RU2583343C1 - Способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов - Google Patents
Способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов Download PDFInfo
- Publication number
- RU2583343C1 RU2583343C1 RU2015111868/28A RU2015111868A RU2583343C1 RU 2583343 C1 RU2583343 C1 RU 2583343C1 RU 2015111868/28 A RU2015111868/28 A RU 2015111868/28A RU 2015111868 A RU2015111868 A RU 2015111868A RU 2583343 C1 RU2583343 C1 RU 2583343C1
- Authority
- RU
- Russia
- Prior art keywords
- melt
- temperature
- properties
- sample
- signals
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/06—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Использование: для определения свойств многокомпонентных сложнолегированных жаропрочных расплавов, основанного на изучении крутильных колебаний цилиндрического тигля с расплавом. Сущность изобретения заключается в том, что определяют температурные зависимости свойств образца расплава с получением значений в виде электрических сигналов, значения температурных зависимостей подают на вход первого дифференцирующего устройства, с его выхода снимают продифференцированные сигналы, затем продифференцированные сигналы подают на один из входов блока сравнения, отличается тем, что используют второе дифференцирующее устройство, один из входов которого обладает функцией регулировки порога сигнала, выходной сигнал этого дифференцирующего устройства в виде второй производной преобразуют в однополярные сигналы, передним фронтом первого включают счет импульсов, а задним фронтом последнего выключают счет импульсов в диапазоне температур между температурой гистерезиса tг и аномальной tан, фиксируют количество импульсов, которое соответствует значению изменения измеряемого свойства, в вышеуказанном диапазоне температур Δt, определяют максимум сигналов первого дифференцирующего устройства (Δρ/Δt)max посредством их пикового детектирования с последующим запоминанием максимальной величины, после выключения счета продолжают увеличивать температуру нагрева образца при возрастающих значениях температуры и определяют величины измеряемого свойства расплава вплоть до значения критической температуры tкр затем начинают охлаждение образца, продолжают исследовать свойства вплоть до кристаллизации, после чего значение запомненного ранее максимального отношения (Δρ/Δt)max=Кипс в виде коэффициента структурной перестройки Кипс расплава фиксируют как характеристику расплава. Технический результат: обеспечение возможности получения дополнительной информации о расплаве, получения количественного параметра интенсивности структурной перестройки жаропрочных расплавов. 4 ил.
Description
Изобретение относится к технической физике, а именно, к способам контроля и измерения термозависимостей, или политерм, физических свойств веществ, и предназначено для определения свойств многокомпонентных сложнолегированных жаропрочных металлических сплавов, преимущественно на основе никеля, при бесконтактном измерении политерм электросопротивления ρ образцов этих расплавов фотометрическим методом, основанным на изучении крутильных колебаний цилиндрического тигля с расплавом. Дополнительной сферой применения являются металлургические процессы, в частности разработка технологических схем производства сплавов с заданными свойствами.
Изучение термозависимостей свойств образцов металлических сплавов объемом в единицы см3 позволяет определить их структурно-чувствительные характеристики, проводить прогностический анализ и давать рекомендации для получения сплавов с заданными характеристиками, например выделять гистерезисные характеристики цикла нагрева - охлаждения, характерные температуры гистерезиса tг, аномальные tан и критические температурные точки. Для исследований жаропрочных многокомпонентных металлических расплавов, преимущественно на основе никеля, в основном используют бесконтактный фотометрический - на базе измерения траектории отраженного от зеркала светового луча - «зайчика», способ определения параметров расплава, в частности удельного электросопротивления ρ изучаемого образца, методом вращающегося магнитного поля, посредством изучения параметров крутильных колебаний упругой нити с подвешенным на ней в электропечи тиглем с этим образцом - см. патент РФ №2457473 - аналог.
Вид и характеристики температурных зависимостей отражают различные физико-химические и структурные параметры сплава, в том числе аномалии, скачкообразные структурные изменения или перестройки, происходящие в расплаве, причем такой анализ требует высокой квалификации и опыта экспериментатора. Как правило, образующийся в процессе выплавки расплав является неравновесным. При этом под равновесным состоянием понимают равномерное распределение атомов элементов в расплаве по нанообъемам - кластерам жидкого металла, а однородное состояние достигают при равномерном распределении кластеров различного химического состава по всему объему образца. Уровень равновесности и однородности расплава оказывает влияние на переохлаждение жидкого металла при разливке, характере струи, процессов кристаллизации: диффузии элементов, формировании дендритной структуры, выделении различных фаз и проч. В дальнейшем это отражается на технологических и служебных характеристиках - микротвердости, пластичности, теплопроводности, ковкости, свариваемости, обрабатывании резанием и т.д.
Характер структурных изменений при нагреве жидкого металла не монотонен. В частности, для группы сплавов с высокой легированностью известна - см. фиг. 2, типовая температурная зависимость удельного электросопротивления ρ(t), патент РФ №2299425, фиг. 4. с. 9 - аналог. Для подобных сплавов монотонная зависимость сохраняется лишь до определенных аномальных температур tан, при этом интервал температур от температуры ликвидуса tL до аномальных температур tан отражает термическую устойчивость первичной неравновесной структуры расплава, образующейся после плавления шихты. Интенсивное увеличение удельного электросопротивления ρ(t) начинается от tан и продолжается по сложной кривой до температуры гистерезиса tг, но устойчивое состояние формирующейся равновесной структуры расплава достигается лишь при нагреве до критических температур tкр. Температурный интервал между tан и температурой гистерезиса tг характеризует интенсивность перестройки структуры расплава в равновесное состояние, т.е. Δtип=tг-tан. Поскольку температурный интервал Δtип зависит от качественного и количественного состава сплавов, он может существенно отличаться у различных сплавов, как и удельное электросопротивление ρ(t), причем вид ρ(t) при охлаждении свидетельствует о сохранении равновесного структурного состояния вплоть до температур кристаллизации. Поэтому динамику состояния расплава при различных температурах целесообразно описать последовательностью структурообразования.
Прототипом изобретения является способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов, при котором определяют температурные зависимости свойств образца расплава, например удельного электросопротивления ρ, с получением значений свойств в виде электрических сигналов, которые отображают на одном из каналов многоканального дисплея, значения температурных зависимостей свойств расплава подают на вход первого дифференцирующего устройства, с его выхода снимают продифференцированные сигналы, которые синхронно со значениями температурных зависимостей свойств расплава отображают на втором канале многоканального дисплея, затем продифференцированные сигналы подают на один из входов блока сравнения, выходные сигналы которого подают на третий канал многоканального дисплея - см. пат. РФ №2477852.
Недостатками определения интенсивности структурной перестройки расплавов жаропрочных сплавов посредством вышеуказанных аналогов и прототипа являются недостаточность, неоднозначность и субъективность качественной оценки при отсутствии количественной оценки этой перестройки. В конечном итоге, не обеспечена точность оценки интенсивности структурной перестройки расплава посредством изучения термозависимостей свойств жаропрочных металлических расплавов.
Задачей предлагаемого изобретения является обеспечение получения дополнительной информации о расплаве, получение количественного параметра интенсивности структурной перестройки расплавов жаропрочных сплавов, уменьшение субъективности оценки динамики параметров термозависимостей, повышение наглядности и точности оценки этой перестройки, а также обеспечение проведения экспериментов персоналом невысокой квалификации, в том числе студентами.
Для решения поставленной задачи предлагается способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов.
Способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов, при котором определяют температурные зависимости свойств образца расплава, например, удельного электросопротивления ρ, с получением значений свойств в виде электрических сигналов, которые отображают на одном из каналов многоканального дисплея, значения температурных зависимостей свойств образца расплава подают на вход первого дифференцирующего устройства, с его выхода снимают продифференцированные сигналы, которые, синхронно со значениями температурных зависимостей свойств образца расплава, отображают на втором канале многоканального дисплея, затем продифференцированные сигналы подают на один из входов блока сравнения, выходные сигналы которого подают на третий канал многоканального дисплея, отличается тем, что в качестве блока сравнения используют по меньшей мере двухвходовое второе дифференцирующее устройство, один из входов которого обладает функцией регулировки порога значений электрического сигнала, выходной сигнал этого дифференцирующего устройства в виде второй производной посредством использования буферных узлов преобразуют в однополярные сигналы, передним фронтом первого из них включают счет импульсов, а задним фронтом последнего из них выключают счет импульсов в диапазоне температур Δt=tг-tан расплава между температурой гистерезиса tг и аномальной tан температурой, фиксируют количество импульсов, которое соответствует значению изменения величины измеряемого свойства образца расплава, например его удельного электросопротивления Δρ в вышеуказанном диапазоне температур Δt образца расплава, определяют максимальную величину продифференцированных сигналов первого дифференцирующего устройства (Δρ/Δt)max посредством процедуры их пикового детектирования с последующим запоминанием этой максимальной величины, после выключения счета продолжают увеличивать температуру нагрева образца расплава при по меньшей мере трех возрастающих значениях температуры и определяют величины измеряемого свойства расплава вплоть до значения критической температуры tкр затем начинают стандартную процедуру охлаждения образца расплава, продолжают исследовать свойства этого образца при его охлаждении вплоть до кристаллизации, после чего значение запомненного ранее максимального отношения (Δρ/Δt)max=Кипс в виде коэффициента структурной перестройки Кипс расплава фиксируют как характеристику данного расплава.
Отличительные признаки предлагаемого способа обеспечивают технический результат - получение количественного параметра интенсивности структурной перестройки расплавов жаропрочных сплавов в виде коэффициента структурной перестройки Кипс расплава, уменьшение субъективности оценки этой перестройки, повышение наглядности и точности оценки интенсивности вышеуказанной структурной перестройки, а также обеспечение возможности проведения экспериментов персоналом невысокой квалификации, в том числе студентами.
Изобретение поясняется чертежами, где:
фиг. 1 - блок-схема измерительного комплекса;
фиг. 2 - типовая зависимость удельного электросопротивления ρ от температуры t при нагреве и охлаждении высоколегированного многокомпонентного жаропрочного сплава;
фиг. 3 - температурная зависимость, первая и вторая производные удельного электросопротивления ρ жаропрочного сплава ЖС-36(0,002 С);
фиг. 4 - температурная зависимость, первая и вторая производные удельного электросопротивления р жаропрочного сплава ЖС-36(0,006 С);
Предлагаемый способ осуществляют посредством комплекса, который содержит лабораторную установку 1, компьютер 2 с дисплеем, связанный шиной данных и управляющих сигналов 3 с установкой 1, первое дифференцирующее устройство 4, второе дифференцирующее устройство 5, буферный блок 6, счетчик импульсов 7, пиковый детектор 8. Установка 1 предназначена для измерения удельного электросопротивления ρ металлических расплавов фотометрическим методом путем определения параметров крутильных колебаний упругой нити с подвешенным на ней внутри изотермической зоны в области вращающегося 50-Гц магнитного поля в 30-кВт вакуумной электропечи керамическим тиглем с образцом расплава объемом в единицы см3. Дисплей компьютера 2 используют в том числе как устройство отображения информации в виде многоканального дисплея. Первое и второе дифференцирующие устройства 4 и 5, буферный блок 6, счетчик импульсов 7, пиковый детектор 8 предпочтительно реализуют программно в виде виртуальных компьютерных блоков в составе компьютера 2 или в виде нижеперечисленных устройств. Оба дифференцирующих устройства 4 и 5 реализуют в виде дифференциатора на операционном усилителе (ОУ) с RC-цепью - см. Дж. Рутковски. Интегральные операционные усилители. - М.: Мир, 1978, с. 295. На один из входов ОУ как первого, так и второго дифференцирующего устройства 4 и 5 подают опорное напряжение (уровень) U4 оп и U5 оп с раздельно регулируемой от нуля до +/- Umax величиной для каждого из дифференцирующих устройств 4 и 5, в соответствии с опытом, накопленным за некоторое количество экспериментов либо заранее заданной величиной. Буферный блок 6 реализуют в виде повторителя и инвертора КМОП-логики, например CD4041A - см. В.Л. Шило. Популярные цифровые микросхемы, Справочник. - М.: Радио и связь, 1987, с. 213. Счетчик импульсов 7 собран на асинхронном 14-разрядном КМОП-счетчике пульсаций К561ИЕ16 - см. вышеотмеченный В.Л. Шило … с. 246. Пиковый детектор 8 собран на диоде КД 503 с ОУ - см. Б.И. Горошков. Элементы радиоэлектронных устройств. - М.: Радио и связь, 1989, с. 98. Выходные сигналы обоих дифференцирующих устройств 4 и 5, а также пикового детектора 8 вводят через вход многоканального АЦП или через СОМ-порт в компьютер 2 и выводят на дисплей компьютера 2.
Предлагаемый способ осуществляют следующим образом. Проводят штатный эксперимент по регистрации температурных зависимостей удельного электросопротивления ρ изучаемого образца жаропрочного сплава на установке 1. При этом сигналы 9, соответствующие значениям ρ(t), т.е. одному из свойств жаропрочных расплавов, которые отображают на одном из каналов многоканального дисплея компьютера 2, подают на вход первого дифференцирующего устройства 4. С его выхода снимают продифференцированные сигналы 10, которые адекватно значениям температурных зависимостей свойств расплава ρ(t) отображают посредством второго канала многоканального дисплея компьютера 2. Кроме того, продифференцированные сигналы 10 подают на вход пикового детектора 8, с выхода которого на вход компьютера 2 поступает электрический сигнал, уровень которого пропорционален текущему максимальному значению продифференцированных сигналов 10, т.е. первой производной (dρ/dt)max. Параметры этого сигнала 14 запоминают в памяти компьютера 2. Опорное напряжение (уровень) 15 U4 оп и 16 U5 оп с раздельно регулируемой от нуля до +/- Umax величиной для каждого из дифференцирующих устройств 4 и 5 могут быть в соответствии с опытом, накопленным за некоторое количество экспериментов, либо регулируемой экспериментатором, либо заранее заданной величиной. Одновременно продифференцированные сигналы 10 подают на вход второго дифференцирующего устройства 5, выходные сигналы 11 которого в виде второй производной ρ(t), т.е. d2ρ/d(t)2, подают на буферный блок 6, который разнополярные выходные сигналы 11 преобразует в однополярные сигналы, и на третий канал многоканального дисплея компьютера 2. Выходной сигнал 12 счетчика импульсов 7 подают в компьютер 2. Однополярные выходные сигналы с выхода буферного блока 6 передним фронтом первого из них включают счет импульсов 13, подаваемых от внутреннего генератора тактовых импульсов компьютера 2, посредством счетчика импульсов 7, а задним фронтом последнего из них выключают счет импульсов 13 в диапазоне температур Δt=tг-tан расплава между температурой гистерезиса tг и аномальной tан температурой, фиксируют в памяти компьютера 2 количество импульсов, которое соответствует значению изменения величины измеряемого свойства образца расплава, т.е. его удельного электросопротивления Δρ в вышеуказанном диапазоне температур Δt образца расплава. Кроме того, при этом визуально оценивают осциллограммы вышеуказанных каналов. Во время экспериментов выделяют штатные характерные параметры на предполагаемых термозависимостях - см. фиг. 2, в частности ρ, при температурах ликвидуса tL, гистерезиса tг, аномалий tан, критической tкр.
В качестве первого примера на фиг. 3 приведены термозависимости удельного электросопротивления ρ(t) при нагреве 17 и охлаждении 18 образца жаропрочного сплава ЖС-36(0,002 С), графики первой производной 10 при нагреве 19 и охлаждении 20, а также второй производной 11 при нагреве 21 и охлаждении 22. При этом могут быть использованы регулируемые пороги 23 и 24, отсекающие из анализа результатов значения вышеотмеченных параметров 10 и 11, не представляющие интереса в конкретном эксперименте. Аналогичные графики термозависимости удельного электросопротивления Δρ при нагреве 25 и охлаждении 26 образца жаропрочного сплава ЖС-36(0,006С) приведены на фиг. 4 вместе с графиками первой производной 10 при нагреве 27 и охлаждении 28, а также второй производной 11 при нагреве 29 и охлаждении 30. При этом аналогично могут быть использованы регулируемые пороги 31 и 32, отсекающие из анализа результатов значения вышеотмеченных параметров 10 и 11, не представляющие интереса в конкретном эксперименте. Различие характеристик этих сплавов определяет прежде всего содержание в них углерода С.
После достижения температуры гистерезиса tг значения как первой 10, так и второй 11 производных становятся практически нулевыми, однако нагрев образца продолжают, как выше отмечено, для получения еще по меньшей мере трех значений ρ(t) вплоть до критической температуры tкр образца жаропрочного сплава. После этого, если значения величин первой 10 и второй 11 производных остаются нулевыми, пренебрежимо малыми или лежащими ниже пороговых значений 23, 24, 31, 32, например, меньше 0,5 максимальной величины первой 10 и второй 11 производных, компьютер 2 начинает процесс охлаждения изучаемого образца, в том числе без участия экспериментатора.
Дополнительной характеристикой динамики происходящих процессов может служить коэффициент интенсивности структурной перестройки Кипс=Δρ/Δt=Δρ/Δtип. При этом Δρ представляет собой разницу величин удельного электросопротивления ρ при аномальной температуре на температурных зависимостях ρ(t) нагрева и охлаждения, в том числе отношением Δρ/Δtип Величина Δtип - это значение температурного интервала между tг и tан, т.е. Δtип=tг-tан.
Значение максимального отношения (Δρ/Δt)max=Кипс max в виде коэффициента структурной перестройки Кипс каждого из сплавов в соответствии с фиг. 3 и фиг. 4, равно Кипс 1 max=0,5 и Кипс 2 max=0,25 и характеризует интенсивность процессов установления равновесного и однородного состоянии каждого расплава. Косвенно это отражает и энерготраты, характеризующие процесс получении данного сплава. При этом, как отмечено выше, равновесное состояние - это равномерное распределение атомов элементов в расплаве по кластерам расплава жидкого металла, а однородное состояние достигают при равномерном распределении кластеров различного химического состава по всему объему образца.
Таким образом, предложенный способ позволяет получить значение Кипс и расширить объем информации об изучаемом сплаве. По мере накопления опыта по групповому использованию сигналов, соответствующих значениям политерм одного из свойств расплава, например ρ(t), совместно с сигналами, отражающими значения его первой и второй производных, у экспериментатора появляется наглядная дополнительная объективная информация о значениях и параметрах динамики политерм, в том числе в количественной форме.
Предложенное техническое решение, содержит вышеуказанную совокупность ограничительных и отличительных признаков, не выявленных в известном уровне техники, что при достижении вышеописанного технического результата позволяет считать предложенное техническое решение имеющим изобретательский уровень.
Claims (1)
- Способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов, при котором определяют температурные зависимости свойств образца расплава, например удельного электросопротивления ρ, с получением значений свойств в виде электрических сигналов, которые отображают на одном из каналов многоканального дисплея, значения температурных зависимостей свойств образца расплава подают на вход первого дифференцирующего устройства, с его выхода снимают продифференцированные сигналы, которые синхронно со значениями температурных зависимостей свойств образца расплава отображают на втором канале многоканального дисплея, затем продифференцированные сигналы подают на один из входов блока сравнения, выходные сигналы которого подают на третий канал многоканального дисплея, отличается тем, что в качестве блока сравнения используют по меньшей мере двухвходовое второе дифференцирующее устройство, один из входов которого обладает функцией регулировки порога значений электрического сигнала, выходной сигнал этого дифференцирующего устройства в виде второй производной посредством использования буферных узлов преобразуют в однополярные сигналы, передним фронтом первого из них включают счет импульсов, а задним фронтом последнего из них выключают счет импульсов в диапазоне температур Δt=tг-tан расплава между температурой гистерезиса tг и аномальной tан температурой, фиксируют количество импульсов, которое соответствует значению изменения величины измеряемого свойства образца расплава, например его удельного электросопротивления Δρ, в вышеуказанном диапазоне температур Δt образца расплава, определяют максимальную величину продифференцированных сигналов первого дифференцирующего устройства (Δρ/Δt)max посредством процедуры их пикового детектирования с последующим запоминанием максимальной величины, после выключения счета продолжают увеличивать температуру нагрева образца расплава при по меньшей мере трех возрастающих значениях температуры и определяют величины измеряемого свойства расплава вплоть до значения критической температуры tкр, затем начинают стандартную процедуру охлаждения образца расплава, продолжают исследовать свойства этого образца при его охлаждении вплоть до кристаллизации, после чего значение запомненного ранее максимального отношения (Δρ/Δt)max=Кипс в виде коэффициента структурной перестройки Кипс расплава фиксируют как характеристику данного расплава.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015111868/28A RU2583343C1 (ru) | 2015-04-01 | 2015-04-01 | Способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015111868/28A RU2583343C1 (ru) | 2015-04-01 | 2015-04-01 | Способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2583343C1 true RU2583343C1 (ru) | 2016-05-10 |
Family
ID=55959905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015111868/28A RU2583343C1 (ru) | 2015-04-01 | 2015-04-01 | Способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2583343C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU182131U1 (ru) * | 2017-12-26 | 2018-08-03 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Устройство оценки равновесности металлических расплавов |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5811970A (en) * | 1996-05-10 | 1998-09-22 | Northrop Grumman Corporation | Electromagnetic test for microstructure anomalies such as alpha-case, and for carbide precipitates and untempered and overtempered martensite |
US6115674A (en) * | 1998-06-30 | 2000-09-05 | The United States Of America As Represented By The United States Department Of Energy | Automated detection and location of indications in eddy current signals |
WO2012018541A1 (en) * | 2010-07-26 | 2012-02-09 | Radiation Monitoring Devices, Inc. | Eddy current detection |
RU2477852C1 (ru) * | 2011-07-19 | 2013-03-20 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ определения аномалий на политермах свойств высокотемпературных металлических расплавов (варианты) |
-
2015
- 2015-04-01 RU RU2015111868/28A patent/RU2583343C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5811970A (en) * | 1996-05-10 | 1998-09-22 | Northrop Grumman Corporation | Electromagnetic test for microstructure anomalies such as alpha-case, and for carbide precipitates and untempered and overtempered martensite |
US6115674A (en) * | 1998-06-30 | 2000-09-05 | The United States Of America As Represented By The United States Department Of Energy | Automated detection and location of indications in eddy current signals |
WO2012018541A1 (en) * | 2010-07-26 | 2012-02-09 | Radiation Monitoring Devices, Inc. | Eddy current detection |
RU2477852C1 (ru) * | 2011-07-19 | 2013-03-20 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ определения аномалий на политермах свойств высокотемпературных металлических расплавов (варианты) |
Non-Patent Citations (2)
Title |
---|
А.Г. Тягунов, Разработки режимов высокотемепературной обработки жидких жаропрочных никелевых сплавов на основе экспериментальных и расчетных показателей, Вестник ЮГрГУ, Металлургия, стр. 74-78, том. 13, N 1, 2013. * |
А.Г. Тягунов, Т.К. Костина, Е.Е. Барышев, Г.В. Тягунов, Влияние состояния расплава на структуру жаропрочных сплавов типа ЦНК, Вестник ЮГрГУ, Металлургия, стр. 79-84, том. 13, N 1, 2013. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU182131U1 (ru) * | 2017-12-26 | 2018-08-03 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Устройство оценки равновесности металлических расплавов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lashley et al. | Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system | |
Kabo et al. | Details of calibration of a scanning calorimeter of the triple heat bridge type | |
EP1136803A1 (en) | Power compensation differential scanning calorimeter | |
Yang et al. | Continuous cooling precipitation diagram of aluminium alloy AA7150 based on a new fast scanning calorimetry and interrupted quenching method | |
CN111398333B (zh) | 一种测量单晶高温合金初熔温度的差热分析方法 | |
Djurdjevic et al. | Determination of dendrite coherency point characteristics using first derivative curve versus temperature | |
Tsepelev et al. | Optimum regime of heat treatment of soft magnetic amorphous materials | |
JP3370592B2 (ja) | 示差熱分析装置 | |
CN105956399A (zh) | 一种温度预测方法及电子体温计 | |
Quick et al. | Measurement of specific heat capacity via fast scanning calorimetry—Accuracy and loss corrections | |
CN205826173U (zh) | 一种快速响应热电偶热响应时间的测试系统 | |
RU2583343C1 (ru) | Способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов | |
Schick et al. | Fast scanning chip calorimetry | |
US20200049681A1 (en) | Thermal Conductivity Detector for Gas Mixtures Having at Least Three Components | |
Soliman | Derivation of the Kissinger equation for non-isothermal glass transition peaks | |
RU157157U1 (ru) | Устройство для определения интенсивности структурной перестройки расплавов жаропрочных сплавов | |
Danley et al. | DSC resolution and dynamic response improvements obtained by a new heat flow measurement technique | |
Chen et al. | Formation mechanism of recrystallisation internal friction peak and its application to determine the recrystallisation temperature of deformed pure Cu | |
RU2498267C1 (ru) | Способ экспресс-диагностики однородности высокотемпературных металлических расплавов | |
Bokeloh et al. | High-precision nucleation rate measurements for higher melting metals | |
CN102645446B (zh) | 一种在线检测铝合金熔体晶粒细化和变质效果的方法 | |
Reading et al. | Principles of differential scanning calorimetry | |
Ciobanas et al. | Ensemble averaged multi-phase Eulerian model for columnar/equiaxed solidification of a binary alloy: II. Simulation of the columnar-to-equiaxed transition (CET) | |
Kemsies et al. | In situ investigation of precipitation in aluminium alloys via thermal diffusivity from laser flash analysis | |
McLaren | THE FREEZING POINTS OF HIGH PURITY METALS AS PRECISION TEMPERATURE STANDARDS: III. THERMAL ANALYSES ON EIGHT GRADES OF ZINC WITH PURITIES GREATER THAN 99.99+% |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170402 |