RU2583808C1 - Способ концентрирования изотопов азота - Google Patents

Способ концентрирования изотопов азота Download PDF

Info

Publication number
RU2583808C1
RU2583808C1 RU2015105652/05A RU2015105652A RU2583808C1 RU 2583808 C1 RU2583808 C1 RU 2583808C1 RU 2015105652/05 A RU2015105652/05 A RU 2015105652/05A RU 2015105652 A RU2015105652 A RU 2015105652A RU 2583808 C1 RU2583808 C1 RU 2583808C1
Authority
RU
Russia
Prior art keywords
nitrogen
isotopes
separation
nitrogen isotopes
molecular
Prior art date
Application number
RU2015105652/05A
Other languages
English (en)
Inventor
Александр Александрович Семенов
Михаил Владимирович Скупов
Алексей Владимирович Лизунов
Алексей Николаевич Букин
Александр Сергеевич Аникин
Ирина Геннадьевна Лесина
Борис Владимирович Иванов
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Открытое акционерное общество "Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом", Открытое акционерное общество "Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Priority to RU2015105652/05A priority Critical patent/RU2583808C1/ru
Application granted granted Critical
Publication of RU2583808C1 publication Critical patent/RU2583808C1/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к области технологии разделения стабильных изотопов азота 14N и 15N. Способ концентрирования изотопов азота включает проведение противоточного массообменного процесса с использованием молекулярного азота в качестве рабочего вещества, при этом газообразную смесь изотопов азота приводят в контакт с раствором нитрогенильного комплексного соединения переходного металла, способного к термическому отщеплению молекулярного азота и вступающего с ним в реакцию химического изотопного обмена с накоплением 15N в одной из фаз, a 14N - в другой. Изобретение обеспечивает повышение коэффициента разделения изотопов азота и эффективное и экологически безопасное концентрирование изотопа 15N. 2 з.п. ф-лы, 5 пр.

Description

Изобретение относится к области технологии разделения стабильных изотопов азота 14N и 15N. Изотопы азота находят широкое применение в атомной физике, биологии, химии, агрономии и других областях науки и техники. Наибольший интерес изотоп 15N представляет как перспективный компонент высокоплотного уран-плутониевого нитридного топлива АЭС на быстрых нейтронах, поскольку позволяет избежать наработки высокотоксичного радиоактивного изотопа 14С, проблема иммобилизации которого до сих пор не решена.
Известен способ разделения стабильных изотопов азота и кислорода низкотемпературной ректификацией монооксида азота на каскаде колонн [патент РФ №2309788, МПК B01D 59/00, B01D 59/04, B01D 59/28, F25J 3/02, опубл. 10.11.2007], которое обеспечивает одновременное получение изотопов 18O, 17О и 15N.
Недостатками этого способа являются необходимость проведения разделительного процесса при криогенных температурах; склонность жидкого монооксида азота к кристаллизации, нарушающей устойчивую работу каскада колонн; а также высокая токсичность и взрывоопасность оксида азота (II).
Известен способ разделения стабильных изотопов азота противоточным химическим изотопным обменом между газообразными оксидами азота и азотной кислотой, позволяющий получать высококонцентрированный изотоп азот-15 в промышленных масштабах [патент US 2923601, МПК B01D 59/32, опубл. 02.02.1960] с одновременным концентрированием тяжелых изотопов кислорода. Недостатками этого способа являются необходимость использования для обращения потоков больших количеств химических реагентов (до 600 кг диоксида серы на 1 г-ат. 15N и т.д.) с образованием большого количества отвальных продуктов (до 1000 кг некондиционной серной кислоты на 1 г-ат 15N), высокая токсичность и коррозионная активность рабочих веществ.
Известен способ разделения стабильных изотопов азота противоточным химическим изотопным обменом между газообразными оксидами азота и азотной кислотой при низких температурах. В данном способе с целью устранения химического обращения потоков проводят двухтемпературный обмен между азотной кислотой концентрацией выше 40% и оксидами азота в интервале температур от -(50-47) до +(47-50)°С [патент РФ №786102, МПК B01D 59/28, опубл. 27.01.1995]. Основным недостатком является малая эффективность двухтемпературной схемы для значения коэффициентов разделения, наблюдаемых в вышеуказанной системе.
Наиболее близким к описываемому способу по технической сущности является способ концентрирования изотопов азота ректификацией молекулярного азота [заявка US 2010206711, МПК B01D 59/04, опубл. 19.08.2010] на каскаде колонн с отбором изотопного концентрата из конечной колонны при температуре кипения (-196°С). Недостатками указанного метода являются низкие коэффициенты разделения изотопов азота (около 1,004) и необходимость использования криогенных температур для проведения процесса разделения.
Задача изобретения - организация процесса разделения изотопов азота методом химического обмена с использованием в качестве рабочего вещества нетоксичного и доступного рабочего вещества - молекулярного азота без использования криогенных температур. Задача решается за счет использования свойства молекулярного азота обратимо связываться в комплексные соединения с некоторыми переходными металлами. Техническим результатом изобретения является повышение коэффициента разделения изотопов азота при использовании в качестве рабочего вещества молекулярного азота; возможность проводить процесс разделения изотопов азота, исключая процесс глубокого охлаждения рабочей среды разделительной установки; возможность термического обращения потоков, что позволяет более эффективно и экологически безопасно концентрировать изотоп 15N, востребованный атомной энергетикой.
Технический результат достигается тем, что способ концентрирования изотопов азота включает проведение противоточного массообменного процесса с использованием молекулярного азота в качестве рабочего вещества, причем газообразную смесь изотопов азота приводят в контакт с раствором нитрогенильного комплексного соединения переходного металла, способного к термическому отщеплению молекулярного азота и вступающего с ним в реакцию химического изотопного обмена с накоплением 15N в одной из фаз, a 14N - в другой.
В качестве соединения, обратимо связывающего молекулярный азот с образованием нитрогенильного комплексного соединения, используют вещества, выбранные из ряда: аммиакаты рутения, аммиакаты осмия, бис-[три-циклогексилфосфин]-никель; а также соединения из класса металлоценов - например, бис-[пентаметилциклопентадиенил]-титан.
В узлах обращения потоков каскада используют термическое обращение потоков газообразного азота, в сочетании с изменением давления газовой фазы.
Известно явление химического связывания молекулярного азота (диазота) в комплексные химические соединения, в которых диазот (N2) выступает в роли внутрисферного лиганда, образуя комплексы типа [Me(N2)Xn]Am. Образующийся при этом комплекс может вступать в реакцию химического изотопного обмена (1) с газообразным молекулярным азотом:
Figure 00000001
где Me - переходный металл,
N* - изотоп N-15,
X - внутрисферный лиганд,
А - внешнесферный анион.
Изотопный эффект для системы на основе комплексных соединений молекулярного азота определяли по опубликованным данным о колебательных частотах изотопозамещенных форм молекул комплексных соединений [Бородько Ю.Г., Шилов А.Е / Комплексы молекулярного азота // Успехи химии, 1969, т. XXXVIII, в. 5, с. 761-796] путем расчета отношения приведенных статистических сумм по состояниям соответствующих молекул по известным методикам [Андреев Б.М., Зельвенский Я.Д., Катальников С.Г. I Разделение стабильных изотопов физико-химическими методами. // М., Энергоатомиздат, 1982], при этом предполагали, что изотопное замещение по азоту в молекуле диазота, входящей в состав молекулярного комплексного соединения, не вносит существенного изменения в частоты нормальных колебаний молекулы, за исключением частоты колебания связи в молекуле диазота.
Пример 1.
Проводят многоступенчатый процесс химического обмена между раствором Ru[(NH3)5(N2)]I2 в воде и газообразным азотом N2 при температуре Т=273 K. Частоты нормальных колебаний изотопозамещенных форм молекулы комплексного соединения Ru[(NH3)5(14N2)]I2 и Ru[(NH3)5(14N15N)]I2 составляют 2130 см-1 и 2098 см-1 соответственно; частоты нормальных колебаний изотопозамещенных форм молекулы диазота составляют 2330 см-1 и 2290 см-1 соответственно. Рассчитанное значение коэффициента разделения изотопозамещенных форм рабочего вещества - диазота 14N2 и 14N15N составляет 1,013 (исходя из величин β-факторов - приведенных сумм по состояниям для изотопозамещенных молекулярных форм). Минимальное число теоретических ступеней разделения, требуемое для обогащения изотопом 15N от уровня его природного содержания (0,366 ат.%) до 25 ат.%, 45,5 ат.% и 49,8 ат.%, составляет в этих условиях 354, 436 и 440 соответственно. Процесс осуществляется в насадочной массообменной колонне, заполненной нерегулярной высокоэффективной насадкой, например насадкой типа СПН (спирально призматическая насадка). Обращение потоков - термическое (безреагентное): нагревание жидкого комплексного нитрогенильного соединения с его полной термической диссоциацией на исходный молекулярный азот и вещество-комплексообразователь на нижнем конце разделительного каскада, и охлаждение газообразного молекулярного азота до рабочей температуры разделительного процесса с последующим приведением молекулярного азота в контакт с комплексообразователем с образованием комплексного нитрогенильного соединения на верхнем его конце.
Пример 2.
Проводят многоступенчатый процесс химического обмена между раствором Ru[(NH3)5(N2)]I2 в воде и газообразным азотом при температуре Т=298 K. Частоты нормальных колебаний изотопозамещенных форм молекулы комплексного соединения Ru[(NH3)5(14N2)]I2 и Ru[(NH3)5(14N15N)]I2 составляют 2130 см-1 и 2098 см-1 соответственно; частоты нормальных колебаний изотопозамещенных форм молекулы диазота составляют 2330 см-1 и 2290 см-1 соответственно. Рассчитанное значение коэффициента разделения изотопозамещенных форм рабочего вещества - диазота 14N2 и 14N15N составляет 1,011. Минимальное число теоретических ступеней разделения, требуемое для обогащения изотопом 15N от уровня его природного содержания (0,366 ат.%) до 25 ат.%, 45,5 ат.% и 49,8 ат.%, составляет в этих условиях 389, 479 и 485 ступеней соответственно. Принципиальное аппаратурное оформление процесса аналогично примеру 1.
Пример 3.
Проводят многоступенчатый процесс химического обмена между раствором Os[(NH3)5(N2)]I2 в воде и газообразным азотом при температуре Т=298 K. Частоты нормальных колебаний изотопозамещенных форм молекулы комплексного соединения Os[(NH3)5(14N2)]Cl2 и Os[(NH3)5(14N15N)]Cl2 составляют 2012 см-1 и 1979 см-1 соответственно; частоты нормальных колебаний изотопозамещенных форм молекулы диазота составляют 2330 см-1 и 2290 см-1 соответственно. Рассчитанное значение коэффициента разделения изотопозамещенных форм рабочего вещества - диазота 14N2 и 14N15N составляет 1,013. Минимальное число теоретических ступеней разделения, требуемое для обогащения изотопом 15N от уровня его природного содержания (0,366 ат.%) до 25 ат.%, 45,5 ат.% и 49,8 ат.%, составляет в этих условиях 349, 430 и 435 ступеней соответственно. Принципиальное аппаратурное оформление процесса аналогично примеру 1.
Пример 4.
Проводят многоступенчатый процесс химического обмена между раствором {Ni[(N2)Р(С6Н11)3]2} в циклогексене и газообразным азотом N2. при температуре Т=298 K. Частоты нормальных колебаний изотопозамещенных форм молекулы комплексного соединения Ni14N2[Р(С6Н11)3]2 и Ni14N15N[P(C6H11)3]2 составляют 2028 см-1 и 1979 см-1 соответственно; частоты нормальных колебаний изотопозамещенных форм молекулы диазота составляют 2330 см-1 и 2290 см-1 соответственно. Рассчитанное значение коэффициента разделения изотопозамещенных форм рабочего вещества - диазота 14N2 и 14N15N составляет 1,012. Минимальное число теоретических ступеней разделения, требуемое для обогащения изотопом 15N от уровня его природного содержания (0,366 ат.%) до 25 ат.%, 45,5 ат.% и 49,8 ат.%, составляет в этих условиях 378, 465 и 470 ступеней соответственно. Принципиальное аппаратурное оформление процесса аналогично примеру 1.
Пример 5.
Проводят многоступенчатый процесс химического обмена между раствором [Ti(C5(CH3)5)2]2(N2) в ксилоле и N2 при температуре Т=298 К. Оценочная величина коэффициента разделения изотопозамещенных форм рабочего вещества - диазота 14N2 и 14N15N составляет 1,01. Минимальное число теоретических ступеней разделения, требуемое для обогащения изотопом 15N от уровня его природного содержания (0,366 ат.%) до 25 ат.%, 45,5 ат.% и 49,8 ат.%, составляет в этих условиях 454, 546 и 563 ступени соответственно. Принципиальное аппаратурное оформление процесса аналогично примеру 1, за исключением того, что в узлах обращения потоков каскада используют термическое обращение потоков газообразного азота, в сочетании с изменением давления газовой фазы, выбираемого в диапазоне (0,1÷0,9) долей от значения давления в нижнем сечении разделительного каскада.
Из приведенных примеров видно, что повышается коэффициент разделения изотопов азота; процесс разделения изотопов азота проводят, исключая процесс глубокого охлаждения рабочей среды разделительной установки; существует возможность термического обращения потоков.

Claims (3)

1. Способ концентрирования изотопов азота, включающий проведение противоточного массообменного процесса с использованием молекулярного азота в качестве рабочего вещества, отличающийся тем, что газообразную смесь изотопов азота приводят в контакт с раствором нитрогенильного комплексного соединения переходного металла, способного к термическому отщеплению молекулярного азота и вступающего с ним в реакцию химического изотопного обмена с накоплением 15N в одной из фаз, a 14N - в другой.
2. Способ по п. 1, отличающийся тем, что в качестве соединения, обратимо связывающего молекулярный азот с образованием нитрогенильного комплексного соединения, используют вещества, выбранные из ряда: аммиакаты рутения, аммиакаты осмия, бис-[три-циклогексилфосфин]-никель; а также соединения из класса металлоценов - например, бис-[пентаметилциклопентадиенил]-титан.
3. Способ по пп. 1 и 2, отличающийся тем, что в узлах обращения потоков каскада используют термическое обращение потоков газообразного азота, в сочетании с изменением давления газовой фазы.
RU2015105652/05A 2015-02-18 2015-02-18 Способ концентрирования изотопов азота RU2583808C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015105652/05A RU2583808C1 (ru) 2015-02-18 2015-02-18 Способ концентрирования изотопов азота

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015105652/05A RU2583808C1 (ru) 2015-02-18 2015-02-18 Способ концентрирования изотопов азота

Publications (1)

Publication Number Publication Date
RU2583808C1 true RU2583808C1 (ru) 2016-05-10

Family

ID=55960191

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015105652/05A RU2583808C1 (ru) 2015-02-18 2015-02-18 Способ концентрирования изотопов азота

Country Status (1)

Country Link
RU (1) RU2583808C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2923601A (en) * 1955-11-22 1960-02-02 Taylor Thomas Ivan Method of isotope concentration
RU2309788C2 (ru) * 2005-11-23 2007-11-10 Евгений Владимирович Левин Способ одновременного обогащения оксида азота (ii) изотопами 18о, 17о, 15n
US8440058B2 (en) * 2007-09-19 2013-05-14 Taiyo Nippon Sanso Corporation Method for concentrating nitrogen isotope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2923601A (en) * 1955-11-22 1960-02-02 Taylor Thomas Ivan Method of isotope concentration
RU2309788C2 (ru) * 2005-11-23 2007-11-10 Евгений Владимирович Левин Способ одновременного обогащения оксида азота (ii) изотопами 18о, 17о, 15n
US8440058B2 (en) * 2007-09-19 2013-05-14 Taiyo Nippon Sanso Corporation Method for concentrating nitrogen isotope

Similar Documents

Publication Publication Date Title
Jiang et al. Manufacturing acidities of hydrogen-bond donors in deep eutectic solvents for effective and reversible NH3 capture
Kim et al. Carbon dioxide absorption using a phase transitional alkanolamine–alcohol mixture
Ali et al. Analysis of operating conditions for CO2 capturing process using deep eutectic solvents
Kikkinides et al. Natural gas desulfurization by adsorption: Feasibility and multiplicity of cyclic steady states
Rae Selecting heavy water processes
Zhang et al. NH3 solubilities and physical properties of ethylamine hydrochloride plus urea deep eutectic solvents
JP5122443B2 (ja) 窒素同位体重成分の濃縮方法
EP3912969A1 (en) Method for direct conversion of carbon dioxide to dialkyl carbonates using ethylene oxide as feedstock
US11612853B1 (en) Fully automated direct air capture carbon dioxide processing system
Jing et al. Novel ternary absorbent: dibutylamine aqueous–organic solution for CO2 capture
RU2583808C1 (ru) Способ концентрирования изотопов азота
CN101314109A (zh) 一种采用化学催化交换法生产稳定同位素13c的方法
Suchak et al. Simulation and optimization of NOx absorption system in nitric acid manufacture
Cherif et al. Experimental and simulation results for the removal of H2S from biogas by means of sodium hydroxide in structured packed columns
Chong et al. Ionic liquid design for enhanced carbon dioxide capture–a computer aided molecular design approach
US7776305B2 (en) Method for purification of nitrogen oxide and apparatus for purification of nitrogen oxide
CN103459019B (zh) 含有Ni3Si基金属间化合物的制氢催化剂、活化该催化剂的方法及用该催化剂制氢的方法和装置
KR102084294B1 (ko) 질산 제조공정을 이용한 반도체용 고순도 일산화질소의 제조방법 및 제조장치
RU2311949C1 (ru) Способ разделения изотопов бора
US20240082786A1 (en) Stable isotope enrichment device and stable isotope enrichment method
Brüggemann et al. Theoretical investigation of the mechanism of the selective catalytic oxidation of ammonia on H-form zeolites
CN109813055B (zh) 一种精馏回收烟气中no2和so2的方法和装置
Khoroshilov et al. Thermal dissociation of the complex BF 3· D and boron isotope separation in the system BF 3-BF 3· CH 3 NO 2
Yuldashbaeva et al. Sorption separation of scandium and zirconium by weakly basic anion exchangers
Ishida et al. Early history of chemical exchange isotope enrichment and lessons we learn