RU2580566C2 - Method for cooling single- or multi-component stream - Google Patents

Method for cooling single- or multi-component stream Download PDF

Info

Publication number
RU2580566C2
RU2580566C2 RU2012104233/06A RU2012104233A RU2580566C2 RU 2580566 C2 RU2580566 C2 RU 2580566C2 RU 2012104233/06 A RU2012104233/06 A RU 2012104233/06A RU 2012104233 A RU2012104233 A RU 2012104233A RU 2580566 C2 RU2580566 C2 RU 2580566C2
Authority
RU
Russia
Prior art keywords
mixture
fraction
boiling
coolant mixture
cooling
Prior art date
Application number
RU2012104233/06A
Other languages
Russian (ru)
Other versions
RU2012104233A (en
Inventor
Хайнц БАУЭР
Андреас БУБ
Original Assignee
Линде Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Линде Акциенгезелльшафт filed Critical Линде Акциенгезелльшафт
Publication of RU2012104233A publication Critical patent/RU2012104233A/en
Application granted granted Critical
Publication of RU2580566C2 publication Critical patent/RU2580566C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0219Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

FIELD: cooling.
SUBSTANCE: invention relates to a method of cooling a single- or multi-component stream via indirect heat exchange with a coolant mixture in a coolant mixture circulation loop. Coolant mixture is compressed in two steps, divided into a low-boiling, compressed to final pressure of the coolant mixture circulation loop, fraction of the coolant mixture and one high-boiling fraction, compressed to an intermediate pressure, fraction of the coolant mixture. High-boiling fraction of the coolant mixture is injected to the pressure of the low-boiling fraction of the coolant mixture and before indirect heat exchange or directly at the beginning thereof is combined with the low-boiling fraction of the coolant mixture.
EFFECT: technical result is a method of cooling which requires less expenses on equipment and control.
3 cl, 1 dwg

Description

Изобретение относится к способу охлаждения одно- или многокомпонентного потока, в частности обогащенной углеводородами фракции, косвенным теплообменом со смесью охлаждающего средства в циркуляционном контуре смеси охлаждающего средства, причем смесь охлаждающего средства сжимают по меньшей мере в двух ступенях и разделяют на низкокипящую, сжатую до конечного давления в циркуляционном контуре смеси охлаждающего средства, фракцию смеси охлаждающего средства и по меньшей мере одну высококипящую, сжатую до промежуточного давления, фракцию смеси охлаждающего средства.The invention relates to a method for cooling a single or multicomponent stream, in particular a hydrocarbon-rich fraction, by indirect heat exchange with a coolant mixture in the circulation circuit of a coolant mixture, the coolant mixture being compressed in at least two stages and divided into a low boiling, compressed to a final pressure in the circulation circuit of the coolant mixture, a fraction of the coolant mixture and at least one high boiling, compressed to an intermediate pressure, fra tion of the coolant mixture.

Соответствующий родовому определению способ охлаждения одно- или многокомпонентного потока известен, например, из патента DE-C 19722490. Подобные способы охлаждения или, соответственно, сжижения находят применение, например, в рассчитанных на базисную нагрузку установках для сжижения. При этом низкокипящие, а также высококипящие фракции смеси охлаждающего средства испаряют посредством охлаждаемого или, соответственно, сжижаемого потока при различных уровнях температуры. С помощью этого способа раздельное проведение потока может благоприятно влиять на температурный профиль, достигаемый в теплообменнике или, соответственно, теплообменниках. Однако описанный в DE-C 19722490 способ по сравнению с циркуляционными контурами для смеси, в которых подобное разделение не производят, требует известных дополнительных расходов на оборудование и регулирование.A generic definition of a method for cooling a single or multicomponent stream is known, for example, from DE-C 19722490. Such methods of cooling or, accordingly, liquefaction are used, for example, in load-bearing liquefaction plants. At the same time, low-boiling as well as high-boiling fractions of the coolant mixture are evaporated by means of a cooled or, accordingly, liquefied stream at various temperature levels. Using this method, separate flow conduction can favorably influence the temperature profile achieved in a heat exchanger or, respectively, heat exchangers. However, the method described in DE-C 19722490, in comparison with the circulation circuits for a mixture in which such separation is not performed, requires known additional costs for equipment and regulation.

Задача настоящего изобретения состоит в создании соответствующего рассмотренному типу способа охлаждения одно- или многокомпонентного потока, который, в частности, пригоден для сжижения обогащенного углеводородами потока и который требует меньших затрат на оборудование и/или регулирование.An object of the present invention is to provide a method for cooling a single or multicomponent stream that is suitable in particular for liquefying a hydrocarbon-rich stream and which requires less equipment and / or regulation.

Для решения этой задачи предложен соответствующий рассмотренному типу способ охлаждения одно- или многокомпонентного потока, который отличается тем, что высококипящую фракцию смеси охлаждающего средства нагнетают до давления низкокипящей фракции охлаждающего средства и перед косвенным теплообменом или непосредственно в его начале объединяют с низкокипящей фракцией смеси охлаждающего средства.To solve this problem, a method for cooling a single or multicomponent stream corresponding to the considered type has been proposed, which is characterized in that the high-boiling fraction of the coolant mixture is pumped to the pressure of the low-boiling fraction of the cooling medium and combined with the low-boiling fraction of the mixture of cooling medium before indirect heat exchange.

В результате предусмотренного согласно изобретению объединения высококипящей, а также низкокипящей фракции смеси охлаждающего средства снижаются затраты на оборудование и регулирование. Однако при этом не происходит возрастание энергопотребления циркуляционным контуром смеси охлаждающего средства. Дополнительные капиталовложения, а также эксплуатационные затраты обусловливаются дополнительно предусматриваемым насосом, с помощью которого высококипящую фракцию смеси охлаждающего средства нагнетают до давления низкокипящей фракции смеси охлаждающего средства.As a result of combining the high boiling as well as low boiling fraction of the coolant mixture according to the invention, the cost of equipment and regulation are reduced. However, there is no increase in energy consumption by the circulation circuit of the coolant mixture. Additional investments, as well as operating costs, are determined by an additional pump, by means of which the high-boiling fraction of the coolant mixture is pumped to the pressure of the low-boiling fraction of the coolant mixture.

Дополнительные предпочтительные варианты исполнения соответствующего изобретению способа охлаждения одно- или многокомпонентного потока, которые представляют предмет зависимых пунктов патентной формулы, отличаются тем, чтоFurther preferred embodiments of the method for cooling a single or multi-component stream according to the invention, which are the subject of the dependent claims, are characterized in that

- нагнетание высококипящей фракции смеси охлаждающего средства проводят в одну или несколько ступеней, и- injection of a high boiling fraction of the mixture of coolant is carried out in one or more steps, and

- объединение или, соответственно, смешение высококипящей и низкокипящей фракций смеси охлаждающего средства выполняют в специально для этого сформированной области теплообменника.- the combination or, accordingly, the mixing of high-boiling and low-boiling fractions of a mixture of coolants is performed in a specially formed region of the heat exchanger.

Соответствующий изобретению способ охлаждения одно- или многокомпонентного потока, а также дополнительные предпочтительные варианты исполнения его далее будут более подробно разъяснены с помощью примера исполнения, представленного на единственном фигуре 1.Corresponding to the invention, the method of cooling a single or multicomponent stream, as well as additional preferred embodiments of it will be further explained in more detail using the example of execution presented in a single figure 1.

На фигуре 1 показан способ охлаждения и сжижения обогащенной углеводородами азотсодержащей сырьевой фракции, при котором процесс сжижения включает получение высококонцентрированной азотной фракции. Подобный способ, например, представляет собой предмет неопубликованной заявки DE-А 102009038458. Цитированием этого документа его содержание полностью включено в раскрытие настоящей заявки.The figure 1 shows a method of cooling and liquefying a hydrocarbon-rich nitrogen-containing feed fraction, in which the liquefaction process involves obtaining a highly concentrated nitrogen fraction. A similar method, for example, is the subject of the unpublished application DE-A 102009038458. By citing this document, its contents are fully included in the disclosure of this application.

Через трубопровод 100 обогащенную углеводородами азотсодержащую сырьевую фракцию сначала направляют в необязательно предусмотренное сушильное устройство А и затем по трубопроводу 101 в теплообменник Е1. В нем сырьевая фракция сжижается и переохлаждается посредством описываемых ниже технологических потоков. По трубопроводу 102, в котором предусмотрен редукционный клапан d, переохлажденную сырьевую фракцию подают в разделительную колонну Т1. Из ее отстойника через трубопровод 106 обогащенную углеводородами азотсодержащую фракцию выводят и охлаждают в теплообменнике Е4. После расширения в вентиле е эту фракцию по участкам 107 и 108 трубопровода направляют в сепаратор D1. Из донной части этого сепаратора по трубопроводу 109 выводят жидкостную фракцию LNG-продукта и направляют в резервуар L для хранения LNG (сжиженного природного газа).Via a conduit 100, a hydrocarbon-rich feed fraction is first sent to an optionally provided drying apparatus A and then through conduit 101 to a heat exchanger E1. In it, the feed fraction is liquefied and supercooled by the process streams described below. Through a pipeline 102 in which a pressure reducing valve d is provided, the supercooled feed fraction is fed to a separation column T1. A nitrogen-containing fraction enriched in hydrocarbons is removed from its sump through a pipeline 106 and cooled in a heat exchanger E4. After expansion in the valve e, this fraction is sent to the separator D1 in sections 107 and 108 of the pipeline. From the bottom of this separator, a liquid fraction of the LNG product is withdrawn through line 109 and sent to the LNG storage tank (liquefied natural gas).

Из головной части разделительной колонны Т1 по трубопроводу 104 выводят высококонцентрированную азотную фракцию; содержание азота в ней обычно составляет между 90 и 100 объемных процентов. Эту азотную фракцию подогревают в теплообменниках Е4 и Е1 с помощью охлаждаемых технологических потоков и затем выводят из процесса по трубопроводу 105.From the head of the separation column T1, a highly concentrated nitrogen fraction is withdrawn through line 104; its nitrogen content is usually between 90 and 100 volume percent. This nitrogen fraction is heated in heat exchangers E4 and E1 using cooled process streams and then removed from the process via pipeline 105.

Для проведения протекающего в разделительной колонне Т1 процесса разделения через трубопровод 103 выводят боковую фракцию, охлаждают в теплообменнике Е4 и вводят в разделительную колонну Т1 в качестве флегмы.To carry out the separation process taking place in the separation column T1 through the conduit 103, a side fraction is withdrawn, cooled in the heat exchanger E4 and introduced into the separation column T1 as a reflux.

Из головной части сепаратора D1 по трубопроводу 112 выводят обогащенную азотом фракцию. С использованием трубопровода 110, ее смешивают с парами, выделившимися в резервуаре L для хранения LNG из сжиженного природного газа, сжатыми с помощью компрессоре С2. Этот поток по трубопроводу 113 пропускают через теплообменник Е1 и подогревают посредством охлаждаемых технологических потоков. Нагретый поток по трубопроводу 114 направляют в компрессорный узел С1, предпочтительно скомпонованный как многоступенчатый, в котором сжимают до желательного давления сжижения и затем по трубопроводу 115 примешивают к сырьевой фракции 100. Насколько это необходимо или необязательно, может быть предусмотрено аминное промывное устройство A' (для удаления кислотных газов).A nitrogen enriched fraction is withdrawn from the head of the separator D1 through a pipe 112. Using line 110, it is mixed with the vapors released in the LNG storage tank LNG, compressed using compressor C2. This stream through a pipe 113 is passed through a heat exchanger E1 and heated by means of cooled process streams. The heated stream is sent through a pipe 114 to a compressor unit C1, preferably configured as a multi-stage, in which it is compressed to a desired liquefaction pressure and then mixed through a pipe 115 to a feed fraction 100. As far as necessary or optional, an amine washer A ′ may be provided (for acid gas removal).

Вышеописанный способ в особенности пригоден для применения, когда концентрация азота в конечном продукте LNG должна быть ограничена уровнем 1% по объему. Иначе в случае более высокой концентрации азота это может обусловить внутри резервуара для хранения LNG нежелательные и опасные расслоения вследствие различающихся плотностей.The above method is particularly suitable for applications where the nitrogen concentration in the final LNG product should be limited to 1% by volume. Otherwise, in the case of a higher nitrogen concentration, this may cause unwanted and dangerous delamination inside the LNG storage tank due to different densities.

Скомпонованный согласно изобретению циркуляционный контур 1-9 смеси охлаждающего средства включает двухступенчатый компрессорный узел С11, размещенный выше по потоку относительно этого компрессорного узла сепаратор D10, а также два сепаратора D11 и D12, размещенных ниже по потоку относительно этих обеих компрессорных ступеней. Кроме того, в отличие от способа, описанного в патентном документе DE-С 19722490, предусмотрен скомпонованный как одно- или многоступенчатый насос или, соответственно, насосный узел Р11.The coolant mixture circulation circuit 1-9 arranged according to the invention includes a two-stage compressor unit C11 arranged upstream of this compressor unit, a separator D10, as well as two separators D11 and D12 located downstream of both of these compressor stages. In addition, unlike the method described in patent document DE-C 19722490, it is arranged as a single or multi-stage pump or, accordingly, the pump unit P11.

Смесь охлаждающего средства, испаренную в теплообменнике Е1 с помощью сжижаемого сырьевого потока 101, по трубопроводу 1 направляют в вышеуказанный сепаратор D10. Газовую фазу, выводимую из головной части этого сепаратора по трубопроводу 2, вводят в первую компрессорную ступень компрессорного узла С11, с ее помощью сжимают до желательного промежуточного давления. По трубопроводу 3 сжатую смесь охлаждающего средства после прохода через дополнительное охлаждающее устройство Е11 вводят в сепаратор D11. Из его отстойника по трубопроводу 5 выводят высококипящую фракцию смеси охлаждающего средства и с помощью насоса или, соответственно, насосного узла Р11 нагнетают до давления еще описываемой газообразной низкокипящей фракции охлаждающей смеси. По трубопроводу 5', в котором размещают регулировочный вентиль b, эту жидкостную фракцию направляют на вход теплообменника Е1.The coolant mixture vaporized in the heat exchanger E1 by means of a liquefied feed stream 101 is sent via line 1 to the above separator D10. The gas phase discharged from the head of this separator via pipeline 2 is introduced into the first compressor stage of the compressor unit C11, with its help it is compressed to the desired intermediate pressure. Through pipeline 3, a compressed mixture of coolant after passing through an additional cooling device E11 is introduced into the separator D11. A high-boiling fraction of the coolant mixture is withdrawn from its sump via line 5 and, using a pump or pump unit P11, is pumped to the pressure of the still described gaseous low-boiling fraction of the cooling mixture. Through the pipe 5 ', in which the control valve b is placed, this liquid fraction is sent to the inlet of the heat exchanger E1.

Газовую фазу, выведенную из сепаратора D11 через трубопровод 4, направляют во вторую компрессорную ступень компрессорного узла 11 и с ее помощью сжимают до желательного конечного давления в циркуляционном контуре смеси охлаждающего средства. По трубопроводу 6 сжатую смесь охлаждающего средства после прохода через дополнительное охлаждающее устройство Е12 вводят в сепаратор D12. Образовавшуюся в отстойнике сепаратора жидкостную фракцию по трубопроводу 7, в котором размещают регулировочный вентиль с, возвращают на вход сепаратора D11. Из головной части сепаратора D12 по трубопроводу 8 выводят низкокипящую, сжатую до желательного конечного давления газообразную фракцию смеси охлаждающего средства, и тоже возвращают в теплообменник Е1.The gas phase withdrawn from the separator D11 through line 4 is sent to the second compressor stage of the compressor unit 11 and is used to compress it to the desired final pressure in the circulation circuit of the coolant mixture. Through line 6, the compressed coolant mixture after passing through the additional cooling device E12 is introduced into the separator D12. The liquid fraction formed in the separator sump through pipeline 7, in which the control valve c is placed, is returned to the inlet of the separator D11. From the head part of the separator D12, a low-boiling, gaseous fraction of the mixture of cooling medium, compressed to the desired final pressure, is withdrawn via pipeline 8, and also returned to the heat exchanger E1.

Согласно изобретению жидкостные, а также газообразные фракции смеси охлаждающего средства 5' и 8 объединяют до или непосредственно в самом начале теплообмена, происходящего в теплообменнике Е1, и вводят в теплообменник Е1 в виде двухфазного потока. Двухфазная смесь охлаждающего средства охлаждается в теплообменнике Е1 под давлением и при этом полностью сжижается. На холодном конце теплообменника Е1 смесь охлаждающего средства выходит по трубопроводу 9, расширяется в вентиле а и затем при новом проходе через теплообменник Е1 полностью испаряется.According to the invention, the liquid as well as gaseous fractions of the mixture of cooling medium 5 'and 8 are combined before or directly at the very beginning of the heat exchange occurring in the heat exchanger E1 and introduced into the heat exchanger E1 in the form of a two-phase flow. The biphasic coolant mixture is cooled in a heat exchanger E1 under pressure and at the same time is completely liquefied. At the cold end of heat exchanger E1, the coolant mixture exits through line 9, expands in the valve a, and then completely evaporates when it passes through the heat exchanger E1 again.

В отличие от способа, описанного в патентном документе DE-С 19722490, в соответствующем изобретению способе невозможно никакое целенаправленное воздействие на температурный профиль в теплообменнике Е1. Поскольку это в многочисленных ситуациях применения не требуется, соответствующий изобретению способ, который имеет результатом небольшие затраты на оборудование и регулирование, может быть преимущественным в многочисленных вариантах применения.In contrast to the method described in patent document DE-C 19722490, in the method according to the invention, no targeted effect on the temperature profile in the heat exchanger E1 is possible. Since this is not required in numerous application situations, the inventive method, which results in low equipment and control costs, may be advantageous in numerous applications.

Claims (3)

1. Способ охлаждения одно- или многокомпонентного потока, в частности обогащенной углеводородами фракции, косвенным теплообменом со смесью охлаждающего средства в циркуляционном контуре смеси охлаждающего средства, причем смесь охлаждающего средства сжимают по меньшей мере в две ступени и разделяют на низкокипящую, сжатую до конечного давления циркуляционного контура смеси охлаждающего средства, фракцию смеси охлаждающего средства и по меньшей мере одну высококипящую, сжатую до промежуточного давления, фракцию смеси охлаждающего средства, отличающийся тем, что высококипящую фракцию (5) смеси охлаждающего средства нагнетают (Р11) до давления низкокипящей фракции (8) смеси охлаждающего средства и перед косвенным теплообменом (Е1) или непосредственно в его начале объединяют с низкокипящей фракцией (8) смеси охлаждающего средства.1. A method of cooling a single or multicomponent stream, in particular a hydrocarbon-rich fraction, by indirect heat exchange with a mixture of a cooling agent in the circulation circuit of the mixture of cooling agent, wherein the mixture of cooling agent is compressed in at least two stages and divided into a low-boiling, compressed to a final pressure circulation the contour of the mixture of cooling medium, the fraction of the mixture of cooling medium and at least one high-boiling, compressed to intermediate pressure, fraction of the mixture of cooling medium characterized in that the high-boiling fraction (5) of the coolant mixture is pumped (P11) to the pressure of the low-boiling fraction (8) of the coolant mixture and combined with the low-boiling fraction (8) of the coolant mixture before indirect heat transfer (E1) or directly . 2. Способ по п. 1, отличающийся тем, что нагнетание (Р11) высококипящей фракции (5) смеси охлаждающего средства проводят в одну или несколько ступеней.2. The method according to p. 1, characterized in that the injection (P11) of the high boiling fraction (5) of the coolant mixture is carried out in one or more stages. 3. Способ по п. 1 или 2, отличающийся тем, что объединение или, соответственно, смешение высококипящей (5') и низкокипящей фракций (8) смеси охлаждающего средства проводят в специально для этого сформированной области теплообменника (Е1). 3. The method according to p. 1 or 2, characterized in that the combination or, accordingly, the mixing of the high boiling (5 ') and low boiling fractions (8) of the coolant mixture is carried out in a specially formed region of the heat exchanger (E1).
RU2012104233/06A 2011-02-08 2012-02-07 Method for cooling single- or multi-component stream RU2580566C2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011010633.2 2011-02-08
DE102011010633A DE102011010633A1 (en) 2011-02-08 2011-02-08 Method for cooling a one-component or multi-component stream

Publications (2)

Publication Number Publication Date
RU2012104233A RU2012104233A (en) 2013-08-20
RU2580566C2 true RU2580566C2 (en) 2016-04-10

Family

ID=45654840

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012104233/06A RU2580566C2 (en) 2011-02-08 2012-02-07 Method for cooling single- or multi-component stream

Country Status (10)

Country Link
US (1) US20120198883A1 (en)
EP (1) EP2484999A3 (en)
CN (1) CN102636001B (en)
AR (1) AR085152A1 (en)
AU (1) AU2012200383B2 (en)
BR (1) BR102012002885B1 (en)
DE (1) DE102011010633A1 (en)
IN (1) IN2012CH00435A (en)
MY (1) MY169847A (en)
RU (1) RU2580566C2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012008961A1 (en) * 2012-05-03 2013-11-07 Linde Aktiengesellschaft Process for re-liquefying a methane-rich fraction
DE102013016695A1 (en) * 2013-10-08 2015-04-09 Linde Aktiengesellschaft Process for liquefying a hydrocarbon-rich fraction
AR105277A1 (en) * 2015-07-08 2017-09-20 Chart Energy & Chemicals Inc MIXED REFRIGERATION SYSTEM AND METHOD
CN106765776B (en) * 2017-01-04 2023-01-17 华南理工大学建筑设计研究院有限公司 Distributed variable-frequency three-stage pump regional cooling system and method
US11221176B2 (en) * 2018-08-14 2022-01-11 Air Products And Chemicals, Inc. Natural gas liquefaction with integrated nitrogen removal
RU2714088C1 (en) * 2019-04-25 2020-02-11 Общество с ограниченной ответственностью "Газпром СПГ технологии" Natural gas liquefaction complex (versions)
RU2715806C1 (en) * 2019-05-31 2020-03-03 Юрий Васильевич Белоусов Natural gas liquefaction complex with a low-temperature complex treatment unit
EP4014001A1 (en) * 2019-08-13 2022-06-22 Linde GmbH Method and unit for processing a gas mixture containing nitrogen and methane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU476766A3 (en) * 1967-12-20 1975-07-05 Линде Аг (Фирма) Method of liquefying natural gas
US6199403B1 (en) * 1998-02-09 2001-03-13 Exxonmobil Upstream Research Company Process for separating a multi-component pressurizied feed stream using distillation
US6298688B1 (en) * 1999-10-12 2001-10-09 Air Products And Chemicals, Inc. Process for nitrogen liquefaction
RU2212601C2 (en) * 1997-04-18 2003-09-20 Линде Акциенгезельшафт Method for liquefaction of hydrocarbon-rich gas stream

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA925786A (en) * 1971-01-14 1973-05-08 J. F. Pritchard And Company Single mixed refrigerant, closed loop process for liquefying natural gas
FR2471567B1 (en) * 1979-12-12 1986-11-28 Technip Cie METHOD AND SYSTEM FOR COOLING A LOW TEMPERATURE COOLING FLUID
US4727723A (en) * 1987-06-24 1988-03-01 The M. W. Kellogg Company Method for sub-cooling a normally gaseous hydrocarbon mixture
US5881569A (en) * 1997-05-07 1999-03-16 Elcor Corporation Hydrocarbon gas processing
DE19722490C1 (en) * 1997-05-28 1998-07-02 Linde Ag Single flow liquefaction of hydrocarbon-rich stream especially natural gas with reduced energy consumption
DE19937623B4 (en) * 1999-08-10 2009-08-27 Linde Ag Process for liquefying a hydrocarbon-rich stream
US6978638B2 (en) * 2003-05-22 2005-12-27 Air Products And Chemicals, Inc. Nitrogen rejection from condensed natural gas
US7159417B2 (en) * 2004-03-18 2007-01-09 Abb Lummus Global, Inc. Hydrocarbon recovery process utilizing enhanced reflux streams
US7204100B2 (en) * 2004-05-04 2007-04-17 Ortloff Engineers, Ltd. Natural gas liquefaction
DE102004032710A1 (en) * 2004-07-06 2006-02-09 Linde Ag Method for liquefying a hydrocarbon-rich stream, especially a natural gas stream, comprises separating a first coolant mixture cycle into a low boiling fraction and a higher boiling fraction
US20090071190A1 (en) * 2007-03-26 2009-03-19 Richard Potthoff Closed cycle mixed refrigerant systems
DE102008019392A1 (en) * 2008-04-17 2009-10-22 Linde Aktiengesellschaft Process for liquefying a hydrocarbon-rich fraction
DE102009008230A1 (en) * 2009-02-10 2010-08-12 Linde Ag Process for liquefying a hydrocarbon-rich stream
DE102009016046A1 (en) * 2009-04-02 2010-10-07 Linde Aktiengesellschaft Process for liquefying a hydrocarbon-rich fraction
DE102009038458A1 (en) 2009-08-21 2011-02-24 Linde Ag Process for separating nitrogen from natural gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU476766A3 (en) * 1967-12-20 1975-07-05 Линде Аг (Фирма) Method of liquefying natural gas
RU2212601C2 (en) * 1997-04-18 2003-09-20 Линде Акциенгезельшафт Method for liquefaction of hydrocarbon-rich gas stream
US6199403B1 (en) * 1998-02-09 2001-03-13 Exxonmobil Upstream Research Company Process for separating a multi-component pressurizied feed stream using distillation
US6298688B1 (en) * 1999-10-12 2001-10-09 Air Products And Chemicals, Inc. Process for nitrogen liquefaction

Also Published As

Publication number Publication date
MY169847A (en) 2019-05-17
AR085152A1 (en) 2013-09-11
BR102012002885A2 (en) 2013-10-29
CN102636001B (en) 2016-12-14
AU2012200383B2 (en) 2016-06-16
EP2484999A2 (en) 2012-08-08
IN2012CH00435A (en) 2015-08-21
CN102636001A (en) 2012-08-15
AU2012200383A1 (en) 2012-08-23
US20120198883A1 (en) 2012-08-09
DE102011010633A1 (en) 2012-08-09
RU2012104233A (en) 2013-08-20
BR102012002885B1 (en) 2021-07-06
EP2484999A3 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
RU2580566C2 (en) Method for cooling single- or multi-component stream
AU2008213739B2 (en) Process and apparatus for depleting carbon dioxide content in a natural gas feedstream containing ethane and C3+ hydrocarbons
RU2195611C2 (en) Method for cooling by means of multicomponent cooling agent for liquefying natural gas
KR100338882B1 (en) Improved cascade refrigeration process for liquefaction of natural gas
RU2641778C2 (en) Complex method for extraction of gas-condensate liquids and liquefaction of natural gas
RU2668303C1 (en) System and method for liquefying of natural gas (options)
RU2549905C2 (en) Treatment method for natural gas containing carbon dioxide
RU2194930C2 (en) Method for liquefaction of natural gas containing at least one freezable component
CN102220176B (en) By the method for nitrogen stripping separation of nitrogen from natural gas flow in the production of liquefied natural gas
KR102312640B1 (en) Mixed refrigerant system and method
JP5613684B2 (en) Method for nitrogen removal and / or helium recovery in an LNG liquefaction plant
RU2015114715A (en) INTEGRATED NITROGEN REMOVAL FOR PRODUCING LIQUEFIED NATURAL GAS USING A COOLED HEAT PUMP
RU2009119469A (en) METHOD AND DEVICE FOR HYDROCARBON FLOW TREATMENT
RU2462672C2 (en) Method of separating nitrogen from liquefied natural gas
RU2015114796A (en) INTEGRATED NITROGEN REMOVAL IN THE PRODUCTION OF LIQUID NATURAL GAS USING AN INTERMEDIATE SEPARATION OF THE SOURCE GAS
EA011523B1 (en) Ngl recovery methods and plant therefor
RU2614947C1 (en) Method for natural gas processing with c2+ recovery and plant for its implementation
MX2011004356A (en) Nitrogen removal from natural gas.
RU2533462C2 (en) Feed natural gas treatment method to produce treated natural gas and hydrocarbon fraction c5 + and the respective unit
RU2731351C2 (en) Method and system for production of lean methane-containing gas flow
CN107869881B (en) Mixed refrigerant cooling process and system
RU2537480C2 (en) Method of liquidising flow with high content of hydrocarbons
RU2446370C2 (en) Method of processing flow of hydrocarbons and device to this end
RU2621572C2 (en) Method of reversing liquefaction of the rich methane of fraction
RU2423653C2 (en) Method to liquefy flow of hydrocarbons and plant for its realisation