RU2580870C2 - Система получения изображения высокого разрешения - Google Patents

Система получения изображения высокого разрешения Download PDF

Info

Publication number
RU2580870C2
RU2580870C2 RU2013144584/28A RU2013144584A RU2580870C2 RU 2580870 C2 RU2580870 C2 RU 2580870C2 RU 2013144584/28 A RU2013144584/28 A RU 2013144584/28A RU 2013144584 A RU2013144584 A RU 2013144584A RU 2580870 C2 RU2580870 C2 RU 2580870C2
Authority
RU
Russia
Prior art keywords
image
plane
optical
microlenses
lens
Prior art date
Application number
RU2013144584/28A
Other languages
English (en)
Other versions
RU2013144584A (ru
Inventor
Кристиан ШОМОН
Франсуаз КО
Мишель ПИЛА
Венсан ДЮРЬЁ
Original Assignee
Сажем Дефанс Секюрите
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сажем Дефанс Секюрите filed Critical Сажем Дефанс Секюрите
Publication of RU2013144584A publication Critical patent/RU2013144584A/ru
Application granted granted Critical
Publication of RU2580870C2 publication Critical patent/RU2580870C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1066Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/20Antifreeze additives therefor, e.g. for radiator liquids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/37Freezing; Subsequent thawing; Cooling with addition of or treatment with chemicals
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C21/00Apparatus or processes for surface soil stabilisation for road building or like purposes, e.g. mixing local aggregate with binder
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0095Relay lenses or rod lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/48Increasing resolution by shifting the sensor relative to the scene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements

Abstract

Система содержит объектив, формирующий промежуточное изображение в промежуточной плоскости фокусировки, фильтр изображения, содержащий маску с отверстиями в промежуточной плоскости фокусировки; матрицу микролинз, параллельную промежуточной плоскости фокусировки; оптическую систему сопряжения, формирующую изображение матрицы микролинз в плоскости съемки изображения; и матрицу детектирования изображения, содержащую фоточувствительные элементы в плоскости съемки изображения. Система сопряжения сопрягает каждую микролинзу с одним фоточувствительным элементом. Каждое отверстие фильтра расположено напротив одной микролинзы. Размер отверстия фильтра меньше или равен шагу дискретизации промежуточного изображения, равному шагу повторения отверстий, поделенному на коэффициент дискретизации. Система содержит устройство для поступательного перемещения промежуточного изображения с шагом, равным или кратным шагу дискретизации промежуточного изображения. Технический результат - получение высокого разрешения и широкого входного поля, например, с угловой апертурой порядка 90°. 11 з.п. ф-лы, 7 ил.

Description

Настоящее изобретение относится к системе получения изображений высокого разрешения.
Во многих приложениях для исследований необходимо получать изображения высокого разрешения, чтобы идентифицировать мелкие детали на наблюдаемой сцене. Однако разрешение изображения, получаемого при помощи системы получения изображений, зависит от степени увеличения используемой оптики формирования изображения и от размера фоточувствительных элементов датчика изображения.
Общим недостатком использования оптики формирования изображения, имеющей большую степень увеличения, является уменьшение входного поля системы. Иначе говоря, получаемые и снимаемые изображения ограничены, каждое, лишь небольшим участком наблюдаемой сцены. И, наоборот, изображение каждой детали сцены является очень мелким, если используют оптику с широким входным полем. Кроме того, если изображение детали становится меньше, чем используемый фоточувствительный элемент датчика изображения, эту деталь невозможно различить на снятом изображении.
Эта трудность в получении изображений высокого разрешения при помощи входного оптического поля, которое не является слишком малым, проявляется еще больше при наблюдении в инфракрасной области по сравнению с наблюдением в видимой области. Действительно, индивидуальный размер фоточувствительных элементов инфракрасного датчика изображения часто составляет от 2 до 15 мкм (микрометров), тогда как для области видимого света в наличии имеются датчики с фоточувствительными элементами размером порядка от 2 до 3 мкм. Например, съемку изображения при угловой апертуре входного оптического поля 90° (градусов) и при угловом разрешении 200 мкрад (микрорадиан) можно напрямую производить в видимом свете при помощи датчика на 8000×8000 фоточувствительных элементов. Однако эти характеристики получения изображений невозможно получить напрямую для инфракрасного излучения в диапазоне длины волны от 8 до 12 мкм.
Для решения этой проблемы были предложены следующие решения:
- применение сканирования входного оптического поля системы получения изображений в наблюдаемой сцене. Но для этого необходимо механическое устройство сканирования, которое, как правило, является сложным и хрупким;
- применение системы трансфокатора для получения высокого разрешения в конкретной части наблюдаемой сцены. Однако система трансфокатора требует использования более сложной и более дорогой оптики с подвижными частями. Кроме того, недостатком системы трансфокатора является значительное уменьшение размера наблюдаемой сцены; и
- одновременное использование нескольких датчиков, расположенных таким образом, чтобы снимать соответственно разные части изображения с высоким разрешением. Затем воссоздают общее изображение сцены, объединяя все части изображения, снятые при помощи отдельных датчиков. Однако такая система с несколькими датчиками является очень дорогой по причине числа датчиков и необходимости их расположения в разных частях изображения таким образом, чтобы избежать мертвых полос между смежными частями изображения, снятыми разными датчиками.
В этих условиях настоящее изобретение направлено на создание системы получения изображений, которая выдает изображения высокого разрешения и имеет входное оптическое поле, которое является не слишком ограниченным.
В частности, изобретение направлено на создание системы получения изображений, которая выдает изображения высокого разрешения, но при этом не содержит подвижных частей, которые являются хрупкими и сложными в изготовлении.
Изобретение направлено также на создание системы получения изображений, которая выдает изображения высокого разрешения, позволяя охватывать широкое входное оптическое поле, например, с угловой апертурой порядка 90°.
Изобретение направлено также на создание системы получения изображений без существенного увеличения ее стоимости, в частности системы получения изображений с простой оптикой и только с одним датчиком изображения.
Наконец, изобретение должно обеспечить реализацию всех вышеуказанных задач для системы получения изображений, которая может работать в инфракрасной области.
Для решения этих задач изобретением предлагается система получения изображений высокого разрешения, которая содержит, если смотреть в направлении распространения применяемого излучения внутри системы получения изображений:
- объектив, выполненный с возможностью формирования промежуточного изображения сцены внутри промежуточной плоскости фокусировки;
- фильтр изображения, содержащий плоскую и непрозрачную маску, содержащую отверстия, которые находятся в промежуточной плоскости фокусировки;
- плоскую матрицу микролинз, которые являются идентичными и расположены рядом друг с другом, по меньшей мере, в двух направлениях выравнивания, причем эта матрица микролинз расположена параллельно и на расстоянии от промежуточной плоскости фокусировки;
- оптическую систему сопряжения, расположенную таким образом, чтобы формировать изображение матрицы микролинз в плоскости съемки изображения; и
- матрицу детектирования изображения, которая содержит совокупность фоточувствительных элементов, расположенных в плоскости съемки изображения.
Объектив, маска фильтра изображения, микролинзы, фоточувствительные элементы и оптическая система сопряжения могут работать при применяемом излучении.
Согласно первому дополнительному признаку изобретения оптическая система сопряжения попарно сопрягает каждую микролинзу и каждый фоточувствительный элемент.
Согласно второму дополнительному признаку изобретения отверстия маски фильтра изображения расположены напротив микролинз с отношением один к одному для каждого отверстия и каждой микролинзы.
Согласно третьему дополнительному признаку изобретения размер каждого отверстия маски фильтра изображения, если его измерить параллельно каждому направлению выравнивания, меньше или равен шагу дискретизации промежуточного изображения, причем этот шаг дискретизации, в свою очередь, равен шагу повторения отверстий маски фильтра изображения в этом же направлении выравнивания, поделенному на коэффициент дискретизации, который является целым числом и превышает единицу.
Согласно четвертому дополнительному признаку изобретения система получения изображений дополнительно содержит устройство перемещения изображения, выполненное с возможностью поступательного перемещения промежуточного изображения внутри промежуточной плоскости фокусировки с шагом поступательного перемещения, равным или кратным шагу дискретизации промежуточного изображения, параллельно каждому направлению выравнивания.
Таким образом, в заявленной системе получения изображений плоскость съемки изображения, в которой находятся фоточувствительные элементы детектирования и съемки изображения, оптически не сопряжена с промежуточным изображением наблюдаемой сцены, которое формирует объектив. Вместо этого плоскость съемки изображения оптически сопряжена с матрицей микролинз, которая отстоит от промежуточной плоскости фокусировки на определенное и не равное нулю расстояние. Это отношение оптического сопряжения между матрицей микролинз и плоскостью съемки изображения получают при помощи оптической системы сопряжения. Во время использования системы получения изображений каждое отверстие фильтра изображения представляет собой зрачок для микролинзы, соответствующей этому отверстию.
При этом изображение, снимаемое при каждом экспонировании, соответствует дискретизации сцены, содержащейся во входном оптическом поле объектива, при помощи фильтра изображения, который выбирает матрицу дискретизации в промежуточном изображении. Этот выбор осуществляют при помощи устройства перемещения изображения, которое каждый раз помещает промежуточное изображение в выбранное положение относительно фильтра изображения. При этом во время последовательных съемок изображений дискретизация сцены меняется для получения дополнительных выборок сцены. Иначе говоря, перемещение промежуточного изображения относительно фильтра изображения представляет собой сканирование сцены. При этом конечное изображение воссоздают, комбинируя снятые таким образом изображения для всех положений промежуточного изображения относительно фильтра изображения.
Таким образом, разрешение конечного изображения умножается на коэффициент дискретизации по сравнению с известной системой получения изображений при таких же значениях степени увеличения объектива и размера фоточувствительных элементов матрицы детектирования изображения.
В различных вариантах выполнения изобретения предпочтительно расстояние между матрицей микролинз и промежуточной плоскостью фокусировки превышает 200 мкм.
Система в соответствии с изобретением может дополнительно содержать блок управления, выполненный:
- с возможностью управления устройством перемещения изображения таким образом, чтобы помещать промежуточное изображение последовательно в положения, смещенные на значения, кратные шагу дискретизации, параллельно каждому направлению выравнивания; и
- для каждого положения промежуточного изображения - с возможностью управления циклом съемки и записи изображения при помощи матрицы детектирования изображения.
Она может также содержать блок воссоздания изображения, выполненный с возможностью комбинирования изображений, снятых и записанных соответственно для последовательных положений промежуточного изображения, в порядке, соответствующем этим последовательным положениям.
Система получения изображений в соответствии с изобретением может быть адаптирована, в частности, для работы с полезным излучением, которое находится в инфракрасной области.
Другие отличительные признаки и преимущества настоящего изобретения будут более очевидны из нижеследующего описания не ограничительных примеров выполнения со ссылками на прилагаемые чертежи, на которых:
фиг.1 - принципиальная оптическая схема системы получения изображений в соответствии с изобретением;
фиг.2 - вид в плане участка фильтра изображения, который можно использовать в системе получения изображений, показанной на фиг.1;
фиг.3а и 3b - два варианта сканирования, которые можно альтернативно использовать с фильтром изображения, показанным на фиг.2;
фиг.4 - принципиальная оптическая схема другой системы получения изображений в соответствии с изобретением, адаптированной для работы в инфракрасной области;
фиг.5а и 5b - конкретный пример реализации системы получения изображений, показанной на фиг.4.
Для упрощения размеры элементов, показанных на этих фигурах, необязательно соответствуют реальным размерам или соотношениям реальных размеров. Кроме того, на различных фигурах использованы одинаковые обозначения для идентичных элементов или для элементов с идентичными функциями.
Далее со ссылками на фиг.1, 2, 3а и 3b следует описание общего принципа работы системы получения изображений в соответствии с изобретением.
Указанные ниже обозначения использованы для следующих элементов системы получения изображений:
А-А: оптическая ось системы получения изображений,
1: объектив, расположенный на оптической оси А-А,
2: фильтр изображения,
3: микролинзы, расположенные в виде плоской матрицы, 8: оптическая система сопряжения,
9: матрица детектирования изображения, обычно называемая датчиком изображения,
90: фоточувствительные элементы датчика 9 изображения.
Объектив 1 показан схематично, при этом подразумевается, что он может иметь любой вид, известный специалисту. Модель объектива 1 можно выбирать в зависимости от спектральной области работы системы получения изображений, от степени его увеличения и от угловой апертуры входного оптического поля в соответствии с каждым вариантом применения системы. В частности, апертура входного оптического поля объектива 1 может превышать 60°, например, может быть равной приблизительно 90°. Оптическая ось объектива 1 совпадает с осью А-А системы.
Объектив 1 формирует промежуточное изображение сцены, которая находится внутри его входного оптического поля в промежуточной плоскости фокусировки, обозначенной PI. Плоскость PI перпендикулярна к оптической оси А-А.
Фильтр 2 изображения может представлять собой плоскую маску, которая является непрозрачной, если не считать отверстий О2, через которые излучение проходит через маску. Как показано на фиг.2, отверстия О2 распределены равномерно с шагом повторения, обозначенным Irep. Отверстия О2 могут быть распределены в двух перпендикулярных направлениях с шагом повторения Irep в каждом из этих направлений. При этом они образуют квадратную сетку. Кроме того, каждое отверстие Ог имеет размеры, меньшие или равные элементарной длине Iech, которая является делителем шага повторения Irep отверстий. По причине, которая будет указана ниже, элементарную длину Iech называют шагом дискретизации. Показанный на фиг.2 шаг дискретизации Iech равен делителю шага повторения Irep отверстий О2. Соотношение между шагами Irep и Iech фильтра изображения называют коэффициентом дискретизации ("sampling factor") и обозначают SF. Он является целым числом, превышающим единицу. В представленном примере он равен 3.
Фильтр 2 изображения находится в промежуточной плоскости фокусировки PI.
Матрица микролинз 3 расположена в плоскости Р3, параллельной относительно промежуточной плоскости фокусировки PI. Таким образом, плоскость Р3 тоже перпендикулярна к оптической оси А-А. Предпочтительно микролинзы 3 являются смежными между собой таким образом, чтобы получить распределение в плоскости Р3 без бесполезных зон между двумя соседними микролинзами. Все микролинзы 3 идентичны между собой и имеют общую фокусную длину f3. x и y обозначают два направления выравнивания микролинз 3 в плоскости Р3.
Датчик 9 изображения располагают таким образом, чтобы его поверхность отслеживания, обозначенная S9, находилась в плоскости Р9 съемки изображения, перпендикулярной к оптической оси А-А. Внутри поверхности детектирования S9 равномерно расположены фоточувствительные элементы 90 в виде сетки, которая зависит от типа используемого датчика.
Конфигурация системы получения изображений имеет в этом случае два следующих первых отличительных признака:
/1/ оптическая система 8 сопряжения формирует изображение матрицы микролинз 3 в плоскости Р9 съемки изображения таким образом, чтобы соответствующие изображения микролинз 3, являющихся смежными, формировались на фоточувствительных элементах 90, которые, в свою очередь, являются смежными на поверхности детектирования S9 без перехода изображения каждой микролинзы 3 на несколько смежных фоточувствительных элементов 90; и
/2/ распределение отверстий О2 фильтра 2 изображения в промежуточной плоскости фокусировки PI воспроизводит распределение микролинз 3 в плоскости Р3 таким образом, что микролинзы 3 поодиночке соответствуют отверстиям О2.
Таким образом, распределение фоточувствительных элементов 90 на поверхности детектирования S9 определяет распределение микролинз 3 и отверстий О2. Следовательно, направления x и y являются общими направлениями выравнивания отверстий О2, микролинз 3 и фоточувствительных элементов 90 соответственно в плоскостях PI, Р3 и Р9. Шаг повторения Irep является общим для отверстий О2 и микролинз 3 и равен шагу фоточувствительных элементов 90 на поверхности детектирования S9 датчика 9 изображения, поделенному на степень увеличения оптики 8 сопряжения. В соответствии с описанным выше рисунком распределения отверстий О2 рисунок распределения фоточувствительных элементов 90 и рисунок распределения микролинз 3 тоже являются квадратными соответственно на поверхности детектирования S9 и в плоскости Р3.
В предпочтительном варианте выполнения изобретения каждое отверстие О2 маски фильтра 2 изображения может быть центровано относительно микролинзы 3, которая находится напротив этого отверстия.
На фиг.1 лучи, представленные пунктирными линиями, показывают связь оптического сопряжения между микролинзами 3 и фоточувствительными элементами 90 через оптику 8.
Согласно третьему отличительному признаку /3/ конфигурации системы получения изображений плоскость Р3 микролинз 3 находится на ненулевом расстоянии от промежуточной плоскости фокусировки PI на выходе последней в направлении распространения лучей внутри системы получения изображений. Ненулевое расстояние между плоскостями PI и Р3 обозначено е3. По причине такой дефокусировки оптической системы 8 сопряжения относительно промежуточной плоскости фокусировки PI эта плоскость PI оптически сопрягается через оптику 8 с плоскостью PJ, в которой находится изображение наблюдаемой сцены и которая отстоит от плоскости Р9 съемки изображения, е7 обозначает ненулевое расстояние промежутка между плоскостями PJ и Р9. На фигуре 1 лучи, представленные сплошными линиями, показывают связь оптического сопряжения между промежуточной плоскостью фокусировки PI и плоскостью PJ: лучи, исходящие от одной промежуточной точки изображения, содержащейся в плоскости PI, пересекаются внутри плоскости PJ на расстоянии e7 от поверхности S9 датчика 9 изображения. Иначе говоря, плоскость PJ реально является плоскостью формирования изображения, которая отстоит от плоскости Р9 съемки изображения.
Согласно предпочтительному варианту выполнения изобретения расстояние е3 между промежуточной плоскостью фокусировки PI и матрицей микролинз 3 равно общей фокусной длине f3 микролинз 3. Пучок лучей, исходящих от наблюдаемой сцены, подвергается коллимации микролинзами 3. В этом случае расстояние е4 между плоскостью Р3 микролинз 3 и оптикой 8 сопряжения может быть любым.
Согласно возможному варианту выполнения оптической системы 8 сопряжения она может включать в себя по меньшей мере следующие компоненты в направлении распространения используемого излучения внутри системы получения изображений:
- оптический компонент 4 рефокусировки, который центрован относительно оптической оси А-А и который может представлять собой собирающую линзу большого поперечного размера;
- диафрагму 5, которая находится в плоскости РР и сопрягается с маской фильтра 2 изображения через микролинзы 3 и оптический компонент 4 рефокусировки; и
- оптический компонент 6 ретрансляции, который расположен для формирования изображения матрицы микролинз 3 в плоскости Р9 съемки изображения через оптический компонент 4 рефокусировки и этот оптический компонент 6 ретрансляции.
Диафрагма 5 имеет отверстие О5, центрованное по оптической оси А-А в представленном варианте выполнения. Отверстие О5 может иметь такие же размеры, что и общее изображение всех отверстий О2 маски фильтра 2 изображения через матрицу микролинз 3 и оптику 4 рефокусировки. В случае необходимости оно может быть меньше, чем это изображение отверстий О2. В этом последнем случае именно отверстие О5 образует входной зрачок всей системы получения изображений, и плоскость РР называют плоскостью зрачка.
Таким образом, каждое изображение, снимаемое во время цикла экспонирования и считывания датчика 9 изображения, соответствует дискретизации промежуточного изображения плоскости PI. Эта дискретизация определена фильтром 2 изображения с шагом Irep, который представляет собой пространственную периодичность дискретизации промежуточного изображения для каждого цикла экспонирования и считывания датчика 9. В то же время индивидуальные размеры и форма отверстий О2 определяют функцию линейной фильтрации каждой точки дискретизации.
На фиг.3а при помощи криволинейных стрелок показана связь между отверстиями О2 фильтра 2 изображения и, следовательно, соответствующими частями промежуточного изображения и фоточувствительными элементами 90 датчика 9 изображения. Эта связь вытекает из описанных выше отношений оптического сопряжения.
Система получения изображений дополнительно содержит устройство перемещения промежуточного изображения внутри промежуточной плоскости фокусировки PI. Это устройство можно выполнить в разных вариантах, известных специалисту. Например, между объективом 1 и промежуточной плоскостью фокусировки PI можно расположить пластинку 10, прозрачную для полезного излучения. Эта пластинка 10 имеет наклон, который может меняться относительно оптической оси объектива 1. Иначе говоря, пластинку можно поворачивать независимо и одновременно вокруг двух взаимно перпендикулярных осей, которые являются соответственно параллельными направлениям выравнивания x и y. Как известно, вращение пластинки 10 вокруг оси, параллельной относительно x, приводит к перемещению промежуточного изображения параллельно y и наоборот. Используя соответствующие инкременты этих поворотов пластинки 10, можно поступательно перемещать промежуточное изображение целое число раз, кратное шагу дискретизации Iech, в двух направлениях x и y и внутри плоскости PI. В частности, пластинка 10 может быть пластинкой с параллельными сторонами.
Согласно альтернативному варианту выполнения устройства перемещения промежуточного изображения оно может содержать ряд пластинок, прозрачных для полезного излучения и взаимозаменяемых, при этом каждую пластинку поочередно располагают между объективом 1 и промежуточной плоскостью фокусировки PI, и они производят разное смещение промежуточного изображения внутри этой промежуточной плоскости фокусировки. Например, каждая из пластинок тоже может быть пластинкой с параллельными сторонами и с наклонами, которые являются фиксированными относительно двух направлений выравнивания x и y. При этом две разные пластинки имеют соответствующие значения толщины и наклона, чтобы по-разному поступательно перемещать промежуточное изображение в плоскости PI на значения, кратные шагу дискретизации Iech, параллельно двум направлениям x и y. Например, такие взаимозаменяемые пластинки можно установить на барабанном держателе, чтобы за один раз помещать только одну из этих пластинок на пути излучения между объективом и фильтром 2 изображения.
Начиная от первого положения промежуточного изображения в плоскости PI, в котором датчик 9 производит первый цикл съемки и записи изображения, устройство перемещения промежуточного изображения активируют, чтобы переместить промежуточное изображение в новое положение, удаленное от первого на nx × Iech в направлении x и на ny × Iech в направлении у внутри плоскости PI. Для этого nx и ny должны быть целыми, положительными, отрицательными или нулевыми числами. После этого датчик 9 снимает и записывает новое изображение. Этот цикл перемещения, съемки и записи изображения повторяют, пока не будут реализованы все возможные положения промежуточного изображения по отношению к фильтру 2 изображения. При идентификации этих возможных положений промежуточного изображения относительно фильтра 2 изображения два разных положения отстоят друг от друга на nx × Iech в направлении x и на ny × Iech в направлении у, при этом nx и ny не являются одновременно нулевыми и ограничены таким образом, чтобы одна и та же точка изображения, которая находится в одном из отверстий O2 при одном из положений промежуточного изображения, не оказалась внутри другого отверстия в другом положении промежуточного изображения. На фиг.3а и 3b показаны две возможные последовательности положений промежуточного изображения от I0 до I8 и от С0 до C8, когда коэффициент дискретизации SF равен 3. На основании этих примеров специалист сможет воспроизвести изобретение при любом значении коэффициента дискретизации SF. Например, если коэффициент дискретизации SF равен 4 или 5, то соответственно необходимы 16 и 25 положений промежуточного изображения относительно фильтра 2 изображения.
Блок управления 11, обозначенный CTRL на фиг.1 и 4, координирует описанную выше работу устройства перемещения промежуточного изображения и датчика 9 изображения.
Наконец, блок 12 воссоздания изображения комбинирует изображения, которые были сняты при всех положениях промежуточного изображения в промежуточной плоскости фокусировки PI, таким образом, чтобы получить конечное изображение, разрешение которого составляет Iech в промежуточной плоскости фокусировки PI. Матрица такого конечного изображения соответствует шагу дискретизации Iech. Для каждого положения промежуточного изображения в плоскости PI блок 12 связывает значения яркости, которые были сняты датчиком 9, с пикселями этой матрицы изображения согласно отношению связи, обратному криволинейным стрелкам, показанным на фиг.3а. Затем этот этап связывания повторяют, воспроизводя в матрице конечного изображения последовательные перемещения промежуточного изображения в плоскости PI. Таким образом, конечное изображение дополняют посредством включения изображений, которые были сняты индивидуально для каждого положения промежуточного изображения.
Если оптическая система 8 сопряжения не была отрегулирована таким образом, чтобы сопрягать плоскость Р3 микролинз с плоскостью съемки изображения Р9, между пикселями воссозданного изображения происходит просачивание света и конечное изображение оказывается расплывчатым или искаженным. Так происходит, в частности, когда плоскость PI фильтра 2 изображения сопрягается с плоскостью Р9.
Согласно другому возможному варианту выполнения оптической системы 8 сопряжения, показанной на фиг.4, оптика 8 может альтернативно содержать, по меньшей мере, следующие элементы в направлении распространения применяемого излучения внутри системы получения изображений:
- оптический компонент 4 рефокусировки;
- оптический компонент 6а ретрансляции, который в этом варианте расположен таким образом, чтобы формировать изображение отверстий О2 маски фильтра 2 изображения через микролинзы 3, через оптический компонент 4 рефокусировки и через этот оптический компонент 6а ретрансляции; и
- конечную часть 7 оптической системы, которая расположена таким образом, чтобы формировать изображение матрицы микролинз 3 в плоскости съемки изображения Р9 посредством оптического компонента 4 рефокусировки, оптического компонента 6а ретрансляции и этой конечной части 7 оптической системы.
Другие элементы системы получения изображений по своему принципу выполнения и применения могут быть идентичными элементам, описанным со ссылками на фиг.1, 2, 3а и 3b.
Как и в случае объектива 1, специалист может выбирать возможные варианты оптического компонента 6а ретрансляции и конечной части 7 оптической системы.
Такой вариант выполнения представляет особый интерес для съемки инфракрасных изображений. Иначе говоря, применяемое излучение, детектируемое датчиком 9 изображения, может иметь длину волны в одном из диапазонов 3-5 мкм (микрометр) и 8-12 мкм. Общее изображение отверстий О2 маски фильтра 2 изображения, которое формируется посредством микролинзы 3, оптического компонента 4 рефокусировки и оптического компонента 6а ретрансляции, образует зрачок системы получения изображений. Этот зрачок находится в плоскости РР между оптическим компонентом 6а ретрансляции и конечной частью 7 оптической системы. При этом в плоскости РР помещают диафрагму 51, чтобы изолировать датчик 9 изображения от паразитного излучения, в частности, теплового характера, которое присутствует в системе получения изображений между объективом 1 и этой диафрагмой. Диафрагма 51 имеет отверстие O51, соответствующее зрачку плоскости РР, который специалисты часто называют «холодным зрачком». В частности, конечная часть 7 оптической системы и датчик 9 изображения могут быть расположены в криостате 50, фронтальная стенка которого содержит входное окно напротив изображения отверстий О2 в плоскости зрачка РР и образует диафрагму 51.
На фиг.5а и 5b показан возможный вариант выполнения объектива 1 и оптической системы 8 сопряжения для такого устройства получения инфракрасных изображений. Для упрощения фиг.5а устройство 10 перемещения промежуточного изображения, фильтра 2 изображения и микролинзы 3 на ней не показаны, а на фиг.5b представлен увеличенный вид конечной части системы. Здесь указаны только положения промежуточной плоскости фокусировки PI, плоскости Р3 микролинз, плоскости РР холодного зрачка, плоскости формирования изображения PJ и плоскости съемки изображения Р9. Специалисту понятно значение каждого показанного оптического элемента. В частности, элементы 61-63 вместе образуют оптику 6а ретрансляции. В качестве примера для такой системы получения инфракрасных изображений в соответствии с изобретением ниже приведены следующие цифровые значения:
- матрица фоточувствительных элементов 90 датчика 9 изображения может иметь шаг 25 мкм и содержать 400×400 фоточувствительных элементов, при этом каждый фоточувствительный элемент 90 выполнен на основе полупроводника InGaAs;
- прозрачная пластинка 10 может быть выполнена из бериллия с амплитудой наклона менее нескольких градусов;
- размер отверстий О2 маски фильтра 2 изображения может быть равен шагу дискретизации Iech, то есть 15 мкм;
- каждая микролинза 3 может индивидуально иметь диаметр 100 мкм;
- расстояние е3 между плоскостями PI и Р3 может составлять около 400 мкм;
- оптическая апертура системы может составлять F/4; и
- диаметр отверстия холодного зрачка O51 может составлять от 400 до 500 мкм.
Разумеется, изобретение можно воспроизводить, внося различные изменения в описанные выше варианты выполнения, сохраняя при этом, по меньшей мере, некоторые из его вышеупомянутых преимуществ. Эти изменения могут зависеть от назначения системы получения изображений. В частности, они могут касаться выполнения объектива 1, системы перемещения промежуточного изображения, а также состава оптической системы 8 сопряжения. Кроме того, рисунок сетки, общий для отверстий маски фильтра изображения, для микролинз и для фоточувствительных элементов в их соответствующих плоскостях, может быть не квадратным, а прямоугольным, треугольным, шестиугольным и т.д.

Claims (12)

1. Система получения изображений высокого разрешения, содержащая, если смотреть в направлении распространения применяемого излучения в указанной системе получения изображений:
- объектив (1), выполненный с возможностью формирования промежуточного изображения сцены в промежуточной плоскости фокусировки (PI);
- фильтр (2) изображения, содержащий плоскую и непрозрачную маску с отверстиями (О2), которые находятся в промежуточной плоскости фокусировки (PI);
- плоскую матрицу микролинз (3), которые являются идентичными и расположены рядом друг с другом по меньшей мере в двух направлениях выравнивания (х, у), причем матрица микролинз расположена параллельно и на расстоянии от промежуточной плоскости фокусировки (PI);
- оптическую систему (8) сопряжения, расположенную таким образом, чтобы формировать изображение матрицы микролинз (3) в плоскости (Р9) съемки изображения; и
- матрицу (9) детектирования изображения, которая содержит совокупность фоточувствительных элементов (90), расположенных в плоскости (Р9) съемки изображения;
при этом объектив (1), маска фильтра (2) изображения, микролинзы (3), фоточувствительные элементы (90) и оптическая система (8) сопряжения выполнены с возможностью работы при применяемом излучении,
причем оптическая система (8) сопряжения выполнена с возможностью сопряжения один к одному каждой микролинзы с одним фоточувствительным элементом (90),
при этом отверстия (О2) маски фильтра (2) изображения расположены напротив микролинз (3) так, что каждое отверстие напротив одной микролинзы,
причем размер каждого отверстия (О2) маски фильтра (2) изображения, если его измерить параллельно каждому направлению выравнивания (х, у), меньше или равен шагу дискретизации (Iech) промежуточного изображения, причем указанный шаг дискретизации равен шагу повторения (Irep) указанных отверстий в указанном направлении выравнивания, поделенному на коэффициент дискретизации, который является целым числом и превышает единицу,
при этом система получения изображений дополнительно содержит:
- устройство перемещения изображения, выполненное с возможностью поступательного перемещения промежуточного изображения внутри промежуточной плоскости фокусировки (PI) с шагом поступательного перемещения, равным или кратным шагу дискретизации (Iech) промежуточного изображения, параллельно каждому направлению выравнивания (х, у).
2. Система по п.1, в которой расстояние (е3) между матрицей микролинз (3) и промежуточной плоскостью фокусировки (PI) равно общей фокусной длине указанных микролинз.
3. Система по п.1, в которой расстояние (е3) между матрицей микролинз (3) и промежуточной плоскостью фокусировки (PI) превышает 200 мкм.
4. Система по п.1, в которой каждое отверстие (О2) маски фильтра (2) изображения центровано относительно микролинзы (3), которая находится напротив указанного отверстия.
5. Система по любому из пп.1-4, в которой оптическая система (8) сопряжения включает в себя по меньшей мере следующие элементы в направлении распространения применяемого излучения внутри системы получения изображений:
- оптический компонент (4) рефокусировки;
- диафрагму (5), которая находится в плоскости (РР), сопряженной с маской фильтра (2) изображения через микролинзы (3) и оптический компонент (4) рефокусировки; и
- оптический компонент (6) ретрансляции, который расположен с возможностью формирования изображения матрицы микролинз (3) в плоскости (Р9) съемки изображения через оптический компонент (4) рефокусировки и указанный оптический компонент (6) ретрансляции.
6. Система по любому из пп.1-4, в которой оптическая система (8) сопряжения включает в себя по меньшей мере следующие компоненты в направлении распространения применяемого излучения внутри системы получения изображений:
- оптический компонент (4) рефокусировки;
- оптический компонент (6а) ретрансляции, расположенный с возможностью формирования изображения отверстий (О2) маски фильтра (2) изображения через микролинзы (3), через оптический компонент (4) рефокусировки и через указанный оптический компонент ретрансляции; и
- конечную часть (7) оптической системы, расположенную с возможностью формирования изображения матрицы микролинз (3) в плоскости съемки изображения (Р9) через оптический компонент (4) рефокусировки, оптический компонент (6а) ретрансляции и указанную конечную часть (7) оптической системы.
7. Система по п.1, адаптированная для применяемого излучения, находящегося в инфракрасной области.
8. Система по п.6, дополнительно содержащая криостат (50), содержащий конечную часть (7) оптической системы и матрицу (9) детектирования изображения, при этом указанный криостат ограничен стенкой, имеющей окно напротив изображения отверстий (О2) маски фильтра (2), формуемого через микролинзы (3), оптический компонент (4) рефокусировки и оптический компонент (6а) ретрансляции.
9. Система по п.1, дополнительно содержащая блок (11) управления, выполненный:
- с возможностью управления устройством перемещения изображения таким образом, чтобы помещать промежуточное изображение последовательно в положения, смещенные на значения, кратные шагу дискретизации (Iech), параллельно каждому направлению выравнивания (х, у); и
- для каждого положения промежуточного изображения - с возможностью управления циклом съемки и записи изображения при помощи матрицы (9) детектирования изображения.
10. Система по п.9, дополнительно содержащая:
- блок (12) воссоздания изображения, выполненный с возможностью комбинирования изображений, снятых и записанных соответственно для последовательных положений промежуточного изображения, в порядке, соответствующем этим последовательным положениям.
11. Система по п.1, в которой устройство перемещения изображения содержит пластинку (10), прозрачную для применяемого излучения и расположенную между объективом (1) и промежуточной плоскостью фокусировки (PI), при этом указанная пластинка имеет наклон, меняющийся по отношению к оптической оси объектива (1).
12. Система по п.1, в которой устройство перемещения изображения содержит ряд пластинок, прозрачных для применяемого излучения и взаимозаменяемых, при этом каждая пластинка поочередно располагается между объективом (1) и промежуточной плоскостью фокусировки (PI), и она производит разное смещение промежуточного изображения указанной промежуточной плоскости фокусировки.
RU2013144584/28A 2011-03-04 2012-02-17 Система получения изображения высокого разрешения RU2580870C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1151790 2011-03-04
FR1151790A FR2972271B1 (fr) 2011-03-04 2011-03-04 Systeme d'imagerie a haute resolution
PCT/FR2012/050349 WO2012120214A2 (fr) 2011-03-04 2012-02-17 Systeme d'imagerie a haute resolution

Publications (2)

Publication Number Publication Date
RU2013144584A RU2013144584A (ru) 2015-04-10
RU2580870C2 true RU2580870C2 (ru) 2016-04-10

Family

ID=45873168

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013144584/28A RU2580870C2 (ru) 2011-03-04 2012-02-17 Система получения изображения высокого разрешения

Country Status (7)

Country Link
US (2) US9273241B2 (ru)
EP (1) EP2681604B1 (ru)
BR (1) BR112013021763B1 (ru)
FR (1) FR2972271B1 (ru)
IL (1) IL228178A (ru)
RU (1) RU2580870C2 (ru)
WO (1) WO2012120214A2 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688965C1 (ru) * 2018-07-25 2019-05-23 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Способ регистрации изображения с повышенным разрешением
CN109104582B (zh) * 2018-08-14 2020-08-18 西安工业大学 一种实时超分辨偏振红外光电成像方法
CN112841170A (zh) * 2021-01-09 2021-05-28 于威 一种维持羊膜间充质干细胞活性的保存液及保存方法
US11902637B2 (en) * 2021-04-16 2024-02-13 Raytheon Company Beam director intermediate alignment target assembly configuration
CN114369371B (zh) * 2021-12-17 2023-02-21 东南大学 一种基于生物抗冻蛋白的抑冰泡沫沥青及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754278A (en) * 1996-11-27 1998-05-19 Eastman Kodak Company Image transfer illumination system and method
US5796522A (en) * 1996-12-20 1998-08-18 Eastman Kodak Company Lenslet array system with a baffle structure and a shutter
US5973844A (en) * 1996-01-26 1999-10-26 Proxemics Lenslet array systems and methods
EP1372026A2 (en) * 2002-06-12 2003-12-17 Eastman Kodak Company Camera having microlens array in front of the photographic film and related imaging method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1057624A (en) * 1963-11-15 1967-02-01 Aga Ab Scanning mechanism
GB2248310A (en) * 1987-12-09 1992-04-01 Rank Xerox Ltd Thermal imaging apparatus
US6980248B1 (en) * 1999-06-30 2005-12-27 Canon Kabushiki Kaisha Image pickup apparatus
US20090122148A1 (en) * 2007-09-14 2009-05-14 Fife Keith G Disjoint light sensing arrangements and methods therefor
WO2011066275A2 (en) * 2009-11-25 2011-06-03 Massachusetts Institute Of Technology Actively addressable aperture light field camera

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973844A (en) * 1996-01-26 1999-10-26 Proxemics Lenslet array systems and methods
US5754278A (en) * 1996-11-27 1998-05-19 Eastman Kodak Company Image transfer illumination system and method
US5796522A (en) * 1996-12-20 1998-08-18 Eastman Kodak Company Lenslet array system with a baffle structure and a shutter
EP1372026A2 (en) * 2002-06-12 2003-12-17 Eastman Kodak Company Camera having microlens array in front of the photographic film and related imaging method

Also Published As

Publication number Publication date
WO2012120214A2 (fr) 2012-09-13
BR112013021763B1 (pt) 2021-03-09
FR2972271B1 (fr) 2013-04-12
BR112013021763A2 (pt) 2016-10-18
IL228178A (en) 2015-09-24
US20130342755A1 (en) 2013-12-26
WO2012120214A3 (fr) 2012-11-01
EP2681604B1 (fr) 2014-12-17
FR2972271A1 (fr) 2012-09-07
RU2013144584A (ru) 2015-04-10
US9273241B2 (en) 2016-03-01
US20140213663A1 (en) 2014-07-31
EP2681604A2 (fr) 2014-01-08

Similar Documents

Publication Publication Date Title
Ihrke et al. Principles of light field imaging: Briefly revisiting 25 years of research
US7723662B2 (en) Microscopy arrangements and approaches
CN109615651B (zh) 基于光场显微系统的三维显微成像方法及系统
CN103472592B (zh) 一种快照式高通量的偏振成像方法和偏振成像仪
JP5159986B2 (ja) 撮像装置および撮像方法
RU2580870C2 (ru) Система получения изображения высокого разрешения
CN102119527B (zh) 图像处理设备和图像处理方法
US20080204744A1 (en) High Speed, Optically-Multiplexed, Hyperspectral Imagers and Methods Thereof
EP3129813B1 (en) Low-power image change detector
EP1912434A1 (en) Compound eye imaging apparatus
CN110636277B (zh) 检测设备、检测方法和摄像设备
CN104181686A (zh) 基于fpm的光场显微方法
CN109981939A (zh) 成像系统
US9343491B2 (en) Spectral imaging sensors and methods
US10783652B2 (en) Plenoptic imaging apparatus, method, and applications
EP2590399B1 (en) Hadamard enhanced sensor
CN1702452B (zh) 数字微镜多目标成像光谱仪装置
JP5491964B2 (ja) 立体撮像装置
CN106908942A (zh) 基于微透镜阵列的高分辨并行显微成像仪
JP2016111678A (ja) 撮像素子、撮像装置、焦点検出装置ならびに画像処理装置およびその制御方法
US9794468B2 (en) Image sensor, image capturing apparatus, focus detection apparatus, image processing apparatus, and control method of image capturing apparatus using pupil division in different directions
Brückner Microoptical multi aperture imaging systems
US10992859B2 (en) Image capture apparatus and control method thereof capable of reducing an image data amount
CN110349237A (zh) 基于卷积神经网络的快速体成像方法
CN108458786A (zh) 光谱测定装置以及光谱测定方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210218