RU2587203C1 - Способ термохимической обработки призабойной зоны пласта - Google Patents

Способ термохимической обработки призабойной зоны пласта Download PDF

Info

Publication number
RU2587203C1
RU2587203C1 RU2015112771/03A RU2015112771A RU2587203C1 RU 2587203 C1 RU2587203 C1 RU 2587203C1 RU 2015112771/03 A RU2015112771/03 A RU 2015112771/03A RU 2015112771 A RU2015112771 A RU 2015112771A RU 2587203 C1 RU2587203 C1 RU 2587203C1
Authority
RU
Russia
Prior art keywords
solution
reaction
sodium nitrite
citric acid
solutions
Prior art date
Application number
RU2015112771/03A
Other languages
English (en)
Inventor
Антон Александрович Мамыкин
Ильяс Захибович Муллагалин
Ринат Ямиганнурович Харисов
Original Assignee
ООО "Уфимский Научно-Технический Центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ООО "Уфимский Научно-Технический Центр" filed Critical ООО "Уфимский Научно-Технический Центр"
Priority to RU2015112771/03A priority Critical patent/RU2587203C1/ru
Application granted granted Critical
Publication of RU2587203C1 publication Critical patent/RU2587203C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/528Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning inorganic depositions, e.g. sulfates or carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/592Compositions used in combination with generated heat, e.g. by steam injection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к нефтедобывающей промышленности. Технический результат - эффективное удаление асфальтосмолистых и парафиновых отложений за счет выделения большого количества тепла без образования в ходе химических превращений труднорастворимых соединений и продуктов реакции, вызывающих коррозию нефтепромыслового оборудования, используемые компоненты вступают между собой в химическую реакцию при стандартных условиях (Т=20°C, Р=101 кПа). Способ термохимической обработки призабойной зоны пласта включает закачку на забой скважины двух водных растворов. Первый раствор содержит, мас.%: нитрат аммония NH4NO3 48-54; кислота лимонная C6H8O7 2,9-3,4; карбонат натрия Na2CO3 2,3-3,0; вода пресная - остальное. Второй раствор содержит, мас.%: нитрит натрия NaNO2 40-45; вода пресная - остальное. Закачку указанных растворов осуществляют параллельно или последовательно в объемах, обеспечивающих стехиометрическое взаимодействие нитрита натрия с нитратом аммония и лимонной кислотой. 4 табл., 1 ил.

Description

Изобретение относится к нефтедобывающей промышленности, в частности к способам термохимической обработки добывающих и нагнетательных скважин. Техническим результатом является прогрев призабойной зоны пласта, удаление асфальтосмолистых и парафиновых отложений (АСПО) со стенок скважины и внутрискважинного оборудования, улучшение фильтрационных характеристик призабойной зоны за счет выделения большого количества тепла в ходе химической реакции. Химическая реакция протекает без образования труднорастворимых соединений и продуктов реакции, вызывающих коррозию нефтепромыслового оборудования, а используемые компоненты вступают в реакцию при стандартных условиях (Т=20°C, Р=101 кПа).
Известен способ термохимической обработки ПЗП, в основе которого лежит химическая реакция, протекающая между нитритом натрия NaNO2 и хлоридом аммония NH4Cl (1) (патент US №5183581 А, опубл. 02.02.1993). Реагенты закачивают в скважину в виде двух эмульсий обратного типа, дисперсионная среда которых представлена органическим растворителем. Дисперсная фаза первой эмульсии состоит из насыщенного раствора хлорида аммония NH4Cl (концентрация 2,0-6,0 М) с добавлением 96% уксусной кислоты СН3СООН. Дисперсная фаза второй эмульсии состоит из насыщенного раствора нитрита натрия NaNO2 (концентрация 5,0-9,0 М).
Figure 00000001
Способ термохимической обработки ПЗП заключается в одновременной закачке обеих эмульсий в скважину.
Недостатком данного способа является то, что при использовании концентрированной уксусной кислоты СН3СООН окислительно-восстановительная реакция между нитритом натрия и хлоридом аммония идет с выделением диоксида азота NO2 (бурого газа), под действием которого происходит коррозия внутрискважинного оборудования и эксплуатационной колонны. Выделение диоксида азота в скважине может привести к отравлению рабочего персонала при реализации технологии освоения скважин.
Известен термохимический состав (патент РФ №2165011, кл. Е21В 43/24, Е21В 43/27, опубл. 10.04.2001), содержащий нитрит натрия NaNO2, карбамид (NH2)2CO и соляную кислоту HCl. Экзотермическая реакции между нитритом натрия, карбамидом и соляной кислотой протекает по уравнению (2).
Figure 00000002
Способ термохимической обработки ПЗП заключается в закачке насыщенных водных растворов карбамида CO(NH2)2, нитрита натрия NaNO2 и концентрированной соляной кислоты HCl. Реагенты закачивают в скважину в виде двух концентрированных, 65-70% кинетически и агрегативно устойчивых эмульсий обратного типа, где дисперсная фаза одной эмульсии состоит из смеси насыщенных водных растворов карбамида и нитрита натрия плотностью 1250 кг/м3, а другая в качестве дисперсной фазы содержит концентрированную 31% соляную кислоту плотностью 1190 кг/м3.
Недостатком данного способа является то, что концентрированная соляная кислота вызывает коррозию оборудования, а при взаимодействии соляной кислоты с нитритом натрия будет выделяться диоксид азота NO2, который также вызывает коррозию металлов. Кроме того, температурный эффект реакции в сильной степени зависит от концентрации кислоты. При использовании разбавленной соляной кислоты HCl (С≤20%), температурный эффект заметно снижается.
Известен способ обработки призабойной зоны добывающих скважин (патент РФ №2373385, кл. Е21В 43/25, опубл. 20.11.2009 г.), по компонентному составу газогенерирующей системы аналогичный патенту РФ №2165011. Отличие заключается в том, что в скважину закачиваются концентрированные водные растворы нитрита натрия NaNO2, карбамида (NH2)2CO и сульфаминовой кислоты NH2SO3H (3) совместно с ПАВ и декольматирующими реагентами (ПАВ, кислота или органический растворитель).
Figure 00000003
Обработку скважины осуществляют путем закачки и последующей продавки в пласт водных растворов указанных реагентов.
Преимуществом этого способа является большой тепловой эффект реакции - 1474 кДж/моль. Недостатком является то, что взаимодействие концентрированной сульфаминовой кислоты NH2SO3H с нитритом натрия NaNO2 сопровождается выделением диоксида азота NO2.
Известен термохимический состав (авторское свидетельство СССР №1739014 А1, кл. Е21В 43/24, Е21В 43/27, опубл. Бюл. N21, 07.06.1992 г.), основанный на протекании экзотермической реакции непосредственно в призабойной зоне скважины между комплексным соединением азотной кислоты [CO(NH2)2·HNO3] и нитритом натрия NaNO2 (4). Комплексное соединение азотной кислоты и карбамида (азотнокислый карбамид) получают смешением на поверхности концентрированной азотной кислоты (60%) и насыщенного раствора карбамида (5).
Figure 00000004
Figure 00000005
В зависимости от геологических условий предлагаемый способ термохимической обработки ПЗП реализуется по двум технологическим схемам. В скважинах с низкой приемистостью (ориентировочно до 50 м3/ч) способ осуществляется параллельной закачкой суспензии азотнокислого карбамида и раствора нитрита натрия через затрубное пространство и НКТ. В скважинах с высокой приемистостью способ реализуют последовательной закачкой сначала суспензии азотнокислого карбамида, затем раствора нитрита натрия.
Недостатками данного способа является следующее.
1) Применение концентрированной азотной кислоты, что требует применения специального оборудования и средств защиты.
2) При взаимодействии комплексного соединения азотной кислоты [CO(NH2)2·HNO3] с нитритом натрия NaNO2 выделяется диоксид азота NO2.
Известен способ термохимической обработки пласта (авторское свидетельство SU №1816854 А1, кл. Е21В 43/27, опубл. Бюл. №19, 23.05.1993 г.), основанный на взаимодействии минеральных солей гидразина или гидроксиламина (хлориды, нитраты, сульфаты) с нитритом натрия NaNO2 (6, 7) или калия KNO2.
Figure 00000006
Figure 00000007
Указанные реагенты закачивают совместно в виде суспензии в углеводородной жидкости. При контакте суспензии реагентов на забое скважины или в пласте с водой происходит переход реагентов из углеводородной фазы в водную фазу, где они растворяются и вступают в экзотермическую реакцию.
Недостатками данного способа является следующее.
1) Взрывоопасность и токсичность солей гидразина и гидроксиламина, а также их высокая стоимость.
2) Термохимическая реакция минеральных солей гидразина или гидроксиламина с нитритом натрия или калия не поддается регулированию, поскольку процессы перехода и растворения кристаллических солей данных веществ из углеводородной фазы в воду растянуты во времени и зависят от наличия на забое скважины и в пласте воды и эффективности смешения углеводородной дисперсии реагентов с водной фазой.
Известен состав для удаления асфальтеносмолопарафиновых отложений (АСПО) из нефтепромыслового оборудования, трубопроводов и резервуаров (патент РФ №2215866, кл. Е21В 37/06, опубл. 10.11.2003 г.). Водные растворы состава имеют следующее соотношение компонентов, мас. %:
Раствор А - сульфаминовая кислота NH2SO3H (3-30 мас.%), технический водный аммиак NH4OH (18-70 мас.%), остальное - Н2О.
Раствор Б - гипохлорит натрия NaOCl (7-20 мас. %), остальное - Н2О.
В заявляемом составе избыток аммиака нейтрализует сульфаминовую кислоту (8) и переводит рН раствора из кислой в щелочную среду. Гипохлорит натрия взаимодействует с сульфаминовой кислотой, нейтрализованной аммиаком (сульфамат аммония NH2SO3NH4) (9), а также с избытком аммиака (10), в результате чего выделяется большое количество тепла.
Figure 00000008
Figure 00000009
Figure 00000010
Преимуществом способа является большой тепловой эффект реакции - 1700 кДж/моль.
Наиболее близким по технической сущности и достигаемому эффекту является способ термохимического воздействия на призабойную зону пласта (патент РФ №2224884, кл. Е21В 43/25, Е21В 37/06, опубл. 27.02.2004 г.). Технология заключается в последовательном закачивании на забой скважины двух составов, представляющих собой горюче-окислительную систему, в которой первый состав содержит: аммиачную селитру NH4NO3 (15-65%), карбамид CO(NH2)2 (2-18%), азотнокислый никель Ni(NO3)2 (0,0005-0,05%), остальное - вода. Второй состав содержит нитрит натрия NaNO2 (15-65%), остальное - вода.
Недостатком способа-прототипа является то, что интенсивное протекание реакции между нитритом натрия, карбамидом и нитратом аммония, сопровождающееся выделением тепла, начинается при разогреве реакционной порядка 60°С, поэтому использование такой технологии для скважин с пластовой температурой ниже 60°С не представляется возможным.
Решаемая задача и ожидаемый технический результат заключаются в создании способа термохимической обработки призабойной зоны пласта, позволяющего эффективно удалять АСПО за счет выделения большого количества тепла, без образования в ходе химических превращений труднорастворимых соединений и продуктов реакции, вызывающих коррозию нефтепромыслового оборудования, причем используемые компоненты должны вступать между собой в химическую реакцию при стандартных условиях (Т=20°C, Р=101 кПа).
Поставленная задача решается тем, что предлагаемый способ термохимической обработки призабойной зоны пласта, включающий закачку на забой скважины двух водных растворов, первый из которых содержит нитрат аммония, а второй - нитрит натрия, отличается тем, что первый раствор содержит дополнительно кислоту лимонную и карбонат натрия при соотношении компонентов, мас.%:
Нитрат аммония NH4NO3 48-54
Кислота лимонная C6H8O7 2,9-3,4
Карбонат натрия Na2CO3 2,3-3,0
Вода пресная остальное
а второй раствор содержит, мас.%:
Нитрит натрия NaNO2 40-45
Вода пресная остальное
причем закачку указанных растворов осуществляют параллельно или последовательно в объемах, обеспечивающих стехиометрическое взаимодействие нитрита натрия с нитратом аммония и лимонной кислотой.
Целесообразно использование насыщенных растворов NaNO2 и NH4NO3, так как в более разбавленных растворах с увеличением доли воды в растворе, уменьшается температурный эффект (т.е. уменьшается прирост температуры за счет снижения концентрации реагирующих веществ).
Реакция между NaNO2 и NH4NO3, стехиометрическое взаимодействие которых упомянуто выше, протекает по уравнению (11):
Figure 00000011
Температурный барьер начала протекания реакции (11) имеет величину порядка 73°C. Для достижения этой температуры авторы использовали тепловой эффект параллельно протекающей реакции взаимодействия нитрита натрия с кислотой (12). В качестве кислоты было предложено использовать лимонную кислоту C6H8O7.
Figure 00000012
Реакция между NaNO2 и лимонной кислотой C6H8O7, стехиометрическое взаимодействие которых также упомянуто выше, обеспечивает температуру начала протекания реакции (11).
Выделение диоксида азота NO2, образующегося при взаимодействии кислоты и нитрита натрия NaNO2 (при рН раствора ≤4,0) удалось избежать путем дополнительного введения карбоната натрия Na2CO3 в раствор NH4NO3. Дополнительно введенный в состав карбонат натрия Na2CO3 образует с лимонной кислотой C6H8O7 цитратный буферный раствор. Изменением концентрации лимонной кислоты и количества цитрата натрия Na3C6H5O7 можно получить растворы с различным рН.
В результате экспериментов удалось найти оптимальное соотношение реагентов, при котором наблюдается максимальный температурный эффект реакционной массы, все продукты реакции хорошо растворимы в воде, отсутствует выделение вызывающих коррозию газов.
Способ термохимической обработки призабойной зоны пласта заключается в последовательной или параллельной закачке в призабойную зону пласта нитрата аммония (NH4NO3), лимонной кислоты (C6H8O7), нитрита натрия (NaNO2) и карбоната натрия (Na2CO3) в виде двух концентрированных, насыщенных водных растворов, один из которых содержит нитрат аммония, лимонную кислоту и карбонат натрия (раствор №1 или Компонент А), другой содержит нитрит натрия (раствор №2 или Компонент Б), при следующем соотношении:
Figure 00000013
При смешивании на забое скважины данных растворов они реагируют с выделением большого количества теплоты и газообразных продуктов реакции.
ОПИСАНИЕ ЛАБОРАТОРНЫХ ЭКСПЕРИМЕНОВ
Для проведения эксперимента были взяты следующие реактивы: нитрит натрия (NaNO2) технический, нитрат аммония (NH4NO3) технический, лимонная кислота (C6H8O7) квалификации "ч" (чистая), карбонат натрия (сода кальцинированная, Na2CO3), вода дистиллированная.
В основе технического решения, как указано выше, лежит реакция, протекающая между насыщенными растворами NaNO2 и NH4NO3 (11).
Figure 00000014
Реакция (11) начинается при температуре выше 70°C и протекает с выделением газообразного азота, выделяющегося при разложении неустойчивого промежуточного продукта реакции - нитрита аммония ((NH4)NO2), разлагающегося в воде при 60-70°C (13) [1].
Figure 00000015
Температурный барьер начала протекания реакции (11) определен экспериментальным методом путем смешивания насыщенных растворов NaNO2 и NH4NO3, термостатированных при различных температурах.
Исходя из растворимости нитрита натрия (NaNO2) - 83 г при 20°C в 100 г воды [2], нитрата аммония (NH4NO3) - 192 г при 20°C в 100 г воды [3], были приготовлены растворы, насыщенные этими солями. В 30 мл воды растворили 40,5 г NH4NO3, в 42 мл воды растворили 35 г NaNO2. Получилось 54 мл раствора NaNO2 (плотность ρ=1,345 г/мл) и 58 мл раствора NH4NO3 (плотность ρ=1,265 г/мл). Авторы использовали именно насыщенные растворы NaNO2 и NH4NO3, так как в более разбавленных растворах с увеличением доли воды в растворе, уменьшается температурный эффект (т.е. уменьшается прирост температуры за счет снижения концентрации реагирующих веществ). Результаты, представляющие практический интерес, получаются при общем содержании в реагирующих растворах воды 48,4-54,4% (таблица 1 ниже в разделе «Лабораторные эксперименты», фиг. 1 - зависимость максимальной температуры (Tmax, °C) реагирующих растворов №1 и №2 от общего содержания воды (Н2О, %)).
Чтобы инициировать протекание реакции (11), необходимо разогреть реакционную массу до Т=73°C. Для достижения этой температуры авторы использовали тепловой эффект указанной выше параллельно протекающей реакции взаимодействия нитрита натрия с кислотой (12). В качестве кислоты использовали лимонную кислоту C6H8O7.
Figure 00000016
Количество лимонной кислоты подбиралось экспериментальным путем, таким образом, чтобы в результате взаимодействия ее с нитритом натрия выделилось достаточное количество тепла для поднятия температуры в объеме реагирующих растворов выше 70°C.
Выделение диоксида азота NO2, образующегося при взаимодействии кислоты и NaNO2 (при рН раствора ≤4,0), удалось избежать путем дополнительного введения карбоната натрия Na2CO3 в раствор нитрата аммония.
Экспериментально было установлено, что при рН>4 диоксид азота NO2 не образуется.
Дополнительно введенный в состав карбонат натрия Na2CO3 образует с лимонной кислотой C6H8O7 цитратный буферный раствор (регулятор рН*). (*Коцентрация ионов водорода (рН) в растворе лимонной кислоты зависит от ее концентрации и степени диссоциации. Степень диссоциации C6H8O7 в растворе понизится, если добавить к раствору соль этой кислоты - цитрат натрия Na3C6H5O7. Чем выше концентрация соли, тем меньше рН. Таким образом, изменением концентрации лимонной кислоты и количества цитрата натрия Na3C6H5O7 (образуется при добавлении к раствору лимонной кислоты карбоната натрия) можно получить растворы с различным рН). Результаты, представляющие практический интерес, получаются при значении рН=4,1-4,5 (таблица 2 ниже в разделе «Лабораторные эксперименты»).
ЛАБОРАТОРНЫЕ ЭКСПЕРИМЕНТЫ
Лабораторный эксперимент №1.
Приготовлены растворы:
Раствор №1 (47 мл) - (32 г NH4NO3 + 2,0 г C6H8O7 + 0,4 г Na2CO3 + 24,8 мл H2O)
Раствор №2 (46 мл) - (28,4 г NaNO2 + 34 мл H2O)
Растворы смешивались в соотношении: 9,4 мл раствора №1 + 9,2 мл раствора №2 + N мл H2O, максимальное значение температуры фиксировалось ртутным лабораторным термометром. Результаты, представляющие практический интерес, получаются при общем содержании в реагирующих растворах воды от 48,4% до 54,4% (опыты №№1-5, таблица 1), причем максимальная температура разогрева реакционной смеси составляет от 93°C в опыте с содержанием воды 54,4% до 104°C в опыте с содержанием воды 48,4%. Соответственно максимальная температура разогрева реакционной массы от 93°C обеспечивается содержанием NH4NO3 в первом растворе от 48 мас.% до 54 мас.% и NaNO2 во втором растворе от 40 мас.% до 45 мас.% (округлено до целых единиц процентов).
Figure 00000017
Лабораторный эксперимент №2.
Приготовлены растворы:
Раствор №1′ - (32 г NH4NO3 + 2 г C6H8O7 + 25 мл H2O)
Раствор №1″ - (2,0 г Na2CO3 + 10 мл H2O)
Раствор №2 - (28 г NaNO2 + 34 мл H2O)
В раствор №1′ при непрерывном перемешивании магнитной мешалкой, из бюретки добавлялся раствор №1″. Значения рН раствора №1′ измерялись стеклянным электродом. При значении рН=1,9-3,9 в растворе №1′ взаимодействие его с раствором №2 сопровождалось выделением NO2 (таблица 2, опыты №№1-7). Результаты, представляющие практический интерес, получаются при значении рН=4,1-4,5 (таблица 2, опыты №№8-9); в этом диапазоне рН наблюдается интенсивное протекание реакции без выделения NO2. При дальнейшем повышении рН скорость реакции значительно уменьшается и при рН>5 наблюдается лишь слабое газовыделение без существенного разогрева реакционной массы (таблица 2, опыты №№10-11).
Таким образом, с учетом установленного в лабораторном эксперименте №1 диапазона разбавления реагирующих растворов (таблица 1), оптимальное содержание лимонной кислоты лежит в диапазоне от 2,9 мас.% (в растворе с содержанием H2O 48 мас.%) до 3,4 мас.% (в растворе с содержанием H2O 41 мас.%), оптимальное содержание карбоната натрия лежит в диапазоне от 2,3 мас.% (минимальное его содержание в растворе NH4NO3 с содержанием H2O 48 мас.%) до 3,0 мас.% (максимальное его содержание в растворе NH4NO3 с содержанием H2O 41 мас.%).
Figure 00000018
Лабораторный эксперимент №3.
Для определения эффективности состава на поверхность стальной пластины площадью 10 см2 равномерным слоем нанесли 2 г АСПО с температурой плавления 50-70°С поместили ее в стеклянный цилиндр. Затем в него внесли раствор №1 (NH4NO3 47,6%, C6H8O7 2,9%, Na2CO3 2,3%, H2O 47,2%) и №2 (NaNO2 40,3%, H2O 59,7%) в объемах, обеспечивающих стехиометрическое взаимодействие реагентов. В ходе реакции (в течение 5-10 мин) происходила очистка стальной пластины от АСПО. После завершения реакции взвешивали пластину для определения массы оставшегося АСПО. Результаты эффективности удаления АСПО представлены в таблице 3.
Figure 00000019
Из таблицы 3 можно сделать вывод: для эффективного удаления АСПО на 1 м2 загрязненной поверхности требуется 0,8 л термохимического состава, получаемого при смешении растворов №1 и №2 (опыты №№1-3 проведены при атмосферных условиях).
Лабораторный эксперимент №4 - по прототипу.
Приготовлены растворы:
Раствор №1 - в мас.%: NH4NO3 48,7%, CO(NH2)2 13,3%, Ni(NO3)2 0,03%, H2O 38%.
Раствор №2 - в мас.%: NaNO2 45,5%, H2O 54,5%.
Массы реагентов рассчитаны исходя из стехиометрических соотношений уравнений реакций взаимодействия нитрита натрия NaNO2 с нитратом аммония NH4NO3 и карбамидом CO(NH2)2. Растворы приготовлены с учетом растворимости компонентов в 100 г воды при 20°C.
Раствор №1, взятый в объеме 1,3 мл, и раствор №2, взятый в объеме 2 мл, термостатировались при различных температурах, затем смешивались. Визуально наблюдалось протекание реакции между растворами (газовыделение), максимальное значение температуры в ходе реакции фиксировалось ртутным лабораторным термометром (таблица 4).
Figure 00000020
Figure 00000021
Таким образом, из экспериментальных данных можно сделать заключение, что при указанном в патенте-прототипе соотношении реагентов в смешиваемых растворах, даже после термостатирования до 80°C, реакция между ними протекает без существенного разогрева реакционной массы, а дополнительное введение нитрата никеля Ni(NO3)2 (таблица 4, опыт №5 - прототип), действительно, увеличивает скорость реакции и температурный эффект; но и при введении нитрата никеля необходимо предварительное термостатирование смешиваемых растворов.
В отличие от прототипа, предлагаемый способ обеспечивает вступление реагентов в химическую реакцию при стандартных условиях (Т=20°C, Р=101 кПа - лабораторные эксперименты №№1, 2, 3); соответственно, обеспечивается термохимическая обработка призабойных зон скважин с более низкой пластовой температурой, в том числе, ниже 60°C. Эффективное удаление АСПО происходит за счет выделения большого количества тепла, без образования в ходе химических превращений труднорастворимых соединений и продуктов реакции, вызывающих коррозию нефтепромыслового оборудования.
ЛИТЕРАТУРА
1. Лидин Р.А., Андреева Л.Л., Молочко В.А. Реакции неорганических веществ: справочник / 2-е изд., перераб. и доп. - М.: Дрофа, 2007.
2. Рабинович В.А., Хавин В.Я. Краткий химический справочник / 3-е изд. перераб. и доп. - Л.: Химия, 1991.
3. Лидин Р.А., Андреева Л.Л., Молочко В.А. Константы неорганических веществ: справочник / 3-е изд., стереотип. - М.: Дрофа, 2008.

Claims (1)

  1. Способ термохимической обработки призабойной зоны пласта, включающий закачку на забой скважины двух водных растворов, первый из которых содержит нитрат аммония, а второй - нитрит натрия, отличающийся тем, что первый раствор содержит дополнительно кислоту лимонную и карбонат натрия при соотношении компонентов, мас.%:
    Нитрат аммония NH4NO3 48-54 Кислота лимонная C6H8O7 2,9-3,4 Карбонат натрия Na2CO3 2,3-3,0 Вода пресная остальное

    а второй раствор содержит, мас.%:
    Нитрит натрия NaNO2 40-45 Вода пресная остальное

    причем закачку указанных растворов осуществляют параллельно или последовательно в объемах, обеспечивающих стехиометрическое взаимодействие нитрита натрия с нитратом аммония и лимонной кислотой.
RU2015112771/03A 2015-04-07 2015-04-07 Способ термохимической обработки призабойной зоны пласта RU2587203C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015112771/03A RU2587203C1 (ru) 2015-04-07 2015-04-07 Способ термохимической обработки призабойной зоны пласта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015112771/03A RU2587203C1 (ru) 2015-04-07 2015-04-07 Способ термохимической обработки призабойной зоны пласта

Publications (1)

Publication Number Publication Date
RU2587203C1 true RU2587203C1 (ru) 2016-06-20

Family

ID=56132015

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015112771/03A RU2587203C1 (ru) 2015-04-07 2015-04-07 Способ термохимической обработки призабойной зоны пласта

Country Status (1)

Country Link
RU (1) RU2587203C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721200C1 (ru) * 2019-12-09 2020-05-18 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ термохимической обработки нефтяного пласта
CN112272731A (zh) * 2018-06-14 2021-01-26 “西布涅弗捷玛什”股份公司 对油藏进行热化学处理的方法
RU2766500C1 (ru) * 2018-07-27 2022-03-15 Дзе Проктер Энд Гэмбл Компани Способ стирки тканей с применением водорастворимого изделия с разовой дозой
CZ309626B6 (cs) * 2022-03-24 2023-05-24 WTI Green s.r.o Způsob a zařízení pro dotěžování ropných vrtů
RU2803463C1 (ru) * 2022-05-24 2023-09-13 Акционерное общество "Самаранефтегаз" Термогазохимический состав и способ его применения при обработке призабойной и удаленной зоны продуктивного пласта (варианты)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219083A (en) * 1979-04-06 1980-08-26 Shell Oil Company Chemical process for backsurging fluid through well casing perforations
US4330037A (en) * 1980-12-12 1982-05-18 Shell Oil Company Well treating process for chemically heating and modifying a subterranean reservoir
US4482018A (en) * 1981-11-25 1984-11-13 William A. Enk Fire protection system for aircraft
RU2102589C1 (ru) * 1996-04-19 1998-01-20 Общество с ограниченной ответственностью "Термополис" Способ термохимической обработки призабойной зоны пласта и ствола скважины
RU2165011C1 (ru) * 2000-01-25 2001-04-10 Позднышев Геннадий Николаевич Способ термохимической обработки призабойной зоны пласта
RU2224884C2 (ru) * 2002-01-14 2004-02-27 Алексей Яковлевич Лобойко Способ термохимического воздействия на призабойную зону пласта
RU2373385C1 (ru) * 2008-02-01 2009-11-20 Виктор Николаевич Гусаков Способ обработки призабойных зон добывающих скважин

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219083A (en) * 1979-04-06 1980-08-26 Shell Oil Company Chemical process for backsurging fluid through well casing perforations
US4330037A (en) * 1980-12-12 1982-05-18 Shell Oil Company Well treating process for chemically heating and modifying a subterranean reservoir
US4482018A (en) * 1981-11-25 1984-11-13 William A. Enk Fire protection system for aircraft
RU2102589C1 (ru) * 1996-04-19 1998-01-20 Общество с ограниченной ответственностью "Термополис" Способ термохимической обработки призабойной зоны пласта и ствола скважины
RU2165011C1 (ru) * 2000-01-25 2001-04-10 Позднышев Геннадий Николаевич Способ термохимической обработки призабойной зоны пласта
RU2224884C2 (ru) * 2002-01-14 2004-02-27 Алексей Яковлевич Лобойко Способ термохимического воздействия на призабойную зону пласта
RU2373385C1 (ru) * 2008-02-01 2009-11-20 Виктор Николаевич Гусаков Способ обработки призабойных зон добывающих скважин

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112272731A (zh) * 2018-06-14 2021-01-26 “西布涅弗捷玛什”股份公司 对油藏进行热化学处理的方法
RU2766500C1 (ru) * 2018-07-27 2022-03-15 Дзе Проктер Энд Гэмбл Компани Способ стирки тканей с применением водорастворимого изделия с разовой дозой
RU2721200C1 (ru) * 2019-12-09 2020-05-18 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ термохимической обработки нефтяного пласта
CZ309626B6 (cs) * 2022-03-24 2023-05-24 WTI Green s.r.o Způsob a zařízení pro dotěžování ropných vrtů
RU2803463C1 (ru) * 2022-05-24 2023-09-13 Акционерное общество "Самаранефтегаз" Термогазохимический состав и способ его применения при обработке призабойной и удаленной зоны продуктивного пласта (варианты)

Similar Documents

Publication Publication Date Title
RU2587203C1 (ru) Способ термохимической обработки призабойной зоны пласта
US9228424B2 (en) Method of treating the near-wellbore zone of the reservoir
US10895140B2 (en) Compositions and methods for controlled delivery of acid
CA2919577C (fr) Reservoir stimulation by energetic chemistry
RU2447124C2 (ru) Текучие среды для подземной обработки пласта, снижающие трение сополимеры и способы обработки пласта
RU2451169C1 (ru) Способ обработки призабойной зоны пласта
NO334462B1 (no) Skummede, syrebehandlingsvæsker
US5076358A (en) Petroleum recovery with organonitrogen thiocarbonates
US20210062073A1 (en) Acidizing of subterranean formation using in-situ generated hf
Hull et al. Bromate oxidation of ammonium salts: In situ acid formation for reservoir stimulation
RU2581859C1 (ru) Состав для обработки призабойной зоны пласта
CN105370260B (zh) 一种适用于碳酸盐岩储层的自生盐酸酸化方法
US8933000B2 (en) Corrosion inhibitor for acid stimulation systems
US20160102242A1 (en) Treatment fluid and method
RU2637259C2 (ru) Термогазохимический бинарный состав и способ применения для обработки призабойной и удаленной зон нефтегазоносного пласта
Yuan et al. Evaluation of a control-released in-situ generated acid tablet for acid fracturing
US20180127637A1 (en) Methods of enhancing oil recovery
RU2301248C1 (ru) Базовая основа состава для кислотной обработки терригенного коллектора и разглинизации призабойной зоны пласта
RU2165011C1 (ru) Способ термохимической обработки призабойной зоны пласта
US20220243118A1 (en) Ionic liquid corrosion inhibitors
RU2433260C1 (ru) Способ кислотной обработки скважин в терригенном коллекторе
RU2657918C1 (ru) Реагент для удаления конденсационной жидкости из газовых скважин
RU2731302C1 (ru) Состав для обработки призабойной зоны карбонатного коллектора
RU2778752C1 (ru) Тяжелая жидкость глушения без твердой фазы плотностью до 1450 кг/м3
Moore et al. Experiments evaluating geochemical alteration of matrix materials adjacent to simulated hydraulic fractures