RU2593060C2 - Гибкая поддерживающая конструкция для зубчатой трансмиссии газотурбинного двигателя - Google Patents

Гибкая поддерживающая конструкция для зубчатой трансмиссии газотурбинного двигателя Download PDF

Info

Publication number
RU2593060C2
RU2593060C2 RU2014112788/02A RU2014112788A RU2593060C2 RU 2593060 C2 RU2593060 C2 RU 2593060C2 RU 2014112788/02 A RU2014112788/02 A RU 2014112788/02A RU 2014112788 A RU2014112788 A RU 2014112788A RU 2593060 C2 RU2593060 C2 RU 2593060C2
Authority
RU
Russia
Prior art keywords
stiffness
lateral
lateral stiffness
flexible support
transverse
Prior art date
Application number
RU2014112788/02A
Other languages
English (en)
Other versions
RU2014112788A (ru
Inventor
Майкл Е. МАККУН
Джейсон ХАЗБЭНД
Original Assignee
Юнайтед Текнолоджиз Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50341885&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2593060(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Юнайтед Текнолоджиз Корпорейшн filed Critical Юнайтед Текнолоджиз Корпорейшн
Publication of RU2014112788A publication Critical patent/RU2014112788A/ru
Application granted granted Critical
Publication of RU2593060C2 publication Critical patent/RU2593060C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • F01D25/164Flexible supports; Vibration damping means associated with the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/20Mounting or supporting of plant; Accommodating heat expansion or creep
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/501Elasticity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Retarders (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретение относится к газотурбинному двигателю (варианты). Рама двигателя выполнена с определенной собственной боковой жесткостью и собственной поперечной жесткостью и поддерживает вал вентилятора. Зубчатая трансмиссия приводит во вращение вал вентилятора. Гибкая опора частично поддерживает зубчатую трансмиссию. Для гибкой опоры определена боковая жесткость по отношению к боковой жесткости рамы и определена поперечная жесткость по отношению к поперечной жесткости рамы. Указанная боковая жесткость гибкой опоры меньше боковой жесткости рамы, а указанная поперечная жесткость гибкой опоры меньше поперечной жесткости рамы. Для входной муфты зубчатой трансмиссии определена боковая жесткость по отношению к боковой жесткости рамы и определена поперечная жесткость по отношению к поперечной жесткости рамы, и она составляет менее 11% боковой жесткости рамы. По второму варианту для входной муфты зубчатой трансмиссии определена боковая жесткость по отношению к боковой жесткости зубчатого зацепления и определена поперечная жесткость по отношению к поперечной жесткости зубчатого зацепления, при этом указанная боковая жесткость гибкой опоры меньше боковой жесткости зубчатого зацепления. Поперечная жесткость гибкой опоры меньше поперечной жесткости зубчатого зацепления и составляет менее 5% боковой жесткости зубчатого зацепления. Технический результат заключается в предотвращении изгиба несущей конструкции двигателя. 2 н. и 6 з.п. ф-лы, 8 ил.

Description

Ссылки на родственные заявки
Настоящее изобретение является частичным продолжением патентной заявки США 13/342508, поданной 3 января 2012 г., которая заявляет приоритет предварительной патентной заявки США 61/494453, поданной 8 июня 2011 г.
Область техники, к которой относится изобретение
Настоящее изобретение относится к газотурбинному двигателю, а точнее, к гибкой поддерживающей конструкции (опоре) зубчатой трансмиссии двигателя.
Уровень техники
Планетарные редукторы с фиксированным зубчатым венцом или фиксированным водилом могут использоваться в газотурбинных двигателях, благодаря своей компактной конструкции и способности эффективно обеспечивать большие передаточные отношения. Планетарные зубчатые передачи с фиксированным зубчатым венцом и с фиксированным водилом обычно содержат три зубчатых элемента: центральное солнечное зубчатое колесо, внешний зубчатый венец с внутренними зубьями и несколько планетарных шестерен (сателлитов), которые поддерживаются водилом между солнечным колесом и зубчатым венцом в зацеплении с указанными солнечным колесом и зубчатым венцом. Элементы планетарного редуктора имеют общую продольную центральную ось, вокруг которой вращаются по меньшей мере два из указанных элементов. Преимущество планетарных зубчатых передач заключается в том, что входное вращение можно подавать на любой из трех элементов. Тогда один из двух других элементов удерживают неподвижным относительно двух остальных, чтобы третий элемент мог служить выходным звеном, с которого снимают вращательное движение.
В задачах, связанных с применением газотурбинных двигателей, где требуется трансмиссия с понижением оборотов, центральная солнечная шестерня обычно принимает входное вращение от силовой установки, внешний зубчатый венец обычно зафиксирован неподвижно, а водило с сателлитами вращается в том же направлении, что и солнечная шестерня, чтобы обеспечить выходной крутящий момент при пониженных оборотах. В планетарных редукторах с фиксированным водилом водило с сателлитами зафиксировано неподвижно, а выходной вал приводится во вращение зубчатым венцом в направлении, противоположном вращению солнечной шестерни.
Во время полета легкие корпуса конструкций испытывают изгиб под воздействием аэродинамических нагрузок и нагрузок, вызванных маневрированием, что приводит к значительным поперечным изгибам, которые в общем известны как изгиб несущей конструкции двигателя. Такой изгиб может приводить к нарушению параллельности отдельных осей солнечной шестерни и сателлитов и центральной оси. Такой изгиб может вызывать некоторый перекос в подшипниках скольжения зубчатой передачи и перекос зацепления зубчатых шестерен, что может приводить к падению КПД из-за перекоса, и потенциальному снижению срока службы из-за увеличенных сосредоточенных напряжений.
Раскрытие изобретения
Согласно одному примеру изобретения, газотурбинный двигатель содержит вал вентилятора и раму, которая поддерживает вал вентилятора. Для рамы определена собственная боковая жесткость и собственная поперечная жесткость. Зубчатая трансмиссия приводит во вращение вал вентилятора. Гибкая опора по меньшей мере частично поддерживает зубчатую трансмиссию. Для гибкой опоры определена собственная боковая жесткость по отношению к боковой жесткости рамы и собственная поперечная жесткость по отношению к поперечной жесткости рамы. Для входной муфты, ведущей к указанной зубчатой трансмиссии, определена собственная боковая жесткость по отношению к боковой жесткости рамы, и собственная поперечная жесткость по отношению к поперечной жесткости рамы.
Согласно другому отличительному признаку примера изобретения, не носящего ограничительного характера, боковая жесткость гибкой опоры меньше боковой жесткости рамы.
Согласно другому отличительному признаку любого из предшествующих примеров осуществления изобретения, не носящих ограничительного характера, поперечная жесткость гибкой опоры меньше поперечной жесткости рамы.
Согласно другому отличительному признаку любого из предшествующих примеров осуществления изобретения, не носящих ограничительного характера, боковая жесткость гибкой опоры меньше боковой жесткости рамы, и поперечная жесткость гибкой опоры меньше поперечной жесткости рамы.
Согласно другому отличительному признаку любого из предшествующих примеров осуществления изобретения, не носящих ограничительного характера, зубчатая трансмиссия содержит зубчатое зацепление, для которого определена собственная боковая жесткость и собственная поперечная жесткость.
Согласно другому примеру изобретения, газотурбинный двигатель содержит вал вентилятора и раму, которая поддерживает указанный вал вентилятора. Зубчатая трансмиссия приводит во вращение вал вентилятора. Зубчатая трансмиссия содержит зубчатое зацепление, для которого определена собственная боковая жесткость и собственная поперечная жесткость. Гибкая опора по меньшей мере частично поддерживает зубчатую трансмиссию. Для гибкой опоры определена собственная боковая жесткость по отношению к боковой жесткости зубчатого зацепления, и собственная поперечная жесткость по отношению к поперечной жесткости зубчатого зацепления. Для входной муфты, ведущей к зубчатой трансмиссии, определена собственная боковая жесткость по отношению к боковой жесткости зубчатого зацепления, и собственная поперечная жесткость по отношению к поперечной жесткости зубчатого зацепления.
Согласно другому отличительному признаку любого из предшествующих примеров осуществления изобретения, не носящих ограничительного характера, боковая жесткость гибкой опоры меньше боковой жесткости зубчатого зацепления.
Согласно другому отличительному признаку любого из предшествующих примеров осуществления изобретения, не носящих ограничительного характера, поперечная жесткость гибкой опоры меньше поперечной жесткости зубчатого зацепления.
Согласно другому отличительному признаку любого из предшествующих примеров осуществления изобретения, не носящих ограничительного характера, боковая жесткость гибкой опоры меньше боковой жесткости зубчатого зацепления, и поперечная жесткость гибкой опоры меньше поперечной жесткости зубчатого зацепления.
Согласно другому отличительному признаку любого из предшествующих примеров осуществления изобретения, не носящих ограничительного характера, для указанной рамы определена собственная боковая жесткость и собственная поперечная жесткость.
Краткое описание чертежей
Различные отличительные признаки настоящего изобретения будут понятны специалистам в данной области из последующего подробного описания раскрытого варианта осуществления, не носящего ограничительного характера. Подробное описание сопровождается прилагаемыми чертежами, на которых:
фиг. 1 схематически изображает поперечное сечение газотурбинного двигателя,
фиг. 2 в увеличенном виде изображает поперечное сечение части газотурбинного двигателя, демонстрируя зубчатую систему привода вентилятора (ЗСПВ),
фиг. 3 схематически изображает устройство гибкой опоры для одного варианта осуществления ЗСПВ,
фиг. 4 схематически изображает устройство гибкой опоры для другого варианта осуществления ЗСПВ,
фиг. 5 схематически изображает устройство гибкой опоры для другого варианта осуществления ЗСПВ для системы с фиксированным водилом, и
фиг. 6 схематически изображает устройство гибкой опоры для другого варианта осуществления ЗСПВ для системы с фиксированным зубчатым венцом,
фиг. 7 схематически изображает устройство гибкой опоры для еще одного варианта осуществления ЗСПВ для системы с фиксированным водилом, и
фиг. 8 схематически изображает устройство гибкой опоры для еще одного варианта осуществления ЗСПВ для системы с фиксированным зубчатым венцом.
Осуществление изобретения
На фиг. 1 схематически изображен газотурбинный двигатель 20. В настоящем изобретении газотурбинный двигатель рассмотрен в виде двухкаскадного турбовентиляторного двигателя, который в общем состоит из вентиляторной секции 22, компрессорной секции 24, секции 26 камеры сгорания и турбинной секции 28. В ином варианте, среди других систем и функций двигатель мог бы включать в себя форсажную секцию (не показана). Вентиляторная секция 22 приводит воздух в движение вдоль внешнего контура двигателя, в то время как компрессорная секция 24 приводит воздух в движение вдоль внутреннего контура двигателя с целью его сжатия и подачи в секцию 26 камеры сгорания, а затем расширения в турбинной секции 28. Хотя в раскрытом варианте осуществления, который не носит ограничительного характера, изображен турбовентиляторный газотурбинный двигатель, следует понимать, что раскрытые в настоящем изобретении идеи не ограничены применением в турбовентиляторных двигателях, так как идеи изобретения могут быть применены и к другим типам турбинных двигателей, например, трехкаскадному газотурбинному двигателю и незакапотированному лопастному двигателю (всасывающему вентиляторному двигателю).
Двигатель 20, как правило, содержит низкооборотный каскад 30 и высокооборотный каскад 32, установленные для вращения вокруг центральной продольной оси А двигателя относительно неподвижной конструкции 36 двигателя на нескольких системах 38A-38C подшипников. Следует понимать, что в ином варианте или дополнительно могут быть предусмотрены различные системы 38 подшипников в различных местах.
Низкооборотный каскад 30 обычно содержит внутренний вал 40, который соединяет между собой вентилятор 42, компрессор 44 низкого давления и турбину 46 низкого давления. Внутренний вал 40 соединен с вентилятором 42 через зубчатую трансмиссию 48 с целью приведения вентилятора 42 во вращение с более низкой частотой чем частота вращения низкооборотного каскада 30. Высокооборотный каскад 32 содержит наружный вал 50, который соединяет между собой компрессор 52 высокого давления и турбину 54 высокого давления. Камера 56 сгорания расположена между компрессором 52 высокого давления и турбиной 54 высокого давления. Внутренний вал 40 и наружный вал 50 соосны и вращаются вокруг центральной продольной оси А двигателя, которая коллинеарна их продольным осям.
Воздушный поток внутреннего контура подвергается сжатию компрессором 44 низкого давления, затем компрессором 52 высокого давления, смешивается с топливом, которое сгорает в камере 56 сгорания, затем газовый поток расширяется в турбине 54 высокого давления и в турбине 46 низкого давления. В ответ на расширение проходящего через них газового потока турбины 46, 54 приводят во вращение соответственно низкооборотный каскад 30 и высокооборотный каскад 32.
Согласно фиг. 2, зубчатая трансмиссия 48 в целом содержит зубчатую систему 60 привода вентилятора (ЗСПВ), приводимую во вращение низкооборотным каскадом 30 (показан схематически) через входную муфту 62. Входная муфта 62 передает крутящий момент от низкооборотного каскада 30 к зубчатой трансмиссии 48, а также помогает изолировать вибрации и другие переходные состояния, возникающие между указанными системами. В раскрытом варианте осуществления, который не несет ограничительного характера, ЗСПВ 60 может содержать планетарную зубчатую систему, которая может представлять собой, например, систему с фиксированным зубчатым венцом и с фиксированным водилом.
Входная муфта 62 может включать в себя стыковочные шлицы 64, которые через шлицы 66 соединены с солнечной шестерней 68 ЗСПВ 60. Солнечная шестерня 68 сцеплена с несколькими сателлитами 70, из которых один показан на чертеже. Каждый сателлит посредством соответствующего подшипника 75 скольжения установлен на водиле 72 с возможностью вращения. Вращательное движение солнечной шестерни 68 заставляет каждый сателлит 70 вращаться вокруг оси Р.
Каждый сателлит 70 также сцеплен с вращающимся зубчатым венцом 74, который механически соединен с валом 76 вентилятора. Поскольку сателлиты 70 сцеплены как с вращающимся зубчатым венцом 74, так и с вращающейся солнечной шестерней 68, указанные сателлиты вращаются вокруг собственных осей, заставляя зубчатый венец 74 вращаться вокруг оси А двигателя. Вращение зубчатого венца 74 передается на вентилятор 42 (фиг. 1) через вал 76 вентилятора, чтобы тем самым вращать вентилятор 42 со скоростью, более низкой чем скорость низкооборотного каскада 30. Следует понимать, что описанная зубчатая трансмиссия 48 представляет собой лишь один пример осуществления, не носящий ограничительного характера, и что с успехом могут быть использованы различные другие зубчатые трансмиссии.
Согласно фиг. 3, гибкая опора 78 поддерживает водило 72 так, чтобы по меньшей мере частично поддерживать ЗСПВ 60А относительно неподвижной конструкции 36, такой как передняя часть конструкции внутреннего контура двигателя, что облегчает изоляцию вибраций и других переходных состояний, возникающих между указанными системами. Следует понимать, что, в качестве варианта или дополнительно, неподвижную конструкцию и гибкую опору 78 могут обеспечивать различные структуры корпуса газотурбинного двигателя. Следует понимать, что термин «боковой» (lateral) в том смысле, в каком он используется в настоящем описании, относится к перпендикулярному направлению относительно оси А вращения, а термин «поперечный» (transverse) относится к изгибному повороту относительно оси А вращения с целью демпфирования отклонений, которые в противном случае могли бы действовать на ЗСПВ 60. Неподвижная конструкция 36 может дополнительно содержать неподвижный конструктивный элемент 82, несущий на себе подшипники 1 и 1.5, который принято называть К-образной рамой или К-рамой, которая поддерживает системы 38A, 38B подшипников номер 1 и номер 1.5. В частности, для несущей подшипники К-рамы определена боковая жесткость (на фиг. 3 обозначенная Kframe) и поперечная жесткость (на фиг. 3 обозначенная KframeBEND) в качестве параметров, относительно которых задается жесткость других элементов в данном варианте осуществления, не носящем ограничительного характера.
В данном раскрытом варианте осуществления, не носящем ограничительного характера, боковая жесткость (KFS; KIC) как гибкой опоры 78, так и входной муфты 62 каждая составляет менее чем приблизительно 11% боковой жесткости (Kframe). То есть боковая жесткость ЗСПВ 60 в целом контролируется указанным соотношением боковых жесткостей. В ином варианте или дополнительно к указанному соотношению, поперечная жесткость как гибкой опоры 78, так и входной муфты 62 5 каждая составляет менее чем приблизительно 11% поперечной жесткости (KframeBEND). То есть поперечная жесткость ЗСПВ 60 в целом контролируется указанным соотношением поперечных жесткостей.
Согласно фиг. 4, другой вариант осуществления (не носящий ограничительного характера) ЗСПВ 60 В содержит гибкую опору 78′, которая 10 поддерживает зафиксированный от поворота зубчатый венец 74′. Вал 76′ вентилятора приводится во вращение посредством водила 72′ в данной, схематически представленной планетарной передаче, которая в остальном в общем соответствует архитектуре системы с фиксированным водилом фиг. 3.
На фиг. 5 схематически представлено соотношение боковых жесткостей в 15 самой ЗСПВ 60С (для системы с фиксированным водилом). Боковая жесткость (KIC) входной муфты 62, боковая жесткость (KFS) гибкой опоры 78, боковая жесткость (KRG) зубчатого венца 74, и боковая жесткость (KJB) подшипника 75 скольжения сателлита контролируются относительно боковой жесткости (KGM) зубчатого зацепления внутри ЗСПВ 60.
В данном раскрытом варианте осуществления, не носящем ограничительного характера, жесткость (KGM) может определяться зубчатым зацеплением между солнечной шестерней 68 и несколькими сателлитами 70. Боковая жесткость (KGM) внутри ЗСПВ 60 является параметром, относительно которого задается жесткость других элементов, при этом неподвижная конструкция 82′ жестко поддерживает вал 76 вентилятора. То есть вал 76 вентилятора поддерживается системами 38A, 38B подшипников, которые по существу жестко опираются на неподвижную конструкцию 82′. Боковая жесткость (KJB) может механически определяться, к примеру, жесткостью внутри подшипника 75 скольжения сателлита, а боковая жесткость (KRG) зубчатого венца 74 может механически определяться, например, геометрией секций 74L, 74R зубчатого венца (фиг. 2).
В данном раскрытом варианте осуществления, не носящем ограничительного характера, боковая жесткость (KRG) зубчатого венца 74 составляет менее чем приблизительно 12% боковой жесткости (KGM) зубчатого зацепления; боковая жесткость (KFS) гибкой опоры 78 составляет менее чем 8% боковой жесткости (KGM) 35 зубчатого зацепления; боковая жесткость (KJB) подшипника 75 скольжения сателлита меньше или равна боковой жесткости (KGM) зубчатого зацепления; боковая жесткость (KIC)входной муфты 62 составляет менее чем приблизительно 5% боковой жесткости (KGM) зубчатого зацепления.
На фиг. 6 схематически изображен еще один вариант реализации (не носящий ограничительного характера) соотношения боковых жесткостей внутри ЗСПВ 60D для системы с фиксированным зубчатым венцом, которая в остальном в общем соответствует системе с фиксированным водилом фиг. 5.
Следует понимать, что могут быть также использованы и комбинации вышеприведенных соотношений боковых жесткостей. Боковая жесткость каждого из компонентов конструкции может быть легко измерена в отличие от жесткости масляной пленки и жесткости шлицевых соединений, определение которых может быть сравнительно трудным.
За счет установки на гибкой опоре для адаптации к перекосу валов при расчетных нагрузках, расчетные нагрузки ЗСПВ уменьшаются более чем на 17%, что приводит к сокращению общего веса двигателя. Установка на гибкой опоре способствует сохранению центровки, и преследует цели увеличения срока эксплуатации системы и надежности. Боковая гибкость гибкой опоры и входная муфта дают возможность ЗСПВ по существу «плавать» вместе с валом вентилятора во время выполнения маневров. Все это позволяет: (а) передаче крутящего момента на вал вентилятора, входной муфте и гибкой опоре во время маневрирования оставаться неизменными; (b) боковые нагрузки на валу вентилятора, вызванные маневрированием (которые в противном случае могут потенциально вызывать перекос шестерен и повреждение зубьев) в основном компенсировать за счет К-рамы, несущей подшипники номер 1 и 1.5; и (с) как гибкой опоре, так и входной муфте передавать в ЗСПВ небольшие по величине боковые нагрузки. Конструкция шлицевых соединений, жесткость зубьев шестерен, подшипников скольжения и связей зубчатого венца рассчитана особым образом, чтобы минимизировать вариации напряжений в зубьях шестерен во время маневрирования. Другие соединения с ЗСПВ представляют собой упругие подвески (муфта турбины, гибкая подвеска корпуса). Номинальные параметры пружин таких подвесок определены на основе анализа и проверены при стендовых и летных испытаниях на предмет изоляции зубчатых колес от нагрузок со стороны двигателя, вызванных маневрированием.
Фиг. 7 аналогична фиг. 5, но изображает соотношения поперечных жесткостей внутри ЗСПВ 60С (для системы с фиксированным водилом). Поперечная жесткость ( K I C B E N D
Figure 00000001
) входной муфты 62, поперечная жесткость ( K F S B E N D
Figure 00000002
) гибкой опоры 78, поперечная жесткость ( K R G B E N D
Figure 00000003
) зубчатого венца 74 и поперечная жесткость K J B B E N D
Figure 00000004
) подшипника 75 скольжения сателлита контролируются по отношению к поперечной жесткости ( K G M B E N D
Figure 00000005
) зубчатого зацепления внутри ЗСПВ 60.
В данном раскрытом варианте осуществления, не носящем ограничительного характера, жесткость ( K G M B E N D
Figure 00000006
) может определятся зубчатым зацеплением между солнечной шестерней 68 и несколькими сателлитами 70. Поперечная жесткость ( K G M B E N D
Figure 00000006
) внутри ЗСПВ 60 является параметром, относительно которого задается жесткость других элементов, при этом неподвижная конструкция 82′ жестко поддерживает вал 76 вентилятора. То есть вал 76 вентилятора поддерживается системами 38A, 38B подшипников, которые по существу жестко опираются на неподвижную конструкцию 82′. Поперечная жесткость ( K J B B E N D
Figure 00000004
) может механически определяться, к примеру, жесткостью внутри подшипника 75 скольжения сателлита, а поперечная жесткость ( K R G B E N D
Figure 00000003
) зубчатого венца 74 может механически определяться, например, геометрией секций 74L, 74R зубчатого венца (фиг. 2).
В данном раскрытом варианте осуществления, не носящем ограничительного характера, поперечная жесткость ( K R G B E N D
Figure 00000003
) зубчатого венца 74 составляет менее чем приблизительно 12% поперечной жесткости ( K G M B E N D
Figure 00000006
) зубчатого зацепления; поперечная жесткость ( K F S B E N D
Figure 00000002
) гибкой опоры 78 составляет менее чем 8% боковой жесткости ( K G M B E N D
Figure 00000006
) зубчатого зацепления; поперечная жесткость ( K J B B E N D
Figure 00000004
) подшипника 75 скольжения сателлита меньше или равна поперечной жесткости ( K G M B E N D
Figure 00000006
) зубчатого зацепления; а поперечная жесткость ( K I C B E N D
Figure 00000001
) входной муфты 62 составляет менее чем приблизительно 5% поперечной жесткости ( K G M B E N D
Figure 00000006
) зубчатого зацепления.
Фиг. 8 аналогична фиг. 6, но изображает соотношение поперечных жесткостей внутри ЗСПВ 60D для системы с фиксированным зубчатым венцом.
Следует понимать, что термины, описывающие относительное расположение, такие как «передний», «задний», «верхний», «нижний», «выше», «ниже» и им подобные, использованы в отношении нормального рабочего положения транспортного средства, и их не следует считать ограничительными.
Следует понимать, что везде в чертежах одинаковые позиционные номера обозначают соответственные или подобные друг другу элементы. Также следует понимать, что хотя в рассматриваемом варианте осуществления раскрыто конкретное расположение компонентов, отсюда вытекает возможность и других полезных вариантов расположения.
Хотя показана, раскрыта и заявлена в формуле изобретения определенная последовательность действий, следует понимать, что, если не оговорено иное, то действия можно выполнять в любом порядке, по-отдельности или в комбинации - все равно настоящее изобретение даст полезный результат.
Вышеприведенное описание приведено в качестве примера, а не совокупности установленных ограничений. В нем раскрыты различные варианты осуществления, не носящие ограничительного характера, однако, для специалистов в данной области должна быть понятна возможность построения различных модификаций и вариантов выполнения изобретения, которые попадут в рамки объема охраны, определяемого прилагаемой формулой изобретения. Поэтому следует понимать, что в рамках идеи и объема изобретения, определяемого прилагаемой формулой, данное изобретение может быть осуществлено иначе, нежели это раскрыто в описании. По этой причине, для определения истинных границ объема и содержания изобретения следует обращаться к прилагаемой формуле изобретения.

Claims (8)

1. Газотурбинный двигатель, содержащий:
вал вентилятора;
раму, которая поддерживает вал вентилятора, причем для указанной рамы определена собственная боковая жесткость и собственная поперечная жесткость;
зубчатую трансмиссию, которая приводит во вращение вал вентилятора;
гибкую опору, которая по меньшей мере частично поддерживает зубчатую трансмиссию, причем для гибкой опоры определена боковая жесткость по отношению к боковой жесткости рамы и определена поперечная жесткость по отношению к поперечной жесткости рамы, при этом указанная боковая жесткость гибкой опоры меньше боковой жесткости рамы, а указанная поперечная жесткость гибкой опоры меньше поперечной жесткости рамы;
и входную муфту зубчатой трансмиссии, причем для входной муфты определена боковая жесткость по отношению к боковой жесткости рамы и определена поперечная жесткость по отношению к поперечной жесткости рамы, при этом боковая жесткость входной муфты составляет менее 11% боковой жесткости рамы.
2. Газотурбинный двигатель по п. 1, отличающийся тем, что указанная поперечная жесткость входной муфты составляет менее 11% поперечной жесткости рамы.
3. Газотурбинный двигатель по п. 1 или 2, отличающийся тем, что указанная боковая жесткость гибкой опоры составляет менее 11% боковой жесткости рамы.
4. Газотурбинный двигатель по п. 1 или 2, отличающийся тем, что указанная поперечная жесткость гибкой опоры составляет менее 11% поперечной жесткости рамы.
5. Газотурбинный двигатель по п. 1 или 2, отличающийся тем, что зубчатая трансмиссия содержит зубчатое зацепление, для которого определены боковая жесткость и поперечная жесткость, причем указанная боковая жесткость гибкой опоры составляет менее 8% боковой жесткости зубчатого зацепления, а указанная поперечная жесткость гибкой опоры составляет менее 8% поперечной жесткости зубчатого зацепления.
6. Газотурбинный двигатель, содержащий:
вал вентилятора;
раму, которая поддерживает вал вентилятора;
зубчатую трансмиссию, которая приводит во вращение вал вентилятора, причем зубчатая трансмиссия содержит зубчатое зацепление, для которого определены боковая жесткость и поперечная жесткость;
гибкую опору, которая по меньшей мере частично поддерживает зубчатую трансмиссию, причем для гибкой опоры определена боковая жесткость по отношению к боковой жесткости зубчатого зацепления и определена поперечная жесткость по отношению к поперечной жесткости зубчатого зацепления;
и входную муфту зубчатой трансмиссии, причем для входной муфты определена боковая жесткость по отношению к боковой жесткости зубчатого зацепления и определена поперечная жесткость по отношению к поперечной жесткости зубчатого зацепления, при этом указанная боковая жесткость гибкой опоры меньше боковой жесткости зубчатого зацепления, а указанная поперечная жесткость гибкой опоры меньше поперечной жесткости зубчатого зацепления, причем боковая жесткость входной муфты составляет менее 5% боковой жесткости зубчатого зацепления.
7. Газотурбинный двигатель по п. 6, отличающийся тем, что указанная поперечная жесткость входной муфты составляет менее 5% поперечной жесткости зубчатого зацепления.
8. Газотурбинный двигатель по п. 6 или 7, отличающийся тем, что для указанной рамы определена боковая жесткость и поперечная жесткость, причем указанная боковая жесткость гибкой опоры составляет менее 11% боковой жесткости рамы, а указанная поперечная жесткость гибкой опоры составляет менее 11% поперечной жесткости рамы.
RU2014112788/02A 2012-09-20 2013-09-17 Гибкая поддерживающая конструкция для зубчатой трансмиссии газотурбинного двигателя RU2593060C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/623,309 US9133729B1 (en) 2011-06-08 2012-09-20 Flexible support structure for a geared architecture gas turbine engine
US13/623,309 2012-09-20
PCT/US2013/060105 WO2014047040A1 (en) 2012-09-20 2013-09-17 Flexible support structure for a geared architecture gas turbine engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2016125475A Division RU2016125475A (ru) 2012-09-20 2013-09-17 Гибкая поддерживающая конструкция для зубчатой трансмиссии газотурбинного двигателя

Publications (2)

Publication Number Publication Date
RU2014112788A RU2014112788A (ru) 2015-10-10
RU2593060C2 true RU2593060C2 (ru) 2016-07-27

Family

ID=50341885

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2016125475A RU2016125475A (ru) 2012-09-20 2013-09-17 Гибкая поддерживающая конструкция для зубчатой трансмиссии газотурбинного двигателя
RU2014112788/02A RU2593060C2 (ru) 2012-09-20 2013-09-17 Гибкая поддерживающая конструкция для зубчатой трансмиссии газотурбинного двигателя

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2016125475A RU2016125475A (ru) 2012-09-20 2013-09-17 Гибкая поддерживающая конструкция для зубчатой трансмиссии газотурбинного двигателя

Country Status (8)

Country Link
US (1) US9133729B1 (ru)
EP (3) EP2737180B1 (ru)
JP (1) JP5680258B2 (ru)
CN (1) CN103917750B (ru)
BR (1) BR112014007878B1 (ru)
CA (1) CA2850042C (ru)
RU (2) RU2016125475A (ru)
WO (1) WO2014047040A1 (ru)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9631558B2 (en) 2012-01-03 2017-04-25 United Technologies Corporation Geared architecture for high speed and small volume fan drive turbine
US8297917B1 (en) 2011-06-08 2012-10-30 United Technologies Corporation Flexible support structure for a geared architecture gas turbine engine
US9239012B2 (en) 2011-06-08 2016-01-19 United Technologies Corporation Flexible support structure for a geared architecture gas turbine engine
US9133729B1 (en) 2011-06-08 2015-09-15 United Technologies Corporation Flexible support structure for a geared architecture gas turbine engine
US9523422B2 (en) 2011-06-08 2016-12-20 United Technologies Corporation Flexible support structure for a geared architecture gas turbine engine
US20130192191A1 (en) 2012-01-31 2013-08-01 Frederick M. Schwarz Gas turbine engine with high speed low pressure turbine section and bearing support features
US10287914B2 (en) 2012-01-31 2019-05-14 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section and bearing support features
US10240526B2 (en) 2012-01-31 2019-03-26 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section
US20150345426A1 (en) 2012-01-31 2015-12-03 United Technologies Corporation Geared turbofan gas turbine engine architecture
US20150192070A1 (en) 2012-01-31 2015-07-09 United Technologies Corporation Geared turbofan gas turbine engine architecture
US10125693B2 (en) 2012-04-02 2018-11-13 United Technologies Corporation Geared turbofan engine with power density range
US10138809B2 (en) 2012-04-02 2018-11-27 United Technologies Corporation Geared turbofan engine with a high ratio of thrust to turbine volume
US9074485B2 (en) 2012-04-25 2015-07-07 United Technologies Corporation Geared turbofan with three turbines all counter-rotating
US8572943B1 (en) 2012-05-31 2013-11-05 United Technologies Corporation Fundamental gear system architecture
EP2971698B1 (en) 2013-03-12 2021-04-21 Raytheon Technologies Corporation Flexible coupling for geared turbine engine
EP2949882B1 (en) * 2013-06-03 2017-08-23 United Technologies Corporation Geared architecture for high speed and small volume fan drive turbine
US9915164B2 (en) 2014-05-20 2018-03-13 United Technologies Corporation Geared turbofan with high speed generator
US10094277B2 (en) 2014-06-20 2018-10-09 United Technologies Corporation Gas turbine engine configured for modular assembly/disassembly and method for same
EP3048284A1 (en) * 2015-01-26 2016-07-27 United Technologies Corporation Flexible support structure for a geared architecture gas turbine engine
US10119465B2 (en) 2015-06-23 2018-11-06 United Technologies Corporation Geared turbofan with independent flexible ring gears and oil collectors
US10495004B2 (en) 2015-09-17 2019-12-03 General Electric Company Multi-directional gearbox deflection limiter for a gas turbine engine
FR3043714B1 (fr) * 2015-11-16 2017-12-22 Snecma Partie avant de turbomachine d'aeronef comprenant une soufflante unique entrainee par un reducteur, ainsi que des aubes directrices de sortie structurales agencees en partie en amont d'un bec de separation
FR3047519B1 (fr) * 2016-02-08 2018-01-19 Safran Aircraft Engines Systeme de mise en rotation d'une soufflante d'un turboreacteur
US10364752B2 (en) * 2016-05-17 2019-07-30 General Electric Company System and method for an integral drive engine with a forward main gearbox
US10352274B2 (en) 2016-08-18 2019-07-16 United Technologies Corporation Direct drive aft fan engine
US10663036B2 (en) * 2017-06-13 2020-05-26 General Electric Company Gas turbine engine with rotating reversing compound gearbox
US10724445B2 (en) 2018-01-03 2020-07-28 Raytheon Technologies Corporation Method of assembly for fan drive gear system with rotating carrier
US11162575B2 (en) 2019-11-20 2021-11-02 Raytheon Technologies Corporation Geared architecture for gas turbine engine
GB201917769D0 (en) * 2019-12-05 2020-01-22 Rolls Royce Plc Geared gas turbine engine
US20230184175A1 (en) * 2021-12-09 2023-06-15 General Electric Company Systems and methods for aligning a gearbox of a gas turbine engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2295046C2 (ru) * 2002-03-01 2007-03-10 Дженерал Электрик Компани Узел авиационного газотурбинного двигателя
RU2347912C2 (ru) * 2004-03-17 2009-02-27 Сименс Акциенгезелльшафт Машина для превращения кинетической энергии потока в механическую энергию и ротор для этой машины
RU2357120C2 (ru) * 2003-06-20 2009-05-27 Снекма Мотёр Опорное устройство подшипников вращающегося вала авиационного двигателя и авиационный двигатель, оборудованный таким устройством
RU2392466C2 (ru) * 2004-12-23 2010-06-20 Вольво Аэро Корпорейшн Жесткий на кручение кольцевой узел статора для авиационного двигателя
US20110130246A1 (en) * 2009-11-30 2011-06-02 United Technologies Corporation Mounting system for a planatary gear train in a gas turbine engine
US20110286836A1 (en) * 2010-05-24 2011-11-24 Davis Todd A Geared turbofan engine with integral gear and bearing supports

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL82840A0 (en) 1986-07-15 1987-12-20 Savyon Diagnostics Ltd Method and compositions for the determination of occult blood
US5433674A (en) * 1994-04-12 1995-07-18 United Technologies Corporation Coupling system for a planetary gear train
GB2322914B (en) 1997-03-05 2000-05-24 Rolls Royce Plc Ducted fan gas turbine engine
US6260351B1 (en) 1998-12-10 2001-07-17 United Technologies Corporation Controlled spring rate gearbox mount
US6223616B1 (en) 1999-12-22 2001-05-01 United Technologies Corporation Star gear system with lubrication circuit and lubrication method therefor
US6663530B2 (en) 2001-12-14 2003-12-16 Pratt & Whitney Canada Corp. Zero twist carrier
US6735954B2 (en) 2001-12-21 2004-05-18 Pratt & Whitney Canada Corp. Offset drive for gas turbine engine
US6895741B2 (en) 2003-06-23 2005-05-24 Pratt & Whitney Canada Corp. Differential geared turbine engine with torque modulation capability
US7104918B2 (en) 2003-07-29 2006-09-12 Pratt & Whitney Canada Corp. Compact epicyclic gear carrier
GB0406174D0 (en) 2004-03-19 2004-04-21 Rolls Royce Plc Turbine engine arrangement
US7144349B2 (en) 2004-04-06 2006-12-05 Pratt & Whitney Canada Corp. Gas turbine gearbox
WO2006059981A1 (en) 2004-12-01 2006-06-08 United Technologies Corporation Hydraulic seal for a gearbox of a tip turbine engine
US20080097813A1 (en) 2005-12-28 2008-04-24 Collins Robert J System and method for optimizing advertisement campaigns according to advertiser specified business objectives
US7631484B2 (en) * 2006-03-13 2009-12-15 Rollin George Giffin High pressure ratio aft fan
US20070214795A1 (en) * 2006-03-15 2007-09-20 Paul Cooker Continuous real time EGT margin control
US7591754B2 (en) 2006-03-22 2009-09-22 United Technologies Corporation Epicyclic gear train integral sun gear coupling design
US8585538B2 (en) 2006-07-05 2013-11-19 United Technologies Corporation Coupling system for a star gear train in a gas turbine engine
US7926260B2 (en) 2006-07-05 2011-04-19 United Technologies Corporation Flexible shaft for gas turbine engine
US7704178B2 (en) 2006-07-05 2010-04-27 United Technologies Corporation Oil baffle for gas turbine fan drive gear system
US7832193B2 (en) 2006-10-27 2010-11-16 General Electric Company Gas turbine engine assembly and methods of assembling same
US7841165B2 (en) 2006-10-31 2010-11-30 General Electric Company Gas turbine engine assembly and methods of assembling same
US7841163B2 (en) 2006-11-13 2010-11-30 Hamilton Sundstrand Corporation Turbofan emergency generator
US7950237B2 (en) * 2007-06-25 2011-05-31 United Technologies Corporation Managing spool bearing load using variable area flow nozzle
US7942635B1 (en) 2007-08-02 2011-05-17 Florida Turbine Technologies, Inc. Twin spool rotor assembly for a small gas turbine engine
FI122381B (fi) * 2008-01-03 2011-12-30 Moventas Oy Planeettavaihde
GB0807775D0 (en) 2008-04-29 2008-06-04 Romax Technology Ltd Methods for model-based diagnosis of gearbox
US8333678B2 (en) 2009-06-26 2012-12-18 United Technologies Corporation Epicyclic gear system with load share reduction
US8457126B2 (en) 2009-10-14 2013-06-04 Vss Monitoring, Inc. System, method and apparatus for distributing captured data packets including tunneling identifiers
US9133729B1 (en) 2011-06-08 2015-09-15 United Technologies Corporation Flexible support structure for a geared architecture gas turbine engine
US8172717B2 (en) 2011-06-08 2012-05-08 General Electric Company Compliant carrier wall for improved gearbox load sharing
US8297917B1 (en) 2011-06-08 2012-10-30 United Technologies Corporation Flexible support structure for a geared architecture gas turbine engine
CA2789465C (en) * 2011-10-27 2016-08-09 United Technologies Corporation Gas turbine engine front center body architecture
CA2789325C (en) 2011-10-27 2015-04-07 United Technologies Corporation Gas turbine engine front center body architecture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2295046C2 (ru) * 2002-03-01 2007-03-10 Дженерал Электрик Компани Узел авиационного газотурбинного двигателя
RU2357120C2 (ru) * 2003-06-20 2009-05-27 Снекма Мотёр Опорное устройство подшипников вращающегося вала авиационного двигателя и авиационный двигатель, оборудованный таким устройством
RU2347912C2 (ru) * 2004-03-17 2009-02-27 Сименс Акциенгезелльшафт Машина для превращения кинетической энергии потока в механическую энергию и ротор для этой машины
RU2392466C2 (ru) * 2004-12-23 2010-06-20 Вольво Аэро Корпорейшн Жесткий на кручение кольцевой узел статора для авиационного двигателя
US20110130246A1 (en) * 2009-11-30 2011-06-02 United Technologies Corporation Mounting system for a planatary gear train in a gas turbine engine
US20110286836A1 (en) * 2010-05-24 2011-11-24 Davis Todd A Geared turbofan engine with integral gear and bearing supports

Also Published As

Publication number Publication date
BR112014007878A2 (pt) 2017-04-25
RU2014112788A (ru) 2015-10-10
EP2737180A1 (en) 2014-06-04
RU2016125475A3 (ru) 2019-12-30
BR112014007878B1 (pt) 2021-12-28
EP3051078A1 (en) 2016-08-03
CA2850042C (en) 2015-11-24
JP2014530325A (ja) 2014-11-17
CN103917750A (zh) 2014-07-09
EP2737180B1 (en) 2016-04-13
RU2016125475A (ru) 2018-12-04
CA2850042A1 (en) 2014-03-27
EP3051078B1 (en) 2017-11-01
EP3296526A1 (en) 2018-03-21
JP5680258B2 (ja) 2015-03-04
US9133729B1 (en) 2015-09-15
EP2737180A4 (en) 2014-11-12
WO2014047040A1 (en) 2014-03-27
CN103917750B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
RU2593060C2 (ru) Гибкая поддерживающая конструкция для зубчатой трансмиссии газотурбинного двигателя
US11174936B2 (en) Flexible support structure for a geared architecture gas turbine engine
US8297917B1 (en) Flexible support structure for a geared architecture gas turbine engine
US11021997B2 (en) Flexible support structure for a geared architecture gas turbine engine
US8814503B2 (en) Flexible support structure for a geared architecture gas turbine engine
US8770922B2 (en) Flexible support structure for a geared architecture gas turbine engine
EP2899389A1 (en) Flexible support structure for a geared architecture gas turbine engine