method with improved and directionally homogenized beam quality
RU95908U1 (ru) * 2009-01-09 2010-07-10 Открытое Акционерное Общество "Пеленг" Лазер с оптическим параметрическим генератором
RU2525578C2 (ru) * 2012-07-10 2014-08-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) Федеральный Университет" (ФГАОУ ВПО КФУ) Способ вывода и регулирования энергии/мощности выходного излучения лазера и устройство для его реализации
US20140362879A1 (en) * 2001-09-20 2014-12-11 The Uab Research Foundation Saturable absorbers for q-switching of middle infrared laser cavaties

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140362879A1 (en) * 2001-09-20 2014-12-11 The Uab Research Foundation Saturable absorbers for q-switching of middle infrared laser cavaties
WO2005101591A1 (en) * 2003-11-24 2005-10-27 Raytheon Company Slab laser and method with improved and directionally homogenized beam quality
RU95908U1 (ru) * 2009-01-09 2010-07-10 Открытое Акционерное Общество "Пеленг" Лазер с оптическим параметрическим генератором
RU2525578C2 (ru) * 2012-07-10 2014-08-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) Федеральный Университет" (ФГАОУ ВПО КФУ) Способ вывода и регулирования энергии/мощности выходного излучения лазера и устройство для его реализации

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638078C1 (ru) * 2016-08-25 2017-12-11 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Военная академия Ракетных войск стратегического назначения имени Петра Великого" МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ Малогабаритный инфракрасный твердотельный лазер
RU2757033C2 (ru) * 2017-11-27 2021-10-11 Булат Малихович Абдрашитов Система лазерного охлаждения
CN117477338A (zh) * 2023-12-28 2024-01-30 长春理工大学 一种径向浓度渐变高光束质量中红外激光器
CN117477338B (zh) * 2023-12-28 2024-03-12 长春理工大学 一种径向浓度渐变高光束质量中红外激光器

Similar Documents

Publication Publication Date Title
EP0744089B1 (en) Passively q-switched picosecond microlaser
US7397832B2 (en) Laser cavity pumping method and laser system thereof
US20120269214A1 (en) Passively Q-switched Microlaser
US5557624A (en) Laser system using U-doped crystal Q-switch
JPH095810A (ja) マイクロレーザーによりポンピングされる一体型光学的パラメトリック発振器
US8724671B2 (en) Multiple wavelength laser system
US20130016422A1 (en) Q-switching-induced Gain-switched Erbium Pulse Laser System
Gavrishchuk et al. Room-temperature high-energy laser
RU2593819C1 (ru) Инфракрасный твердотельный лазер
Il'ichev et al. Superluminescent room-temperature Fe2+: ZnSe IR radiation source
RU2638078C1 (ru) Малогабаритный инфракрасный твердотельный лазер
CN109149351B (zh) 调q激光器
US3614662A (en) Laser with a monocrystalline ya10 {11 :n{11 {11 {11 {0 active medium
CN112054375B (zh) 一种电子-声子耦合的高集成全固态激光波长调控方法及激光器
CA2195597C (en) Diode-pumped laser system using uranium-doped q-switch
TW202215731A (zh) 高脈衝重複率拉曼雷射之優化條件
JPH09512957A (ja) 固体レーザー
RU2726915C1 (ru) Способ нелинейного внутрирезонаторного преобразования длины волны в лазере с продольной накачкой
US20210167570A1 (en) Q-switched laser system
Waeselmann et al. Lasing in Nd3+-doped Sapphire
Zharikov et al. Longitudinally diode-pumped 1.06-μm Nd3+: NaLa (MoO4) 2 laser without pump-wavelength stabilisation
Gulev et al. Generation in a laser with a tubular active element made of a neodymium-doped potassium—gadolinium tungstate crystal
Davtian et al. Passive Q-switched Nd: YAG single-frequency laser with tunable pulse shape and pulse duration
Pashinin et al. Laser with stimulated-Brillouin-scattering and self-pumping phase-conjugating mirrors
Beznosenko et al. COMPACT 1.531 μ m WAVELENGTH LASER ON PbMoO 4: ND 3+ CRYSTAL WITH SRSSELF-CONVERSION AND DIODE PUMPING

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170522