RU2588616C1 - Динамический фильтр и способ очистки воздушных и газовых сред динамическим фильтром - Google Patents

Динамический фильтр и способ очистки воздушных и газовых сред динамическим фильтром Download PDF

Info

Publication number
RU2588616C1
RU2588616C1 RU2014152911/05A RU2014152911A RU2588616C1 RU 2588616 C1 RU2588616 C1 RU 2588616C1 RU 2014152911/05 A RU2014152911/05 A RU 2014152911/05A RU 2014152911 A RU2014152911 A RU 2014152911A RU 2588616 C1 RU2588616 C1 RU 2588616C1
Authority
RU
Russia
Prior art keywords
dynamic filter
frame support
gas
solid particles
receiver
Prior art date
Application number
RU2014152911/05A
Other languages
English (en)
Inventor
Владимир Амбарцумович Арустамов
Original Assignee
Владимир Амбарцумович Арустамов
Федотов Владимир Данилович
Федоров Сергей Федорович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Амбарцумович Арустамов, Федотов Владимир Данилович, Федоров Сергей Федорович filed Critical Владимир Амбарцумович Арустамов
Priority to RU2014152911/05A priority Critical patent/RU2588616C1/ru
Application granted granted Critical
Publication of RU2588616C1 publication Critical patent/RU2588616C1/ru

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Изобретение относится к способу и устройству, предназначенным для очистки различных воздушных и газовых нетоксичных сред. Динамический фильтр включает каркасную опору с емкостным кожухом, внутри нижней части каркасной опоры жестко закреплен ресивер на по меньшей мере одном ребре каркасной опоры, образующем кольцевое пространство входного газопылевого потока между ресивером и корпусом каркасной опоры. Ресивер содержит импульсный клапан, закрепленный под крышкой, которая содержит пустотелое седло с подшипником под пустотелый вал коллекторной трубы, которое содержит по меньшей мере одно отверстие. На коллекторной трубе последовательно насажены по меньшей мере один пустотелый дисковый картридж и отбойная сетка, установленная под верхней опорной крышкой, по оси отверстия которой установлен воздушный вихревой сальник, клапанный коллектор, содержащий по меньшей мере одну подпружиненную клапанную шайбу, и осевое отверстие, в которое входит шпоночным соединением с верхней осью коллекторной трубы, вал электрического двигателя. Способ включает следующие этапы: подача неочищенных частиц в газовоздушном потоке в динамический фильтр на по меньшей мере один дисковый картридж коллекторной трубы, вращающейся с линейной скоростью, превышающей линейную скорость твердых частиц по меньшей мере в два раза. Технический результат: увеличение эксплуатационного ресурса фильтра и степени очистки газового пылевого потока от частиц пыли. 2 н. и 7 з.п. ф-лы, 4 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к способу и устройству, предназначенному для очистки различных воздушных и газовых нетоксичных сред, содержащих твердые частицы и их взвеси средним диаметром - 0,3 мкм и более, объемный вес которых - "p" (кг/м3) в измельченном или порошкообразном состоянии составляет от: 180 кг/м3 до 3600 кг/м3, влажностью до 0,4%, и температурой рабочей среды, превышающей существующие пиковые значения для фильтровальных тканей t=250-280 гр. С, до 360 гр. С, для широкого использования в самых различных областях промышленности, а именно: цементной и строительной; цветной и черной металлургии; угольной; деревообрабатывающей; мукомольной; зерноперерабатывающей; текстильной; мусороперерабатывающей и других производствах, использующих оборудование для воздушных и газотранспортных систем разгрузки и транспортировки пылящих материалов, в том числе зольных выбросов множества ТЭЦ и других объектах.
Уровень техники
Известен фильтр для очистки воздуха (см. в Интернете http://ww.sovocrim.ru/products/?SECTION ID=6&ELEMENT ID=35 обнаружено 28.10.2014), содержащий фильтрующие рукава, ткань которых армирована стальной проволокой с пластмассовым покрытием, в верхней части фильтра расположена воздушная камера чистого воздуха, выполняющая функции ресивера, блок воздушных инжекторов и патрубков выхода чистого воздуха, причем верхнюю часть фильтра можно повернуть в соответствии с шагом отверстий фланца.
Недостатком указанного и других наиболее близких аналогов является недостаточная надежность конструкции фильтра, из-за вынужденного использования тканей фильтрующих рукавов, которые быстро насыщаются мельчайшими частичками фильтруемого компонента, увеличивая удельную сопротивляемость газо-пылевому потоку, снижая производительность очистки, тем более пылевидных вяжущих материалов, таких как цемент, гипс, известь, костная мука и другие, которые, даже при незначительной влажности, содержащейся в воздухе, выходят из строя в процессе работы фильтра, т.к. самая тонкая пыль коагулирует именно вблизи отверстий ткани, сужая и позже заполняя собой отверстия; кроме того, использование подобных тканей сказывается и на ограниченной возможности работы фильтров в средах с высокой температурой или повышенной влажностью.
Раскрытие изобретения
Технический результат заключается в увеличении эксплуатационного ресурса фильтра, степени очистки газового пылевого потока от частиц пыли, расширении области применения фильтра, как и рынка реализации конкурентной продукции, где в качестве основного элемента используется динамическое (ударно-импульсное) воздействие вращающегося жесткого картриджа, содержащего ячейки с отверстиями особой формы для прохождения молекул газа, и ударного отбрасывания твердых пылевых частиц, с линейной скоростью, превышающей линейную скорость твердых частиц, придав им ускорение в сторону стенки кожуха, где частицы, сталкиваясь со стенкой (и, например, со спиралевидными ребрами кожуха), отражаются вниз в сторону кольцевого отверстия, осаждаясь в бункере-накопителе, а молекулы газа, превышающие линейную скорость дырчатых ячеек картриджа, проходят сквозь отверстия ячеек и далее через коллекторную трубу и открытые центробежные клапана в назначенном направлении.
Заявленный результат достигается динамическим фильтром, включающим каркасную опору с емкостным кожухом, внутри нижней части каркасной опоры жестко закреплен ресивер на по меньшей мере одном ребре каркасной опоры, образующем кольцевое пространство входного газопылевого потока между ресивером и корпусом каркасной опоры, при этом ресивер содержит импульсный клапан, закрепленный под крышкой, которая содержит пустотелое седло с подшипником под пустотелый вал коллекторной трубы, которое содержит по меньшей мере одно отверстие, причем на коллекторной трубе последовательно насажен по меньшей мере один пустотелый дисковый картридж, выполненный из жесткого прочного материала с по меньшей мере одной сквозной ячейкой и с герметичным по меньшей мере одним кольцевым уплотнителем, и отбойная сетка, установленная под верхней опорной крышкой, по оси отверстия которой установлен воздушный вихревой сальник, выполненный с возможностью препятствования выхода частиц среды, минуя картриджи в атмосферу в период его вращения и прохождения очищенного от твердых частиц газа, через клапанный коллектор, содержащий по меньшей мере одну подпружиненную клапанную шайбу, и осевое отверстие, в которое входит шпоночным соединением с верхней осью коллекторной трубы, вал электрического двигателя, который выполнен с возможностью вращения вокруг своей оси коллекторной трубы с регулируемыми по частоте оборотами.
Согласно изобретению по динамическому фильтру клапанная шайба выполнена с возможностью, при вращении двигателем клапанного коллектора, отгибать свою пружину под действием центробежных сил, открывая свое отверстие.
Согласно изобретению по динамическому фильтру коллекторная труба содержит заземленный съемник статического электричества.
Согласно изобретению по динамическому фильтру коллекторная труба содержит чистик.
Согласно изобретению по динамическому фильтру нижняя ось коллекторной трубы выполнена пустотелой и имеет подвижное сальниковое соединение с импульсным клапаном ресивера.
Согласно изобретению по динамическому фильтру каркасная опора содержит внутри своего корпуса по меньшей мере одно спиралевидное ребро, идущее по внутренней поверхности корпуса от верхней опорной крышки к ребру каркасной опоры и выполненное с возможностью гашения скорости и направленного отскока твердых частиц вниз к кольцевому отверстию каркасной опоры.
Согласно изобретению по динамическому фильтру суммарная площадь всех отверстий, расположенных по периметру коллекторной трубы между кольцевыми уплотнителями, равна суммарной площади отверстий ячеек картриджа.
Согласно изобретению по динамическому фильтру ячейка выполнена из стали или сплава или композитов.
Заявленный результат также достигается способом очистки воздушных и газовых сред динамическим фильтром, включающим следующие этапы: подача неочищенных частиц в газо-воздушном потоке в динамический фильтр на по меньшей мере один дисковый картридж коллекторной трубы, вращающейся с линейной скоростью, превышающей линейную скорость твердых частиц по меньшей мере в два раза, которые, обладая большей инерционностью, приближаются к поверхности картриджа, траекторией меньшей кривизны, чем кривизна траектории молекул воздуха, что приводят к их отделению от твердых частиц со скоростью, превышающей, по меньшей мере в два раза, линейную скорость отверстий ячеек, через которые свободно пролетают в трубчатый коллектор молекулы воздуха, а твердые частицы сталкиваются с жесткой поверхностью ячеек картриджа, таким образом происходит перераспределение кинетической энергии и твердые частицы приобретают ускорение, достаточной силы, с векторами направленности к стенке цилиндрической поверхности емкости кожуха.
Краткое описание чертежей
Сущность изобретения поясняется: фиг. 1, на которой изображен общий вид динамического фильтра предпочтительного варианта осуществления заявленного изобретения; фиг. 2, на которой изображен динамический фильтр, герметично примыкающий основанием опорного каркаса к верхней части бункера накопителя, который, содержит технологический циклон, приема и гашения основного потока газопылевой пульпы до 95% от объемного веса транспортируемого материала; на фиг. 3 изображен центробежный клапан для выпуска газа; на фиг. 4 изображен центробежный клапан для выпуска газа в разрезе.
Осуществление изобретения
На фиг. 1 изображен динамический фильтр, включающий каркасную опору 1 с емкостным кожухом 2, внутри нижней части каркасной опоры 1 жестко закреплен ресивер 3 на по меньшей мере одном ребре каркасной опоры 1, образующем кольцевое пространство входного газопылевого потока между ресивером и корпусом каркасной опоры 1, при этом ресивер 3 содержит импульсный клапан 4, закрепленный под крышкой 5, которая содержит пустотелое седло 6 с подшипником под пустотелый вал 7 коллекторной трубы 8, которое содержит по меньшей мере одно отверстие 22, причем на коллекторной трубе последовательно насажен по меньшей мере один пустотелый дисковый картридж 9, выполненный из жесткого прочного материала с по меньшей мере одной сквозной ячейкой и с герметичным по меньшей мере одним кольцевым уплотнителем 10, и отбойная сетка 11, установленная под верхней опорной крышкой 12, по оси отверстия которой, установлен воздушный вихревой сальник 13, выполненный с возможностью препятствования выхода частиц среды минуя картриджи в атмосферу в период его вращения и прохождения очищенного от твердых частиц газа, через клапанный коллектор 14, содержащий по меньшей мере одну подпружиненную клапанную шайбу 16, и осевое отверстие, в которое входит шпоночным соединением с верхней осью коллекторный трубы, вал электрического двигателя 17, который выполнен с возможностью вращения вокруг своей оси коллекторной трубы с регулируемыми по частоте оборотами.
В частном варианте осуществления заявленного динамического фильтра коллекторная труба может содержать заземленный съемник статического электричества 19, коллекторная труба может содержать чистик 20.
Каркасная опора может содержать внутри своего корпуса по меньшей мере одно спиралевидное ребро 21, идущее по внутренней поверхности корпуса от верхней опорной крышки к ребру каркасной опоры и выполненное с возможностью гашения скорости и направленного отскока твердых частиц вниз к кольцевому отверстию каркасной опоры.
Дисковый картридж 9 может быть выполнен из жесткого прочного материала с по меньшей мере одной сквозной ячейкой, которая может быть выполнена из стали, или сплава, или композитов. Выполнение ячейки возможно из стали марок: AISI 08Х18Н10, …08Х18Н10Т. Выполнение ячейки возможно из металлокерамического сплава, содержащего тонкодисперсные порошки: оксиды, карбиды, нитриды в соответствующих пределах, сформированные с тонко-листовым металлом или металлопорошком в широком диапазоне соотношений от 15% до 85%, с использованием технологий прессования, и спекания, и напыления. Выполнение ячейки возможно из композита - отмеченные выше керамические материалы в составе субмикронного тонкодисперсного порошка высокой жесткости с вяжущими полиэфирными смолами малой усадки.
Кроме того, в частном варианте дисковый картридж по периметру выполнен с заостренным углом 29 (см. фиг. 1) от 15 до 85 градусов. Каждая ячейка картриджа в сечении представляют усеченный конус высотой от 2,0 до 4,0 мм, с диаметром отверстий в усеченной части при вершине от 1,0 мкм до 1,0 мм, и углом при вершине, по меньшей мере, 90 градусов, с осью, проходящей через вершину перпендикулярно к плоскости коллектора картриджа.
Также в частном варианте вход воздуховода 28 (см. фиг. 1) в полость пустотелого кольца выполнен с двух сторон перпендикулярно ее диаметру параллельно плоскости опорной крышки в направлении, противоположном вращению коллекторной трубы. Радиальный зазор между коллекторной трубой и юбкой пустотелого кольца составляет от 0,2 мм до 1,0 мм. Площадь отверстий клапанного коллектора равна площади отверстий коллекторной трубы.
Следует отметить, что линейная скорость перемещения отверстия картриджа напрямую связана со скоростью перемещения твердых частиц в воздушном или прочих газовых потоках. При этом скорости потока с твердыми частицами могут быть различными, от менее 1 м/сек, до более 100 м/сек, и при любых скоростях газового потока линейная скорость отверстий картриджа будет превышать не менее чем вдвое (возможно в пять, десять и более раз) скорость твердых частиц, линейная скорость которых, в свою очередь, всегда будет ниже скорости потока самого газа. Для каждого частного случая потребуются свои индивидуальные расчеты с использованием формул из источников - Соболев А.А и др.
На фиг. 2 изображен динамический фильтр 23, герметично примыкающий основанием опорного каркаса к верхней части бункера накопителя, который содержит технологический циклон 25 приема и гашения основного потока газопылевой пульпы 24 до 95% от объемного веса транспортируемого материала.
На фиг. 3 изображена клапанная шайба 16, которая выполнена с возможностью, при вращении двигателем клапанного коллектора, отгибать свою пружину 15 под действием центробежных сил, открывая свое отверстие.
В процессе динамической фильтрации, по меньшей мере, участвуют два тела, в том числе частицы тел в твердом состоянии, имеющие удельный вес, превышающий многократно удельный вес воздуха или иного нетоксичного инертного газа.
Ускорение частиц происходит под воздействием аэродинамических сил, проявляющихся при наличии разности скоростей. Твердые частицы, подхваченные струями газового потока, приобретают кинетическую энергию - «Еч»=Мч×Vч/2; где Мч - сумма масс пылевых частичек, а Vч - скорость каждой из них. Эту энергию, придают им молекулы струй газового потока в количестве:- «Ег»=«Еч»=Мг×Vr/2; где Мг - сумма масс молекул газа, предающих энергию частицам, a Vr - скорость газового потока, которая значительно превышает линейную скорость твердых частиц в составе потока.
При вхождении пылевого потока во внутреннюю полость кожуха фильтра линейная скорость вращающегося дискового картриджа в любой точке ее поверхности, содержащей ячейки с отверстиями для выхода избыточного давления газа, превышает линейную скорость частиц, по меньшей мере вдвое, но меньше линейной скорости газа, по меньшей мере в двое. Учитывая многократную разницу удельного веса твердых частиц и удельного веса газа, пропорционально этим значениям будут показатели инерционности, а следовательно, различна кривизна их траектории в направлении входа в отверстия ячеек картриджа, и легкие молекулы газа, обладающие большей скоростью, но меньшей инерцией, и большей кривизной траектории их, разделяются, легкие молекулы газа влетают в отверстия ячеек картриджа и через отверстия коллекторной трубы и ее полость через отжатые центробежными силами клапанные шайбы вылетают в нужном направлении, а твердые частицы, имея большую массу и, как следствие, большую инерцию, продолжая полет по траектории меньшей кривизны и с меньшей линейной скоростью, с некоторым микроразрывом по времени сталкиваются с ячейками картриджа, испытывая динамическое, жесткое воздействие - удар достаточной силы, где происходит перераспределение кинетической энергии и частицы приобретают ускорение в направлении внутренней стенки кожуха, погасив о стенку скорость и направленно по спиралевидному ребру кожуха вниз оседают в бункере-накопителе.
Таким образом, простота и меньшая себестоимость изготовления динамических фильтров в сравнении с существующими фильтрами, использующими дорогие, нежаростойкие фильтрующие ткани, площадью превышающими площадь картриджей в 4-5 раз, при прочих равных удельных показателях фильтрации отпадает, а дисковые картриджи могут быть выполнены, например, из различных прочных металлических сплавов, при этом скорость вращения фильтрующих дисковых картриджей (и размер и формы отверстий в них) позволяет регулировать степень очистки воздуха. Заявленная конструкция динамического фильтра позволяет использовать фильтрующие дисковые картриджи из различных металлических сплавов или композитов, что положительно скажется на длительности эксплуатационного ресурса фильтра и расширении области применения фильтра в значительно меньших размерах.
Сущность изобретения заключается в том, что твердые частицы, имеющие объемный вес, многократно превышающий объемный вес воздуха или газа от 100 до 3000 раз, и транспортируемые под различными давлениями потоками газа, насыщаясь ими, смешиваются, образуя двух или более - компонентную газопылевую смесь или транспортную пульпу в соотношении 1/15 до более 1/25, следуя по транспортному пульпопроводу в технологический циклон, которые, изначально, после циклона, основной массой оседают в емкостях-накопителях до 95% и более. В зависимости от вида и состава материала и системы транспорта, количество частиц, движущихся под воздействием избыточного давления, после циклона может составлять до 300 мг/м3, которые в соответствии с требованиями Гост Р51215 и Европейского Стандарта: АСИНКОМ EN1822, должны быть очищены до допустимых норм предельно допустимых сбросов (ПДС), в соответствии с принятой классификацией.
Используя способ непрерывного динамического отделения различных твердых частиц из состава воздушной или газовой среды путем упругого соударения их о жесткую поверхность, вращающихся с расчетной скоростью тарельчатых дисков, (с ячейками конической формы с отверстиями при вершине, для выхода избыточного давления газа), и, отражаясь от перераспределенной кинетической энергии при ударе, приобретают линейное ускорение, изменяя направление полета в сторону стенки кожуха, погасив скорость при ударе о его стенку и спиральное ребро, направленно ссыпаются в накопительный бункер.
На верхней крышке кожуха, на выходе из него коллекторной трубы последнюю, обрамляет пустотелое кольцо, внутренним диаметром большим, чем наружный диаметр коллекторной трубы, при этом ее юбочная щель 27 (см. фиг. 1) направляет поток сжатого воздуха (из ресивера) внутрь кожуха фильтра под оптимальным углом от 1 до 15 градусов к периметру трубы, создавая эффект инжекции, то есть кольцевое разряжение, на выходе коллекторной трубы из кожуха. Площадь юбочной щели 27 (см. фиг. 1) по меньшей мере в два раза больше площади сечения воздуховода 28 (см. фиг. 1) идущего от ресивера.
Последовательность отделения частичек твердых включений из воздушно-газопылевых сред следующая: в зависимости от дальности транспортировки, и объемного веса материала твердых частиц (к примеру - цемент) последний, транспортируется (большей частью) инжекционными или камерными транспортными устройствами со скоростью от 18,0 м/сек до 35,0 м/сек, на входе в технологический циклон, потребляя при транспортировке на 1000 кг веса, сжатый воздух в объеме более 30,0 м3/мин и давлением более 0,5 мПа, погасив скорость пульпы на выходе из конуса циклона в приемный бункер, до 1-4 м/сек, частицы пыли до 95-97%, осаждается, а избыточный воздух с неосевшими частицами устремляется восходящим потоком за счет разности давлений в кольцевое отверстие динамического фильтра, соединенного фланцами бункера накопителя и опорного каркаса, где происходит динамическое отделение твердых пылевых частиц и воздуха. Разовая продувка картриджей от осевшей витающей пыли в промежутках нерабочего времени производится один раз перед включением динамического фильтра в работу путем включения (открытия) импульсного клапана ресивера, находящегося под давлением от 0,5 до 0,8 мПа, длительностью до 2-х сек, при закрытых клапанными шайбами выходных отверстий клапанного коллектора, наполняя расширяющимся сжатым воздухом внутреннее пространство коллектора трубы и через отверстия, расположенные в промежутке между уплотнителями картриджа, заполняет его пространство, сдувая осевшие взвеси струями воздуха, выходящими из отверстия ячеек, при этом электрический двигатель включается позже с разницей в одну секунду. Причем импульсный клапан открывается кратковременно только в момент включения двигателя в работу на 1-2 сек.

Claims (9)

1. Динамический фильтр, включающий каркасную опору с емкостным кожухом, внутри нижней части каркасной опоры жестко закреплен ресивер на по меньшей мере одном ребре каркасной опоры, образующем кольцевое пространство входного газопылевого потока между ресивером и корпусом каркасной опоры, при этом ресивер содержит импульсный клапан, закрепленный под крышкой, которая содержит пустотелое седло с подшипником под пустотелый вал коллекторной трубы, которое содержит по меньшей мере одно отверстие, причем на коллекторной трубе последовательно насажены по меньшей мере один пустотелый дисковый картридж, выполненный из жесткого прочного материала с по меньшей мере одной сквозной ячейкой и с герметичным по меньшей мере одним кольцевым уплотнителем, и отбойная сетка, установленная под верхней опорной крышкой, по оси отверстия которой установлен воздушный вихревой сальник, выполненный с возможностью препятствования выхода частиц среды, минуя картриджи, в атмосферу в период его вращения и прохождения очищенного от твердых частиц газа через клапанный коллектор, содержащий по меньшей мере одну подпружиненную клапанную шайбу, и осевое отверстие, в которое входит шпоночным соединением с верхней осью коллекторной трубы вал электрического двигателя, который выполнен с возможностью вращения вокруг своей оси коллекторной трубы с регулируемыми по частоте оборотами,
2. Динамический фильтр по п. 1, отличающийся тем, что клапанная шайба выполнена с возможностью, при вращении двигателем клапанного коллектора, отгибать свою пружину под действием центробежных сил, открывая свое отверстие,
3. Динамический фильтр по п. 1, отличающийся тем, что коллекторная труба содержит заземленный съемник статического электричества.
4. Динамический фильтр по п. 1, отличающийся тем, что коллекторная труба содержит чистик.
5. Динамический фильтр по п. 1, отличающийся тем, что нижняя ось коллекторной трубы выполнена пустотелой и имеет подвижное сальниковое соединение с импульсным клапаном ресивера.
6. Динамический фильтр по п. 1, отличающийся тем, что каркасная опора содержит внутри своего корпуса по меньшей мере одно спиралевидное ребро, идущее по внутренней поверхности корпуса от верхней опорной крышки к ребру каркасной опоры и выполненное с возможностью гашения скорости и направленного отскока твердых частиц вниз к кольцевому отверстию каркасной опоры.
7. Динамический фильтр по п. 1, отличающийся тем, что суммарная площадь всех отверстий, расположенных по периметру коллекторной трубы между кольцевыми уплотнителями, равна суммарной площади отверстий ячеек картриджа,
8. Динамический фильтр по п. 1, отличающийся тем, что ячейка выполнена из стали, или сплава, или композитов.
9. Способ очистки воздушных и газовых сред динамическим фильтром, характеризующийся тем, что используют фильтр по п. 1, при этом подаются неочищенные частицы в газовоздушном потоке в динамический фильтр на по меньшей мере один дисковый картридж коллекторной трубы, вращающейся с линейной скоростью, превышающей линейную скорость твердых частиц по меньшей мере в два раза, которые, обладая большей инерционностью, приближаются к поверхности картриджа, траекторией меньшей кривизны, чем кривизна траектории молекул воздуха, что приводит к их отделению от твердых частиц со скоростью, превышающей, по меньшей мере в два раза, линейную скорость отверстий ячеек, через которые свободно пролетают в трубчатый коллектор молекулы воздуха, а твердые частицы сталкиваются с жесткой поверхностью ячеек картриджа, таким образом происходит перераспределение кинетической энергии и твердые частицы приобретают ускорение достаточной силы с векторами направленности к стенке цилиндрической поверхности емкости кожуха.
RU2014152911/05A 2014-12-25 2014-12-25 Динамический фильтр и способ очистки воздушных и газовых сред динамическим фильтром RU2588616C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014152911/05A RU2588616C1 (ru) 2014-12-25 2014-12-25 Динамический фильтр и способ очистки воздушных и газовых сред динамическим фильтром

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014152911/05A RU2588616C1 (ru) 2014-12-25 2014-12-25 Динамический фильтр и способ очистки воздушных и газовых сред динамическим фильтром

Publications (1)

Publication Number Publication Date
RU2588616C1 true RU2588616C1 (ru) 2016-07-10

Family

ID=56370603

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014152911/05A RU2588616C1 (ru) 2014-12-25 2014-12-25 Динамический фильтр и способ очистки воздушных и газовых сред динамическим фильтром

Country Status (1)

Country Link
RU (1) RU2588616C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110090500A (zh) * 2019-05-17 2019-08-06 嘉兴济铭商贸有限公司 一种自动启动的排风扇
CN111375249A (zh) * 2020-04-22 2020-07-07 陈宁 一种应用于贝壳类加工的空气净化装置
CN114432556A (zh) * 2022-01-26 2022-05-06 南京医科大学 一种临床麻醉气体净化设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045409A (en) * 1959-08-31 1962-07-24 Kronstad Haavard Air filter for dust collector
US3107987A (en) * 1962-09-27 1963-10-22 Gen Motors Corp Self-purging air filter and speed reducing drive therefor
SU874129A1 (ru) * 1978-08-16 1981-10-23 Ордена Трудового Красного Знамени Экспериментальный Научно-Исследовательский Институт Металлорежущих Станков Устройство дл отсоса и очистки воздуха
SU952288A1 (ru) * 1981-01-16 1982-08-23 За витель Динамический фильтр

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045409A (en) * 1959-08-31 1962-07-24 Kronstad Haavard Air filter for dust collector
US3107987A (en) * 1962-09-27 1963-10-22 Gen Motors Corp Self-purging air filter and speed reducing drive therefor
SU874129A1 (ru) * 1978-08-16 1981-10-23 Ордена Трудового Красного Знамени Экспериментальный Научно-Исследовательский Институт Металлорежущих Станков Устройство дл отсоса и очистки воздуха
SU952288A1 (ru) * 1981-01-16 1982-08-23 За витель Динамический фильтр

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110090500A (zh) * 2019-05-17 2019-08-06 嘉兴济铭商贸有限公司 一种自动启动的排风扇
CN111375249A (zh) * 2020-04-22 2020-07-07 陈宁 一种应用于贝壳类加工的空气净化装置
CN111375249B (zh) * 2020-04-22 2021-11-30 邳州市景鹏创业投资有限公司 一种应用于贝壳类加工的空气净化装置
CN114432556A (zh) * 2022-01-26 2022-05-06 南京医科大学 一种临床麻醉气体净化设备
CN114432556B (zh) * 2022-01-26 2023-03-14 南京医科大学 一种临床麻醉气体净化设备

Similar Documents

Publication Publication Date Title
US3372532A (en) Dry separator
CA1037882A (en) Method of removing finely divided solids from gas
US7594941B2 (en) Rotary gas cyclone separator
US3312342A (en) Process and apparatus for impacting and elutriating solid particles
US3594991A (en) Apparatus for separating suspended solid particles from a carrier gas
RU2588616C1 (ru) Динамический фильтр и способ очистки воздушных и газовых сред динамическим фильтром
WO2009099197A1 (ja) 気流式ふるい分け方法および装置
US20190009281A1 (en) Separation device for separating particles from a fluid flow
EP3703863A1 (en) Vortex mill and method of vortex milling for obtaining powder with customizable particle size distribution
FI84032C (fi) Foerfarande och anlaeggning foer klassificering av synnerligen finfoerdelat material.
US5549721A (en) Cell for gas cleaning
US7387653B2 (en) Apparatus and method for removing particulates from a fluid stream
US3643800A (en) Apparatus for separating solids in a whirling gaseous stream
RU2671314C1 (ru) Двухступенчатая система пылеудаления
JPH07289998A (ja) 微粉研磨材に混在する異物の分離方法並びに微粉研磨材に混在する異物及び粉塵の分離方法及びそれらの分離装置
RU66235U1 (ru) Классификатор-разделитель
RU2200064C1 (ru) Устройство для отделения сыпучего материала от транспортирующего газа
RU2484881C2 (ru) Способ очистки газообразных веществ, газа и воздуха от механических примесей, конденсата и воды и устройство для его реализации
EP4037845B1 (en) Device for sorting powder particles
US6848582B2 (en) Longitudinal micrometric separator for classifying solid particulate materials
RU207306U1 (ru) Пылеуловитель-классификатор с коническим корпусом
JP2019084478A (ja) 気流分離装置
RU40606U1 (ru) Центробежный воздушно-проходной сепаратор
RU21876U1 (ru) Установка и струйно-роторная помольная камера для измельчения
SU1650263A1 (ru) Многоступенчатый циклонный сепаратор

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161226