RU2580304C1 - ПРОТИВОВИРУСНОЕ СРЕДСТВО НА ОСНОВЕ СУММЫ ФЛАВОНОИДОВ ИЗ Alchemilla vulgaris L. - Google Patents

ПРОТИВОВИРУСНОЕ СРЕДСТВО НА ОСНОВЕ СУММЫ ФЛАВОНОИДОВ ИЗ Alchemilla vulgaris L. Download PDF

Info

Publication number
RU2580304C1
RU2580304C1 RU2015106729/15A RU2015106729A RU2580304C1 RU 2580304 C1 RU2580304 C1 RU 2580304C1 RU 2015106729/15 A RU2015106729/15 A RU 2015106729/15A RU 2015106729 A RU2015106729 A RU 2015106729A RU 2580304 C1 RU2580304 C1 RU 2580304C1
Authority
RU
Russia
Prior art keywords
virus
extract
flavonoids
chloroform
ethyl acetate
Prior art date
Application number
RU2015106729/15A
Other languages
English (en)
Inventor
Наталья Алексеевна Мазуркова
Татьяна Абдулхаиловна Кукушкина
Екатерина Игоревна Филиппова
Жанна Борисовна Ибрагимова
Original Assignee
Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" (ФБУН ГНЦ ВБ "Вектор")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" (ФБУН ГНЦ ВБ "Вектор") filed Critical Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" (ФБУН ГНЦ ВБ "Вектор")
Priority to RU2015106729/15A priority Critical patent/RU2580304C1/ru
Application granted granted Critical
Publication of RU2580304C1 publication Critical patent/RU2580304C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/73Rosaceae (Rose family), e.g. strawberry, chokeberry, blackberry, pear or firethorn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

Изобретение относится к фармацевтической промышленности, а именно к применению суммы флавоноидов из корней или надземной части Alchemilla vulgaris L. в качестве противовирусного средства в отношении РНК-содержащего вируса гриппа А и ДНК-содержащих ортопоксвирусов и вируса простого герпеса 2-го типа. Применение суммы флавоноидов из корней или надземной части Alchemilla vulgaris L. (манжетки обыкновенной), полученных путем экстракции корней этилацетатом, объединения этилацетатного экстракта, концентрирования его упариванием и осаждения концентрата в хлороформе или экстракции надземной части манжетки обыкновенной, собранной в начале цветения, этиловым спиртом с последующим объединением и упариванием экстракта, разведения его дистиллированной водой, очистки водного экстракта хлороформом, экстракции очищенного водного остатка этилацетатом, упаривания полученного экстракта и осаждения продукта хлороформом при определенных условиях, в качестве противовирусного средства в отношении РНК-содержащего вируса гриппа А и ДНК-содержащих ортопоксвирусов и вируса простого герпеса 2-го типа. Вышеописанная сумма флавоноидов эффективна в качестве противовирусного средства в отношении РНК-содержащего вируса гриппа А и ДНК-содержащих ортопоксвирусов и вируса простого герпеса 2-го типа. 7 табл., 7 пр.

Description

Изобретение относится к средствам, полученным на основе флавоноидов из корней или надземной части Alchemilla vulgaris L. (манжетки обыкновенной), обладающих противовирусной активностью в отношении РНК-геномного вируса (вируса гриппа А) и ДНК-геномных вирусов (ортопоксвирусов: вирусов осповакцины и оспы мышей - эктромелии; и вируса простого герпеса 2-го типа), и может быть использовано в фармацевтике, вирусологии, медицине и ветеринарии.
В настоящее время по своей социальной значимости грипп находится на первом месте среди всех инфекционных болезней человека. Вирус гриппа вызывает ежегодные эпидемии, быстро распространяющиеся из страны в страну, вовлекая в тяжелых случаях (пандемии) значительную часть человеческой популяции земного шара. Наиболее эффективным противоэпидемическим средством против гриппа в настоящее время остается вакцинация, однако вследствие постоянной смены антигенных свойств возбудителя требуется постоянный мониторинг и разработка новых вакцинных штаммов, соответствующих циркулирующим в человеческой популяции в каждый конкретный эпидемический сезон.
Наряду с вакцинацией для предотвращения и лечения гриппа применяются химиопрофилактика и химиотерапия. В настоящее время для этих целей доступен широкий спектр иммуномодулирующих, патогенетических, общеукрепляющих и симптоматических средств и препаратов наряду со средствами специфической противогриппозной терапии. Последние препараты представлены химическими соединениями двух групп, отличающихся по мишеням и механизму действия в жизненном цикле вируса гриппа. Препараты первой группы - римантадин (альфа-метил-1-адамантилметиламина гидрохлорид) и амантадин (1-аминоадамантан) - блокируют белок М2 вируса гриппа, играющий роль ионного канала в вирусной мембране, препятствуя тем самым процессу расщепления гемагглютинина и слияния мембран вируса и лизосомальной вакуоли [Scholtissek C., Quack G., Klenk H.D., Webster R.G. // Antiviral Res. 1998, V. 37, P. 83-95]. Препараты второй группы направлены на ингибирование вирусной нейраминидазы - фермента, необходимого для почкования вирусных частиц. К этой группе соединений относятся озелтамивир ((3R,4R,5S)-этил-4-ацетамидо-5-амино-3-(пентан-3-илокси)циклогекс-1-енкарбоксилат) [Woodhead М., Lavanchy D., Johnston S., Colman P., Fleming D. // Int. J. Clin. Pract. 2000 V. 54(9), P. 604-610], занамивир (5-(ацетиламино)-4-[(аминоиминометил)-амино]-2,6-ангидро-3,4,5-тридезокси-D-глицеро-D-галактонон-2-еноновая кислота) и перамивир ((1S,2S,3S,4R)-3-[(1S)-1-ацетамидо-2-этил-бутил]-4-(диаминометилиденамино)-2-гидрокси-циклопентан-1-карбоновая кислота) [O′Malley Р. // Clin. Nurse Spec. 2010, V. 24(2), Р. 51-53]. Обе группы соединений имеют свои недостатки. В отношении группы производных адамантана можно отметить узкий спектр действия (препараты активны против гриппа A, но не против гриппа B), сравнительно высокую токсичность и быстрое формирование устойчивости штаммов вируса к препаратам. Для ингибиторов нейраминидазы характерны несколько меньшая клиническая эффективность, формирование резистентных вариантов и высокая стоимость синтеза, что делает эти препараты менее доступными для широкого использования. Поэтому поиск наиболее эффективных средств для профилактики и лечения гриппа является чрезвычайно актуальным.
Несмотря на уничтожение вируса натуральной оспы в 1980 г., потенциальная опасность возрождения этой инфекции сохраняется и в наши дни, так как во многих районах Центральной Африки, Южной Америки и Евразии распространены близкие к вирусу натуральной оспы патогенные для человека зоонозные ортопоксвирусы такие, как вирусы осповакцины, оспы коров, оспы буйволов и оспы обезьян, природным резервуаром которых являются разные виды грызунов. Кроме того, у населения отсутствует поствакцинальный иммунитет к вирусу натуральной оспы после прекращения более 30 лет назад вакцинации и производства вакцин по рекомендации ВОЗ, - все это создает риск обострения эпидемической ситуации [Львов Д.К., Зверев В.В, Гинцбург А.Л., Маренникова С.С., Пальцев М.А. Натуральная оспа - дремлющий вулкан // Вопросы вирусологии. - 2008. - №4. - С. 4-8].
В связи с вышеизложенным, а также с тем, что научное сообщество и органы здравоохранения не располагают эффективными адаптированными для массового применения профилактическими и лечебными препаратами против ортопоксвирусов, необходимы исследования по поиску и разработке таких препаратов.
Среди вирусных заболеваний герпетическая инфекция, вызываемая вирусами 1 и 2 типов, занимает одно из лидирующих мест. Так, согласно статистике ВОЗ, в последние годы заражение вирусами простого герпеса (ВПГ) составляет 75,0-95,0% населения Земли, при этом смертность от диссеминированных форм болезни, вызванной ВПГ, составляет 15,8% от всех вирусных заболеваний и занимает 2-е место после показателя смертности от гриппа (35,8%) [Самгин М.А. Простой герпес. Дерматологические аспекты / М.А. Самгин, А.А. Халдин. М.: МЕДпресс информ, 2002. 160 с.]. Герпесвирусная этиология, обусловленная ВПГ-1 и ВПГ-2, прослеживается у 10,0% всех энцефалитов и 20,0% менингоэнцефалитов на территории нашей страны. Летальность при энцефалитах герпетической этиологии составляет 80,0%. В России число госпитализированных больных с диагнозом ВПГ ежегодно превышает 2,5 млн чел, а трудопотери исчисляются более 40 млрд руб. в год. Больные с хроническими поражениями кожных покровов, вызванных вирусами герпеса, а также больные с генитальным герпесом составляют более 10,0% от всего населения России; в 2008 г. заболеваемость составила 18,1 на 100 тыс. населения [Самгин М.А. Простой герпес. Дерматологические аспекты / М.А. Самгин, А.А. Халдин. М.: МЕДпресс информ, 2002. 160 с.].
Для лечения герпетической инфекции используют: химиопрепараты, действующие непосредственно на вирусы; иммуномодуляторы; симптоматические, а также патогенетические средства [Исаков В.А., Архипова Е.И., Исаков Д.В. Герпесвирусные инфекции человека. СПб., 2006; с. 12-150]. Многие из применяемых в настоящее время противогерпетических препаратов имеют ряд существенных недостатков, среди них такие, как низкая биодоступность, высокая нефротоксичность, быстрое развитие устойчивости штаммов ВПГ к препаратам. Все это обусловливает актуальность проблемы создания более эффективных препаратов против герпеса.
Таким образом, одной из главных проблем профилактики и лечения вирусных инфекций является высокая скорость изменчивости многих вирусов, особенно вируса гриппа, что позволяет им, с одной стороны, ускользать от иммунного ответа хозяина, а с другой, - в течение нескольких вирусных поколений вырабатывать устойчивость к противовирусным препаратам. Все вышесказанное свидетельствует о необходимости поиска и разработки эффективных и дешевых противовирусных препаратов возможно более широкого спектра действия.
Предшествующий уровень техники
Известен способ получения суммы флавонолов с адаптогенными свойствами из надземных частей манжетки обыкновенной путем экстракции 96% этиловым спиртом, упаривания экстракта, добавления дистиллированной воды, очистки водного экстракта хлороформом, экстракции очищенного водного остатка этилацетатом, упаривания экстракта и осаждения продукта хлороформом (Патент РФ №2128516 «Способ получения Р-витаминного средства», МПК А61К 35/78, опубл. 10.04.1999).
Однако для полученного таким способом целевого продукта противовирусная активность в отношении РНК- и ДНК-геномных вирусов не исследована и не описана в литературе.
Известно отечественное противовирусное средство гипорамин (Hiporhaminum), получаемое из листьев облепихи крушиновидной - Hippophae rhamnoides L. семейства Лоховые - Elaeagnaceae, представляющее собой сухой очищенный стандартизованный экстракт на основе полифенольного комплекса галлоэллаготаннинов (Вичканова С.А. Изучение листьев облепихи и создание на их основе отечественного противовирусного средства «Гипорамин» // В книге:
«Актуальные проблемы создания новых лекарственных препаратов природного происхождения». V Междунар. съезд. Матер, съезда. - СПб. - 2001. - С. 198-204; Вичканова С.А. «Исследование клинической эффективности гипорамина при вирусных инфекциях у взрослых» // В книге: «Человек и лекарство». - III Рос. нац. конгресс. Тез. докл. - М.: - 1999. - С. 281). Гипорамин обладает выраженной противовирусной активностью в отношении различных штаммов вирусов гриппа А и В, аденовирусов, парамиксовирусов, вирусов простого герпеса, опоясывающего лишая, цитомегаловирусов, респираторно-синцитиального вируса, вирусов иммунодефицита человека (ВИЧ-инфекция).
Однако для гипорамина не показана ингибирующая активность в отношении ортопоксвирусов: вирусов осповакцины и оспы мышей.
Наиболее близким аналогом (прототипом) является новая синергетическая композиция для лечения актуальных вирусных инфекций, включающая водный экстракт из С.sinensis, содержащий 8% дубильных веществ; водный экстракт из Alchemilla vulgaris (манжетка обыкновенная), содержащий 6,5% дубильных веществ; стеарат сорбитана 5,4 г; сквален 2,0 г; октил октаноат 2,0 г; карбомер 0,55 г; пропиленгликоль 0,22 г; стабилизатор на основе парабенов 0,02 г, вода дистиллированная 100 г и другие компоненты. Состав представляет собой косметический крем для профилактики и лечения вируса папилломы, вируса гриппа и герпеса (заявка США №20130028995 А1, 31.01.2013).
Однако синергетическая композиция-прототип содержит несколько водных экстрактов источников танинов (в примере 9, как минимум два - С.Sinensis и Alchemilla vulgaris), вклад каждого из которых в противовирусную активность неизвестен (в заявке не раскрыт), а композиция называется синергетической, т.е. противовирусная активность обусловлена совместным действием обоих водных экстрактов. В этой связи неочевидно, что водный экстракт на основе одной Alchemilla vulgaris (манжетки обыкновенной) будет обладать активностью против вирусов гриппа и герпеса.
Техническим результатом заявляемого изобретения является расширение сырьевой базы и ассортимента противовирусных средств в отношении РНК-содержащего вируса (вируса гриппа А) и ДНК-содержащих вирусов (ортопоксвирусов и вируса простого герпеса 2-го типа).
Указанный технический результат достигается применением суммы флавоноидов из корней или надземной части Alchemilla vulgaris L. (манжетки обыкновенной), полученных путем экстракции корней 50-кратным объемом этилацетата в три приема при нагревании на водяной бане с обратным холодильником по 20 минут, объединения этилацетатного экстракта, концентрирования его упариванием и осаждения концентрата в хлороформе с получением препарата (суммы флавоноидов) или экстракции надземной части манжетки обыкновенной, собранной в начале цветения, 90-96° этиловым спиртом в соотношении 1:10 при комнатной температуре в течение 24 часов с повторением 3-4 раза с последующим объединением и упариванием экстракта, разведения его дистиллированной водой, очистки водного экстракта хлороформом, экстракции очищенного водного остатка этилацетатом, упаривания полученного экстракта и осаждения продукта (суммы флавоноидов) хлороформом в качестве противовирусного средства в отношении РНК-содержащего вируса гриппа А и ДНК-содержащих ортопоксвирусов и вируса простого герпеса 2-го типа.
Указанная сумма флавоноидов, содержащихся в корнях или надземной части манжетки обыкновенной, хорошо растворима в воде.
Изобретение иллюстрируется следующими примерами.
Пример 1. Получение суммы флавонолов из надземной части Alchemilla vulgaris L.
К 300 г сырой массы надземной части манжетки обыкновенной, собранной в фазу бутонизации - начала цветения, добавляют 90-96° этиловый спирт (т.к. в сыром материале более 80% воды) в соотношении 1:10, извлечение суммы флавонолов осуществляют при комнатной температуре. При этих условиях оптимальной продолжительностью процесса максимального извлечения суммы флавонолов был период 24 ч, так как увеличение продолжительности процесса до 48 и 72 ч не приводило к статистически достоверному увеличению суммы флавонолов по сравнению с таковой при проведении процесса извлечения в течение 24 ч, а только удлиняло технологический процесс (табл. 1).
Figure 00000001
Операцию этанольного извлечения повторяют 3-4 раза, объединенный экстракт упаривают в ротационном испарителе под вакуумом до объема, равного массе исходного сырья, после чего добавляют 1/2 часть от массы сырья дистиллированной воды и испаряют до полного испарения этилового спирта. Для очистки от сопутствующих растительных пигментов водный экстракт переносят в делительную воронку и взбалтывают 4-5 раз равными объемами хлороформа до обесцвечивания хлороформенного слоя. Сумму флавонолов из очищенного водного экстракта экстрагируют этилацетатом, взбалтывая в делительной воронке равными объемами этилацетата и экстракта. Эту процедуру повторяют 6 раз. Объединенный этилацетатный экстракт упаривают в ротационном испарителе под вакуумом до 1/2 исходной массы (начало образования осадка). Сгущенный экстракт вливают тонкой струей в шестикратно большее количество хлороформа. Выпавший желтый осадок отфильтровывают на стеклянном фильтре №4, промывают чистыми порциями хлороформа и высушивают в вакуум-сушильном шкафу. Выход целевого продукта 4,5 г, что составляет 1,5%. Содержание флавонолов в осадке 3,2 г, т.е. 71%. Определение качественного состава и количественного содержания проводят методом хроматографии на бумаге, в качестве проявителя используют 10%-ный спиртовый раствор хлористого алюминия. При этом в составе препарата обнаруживается до 4 флавоноловых компонентов.
Пример 2. Получение суммы флаванолов (катехинов и лейкоантоцианов) из корней Alchemilla vulgaris L.
Измельченные и просеянные через сито №1 корни манжетки обыкновенной экстрагируют 50-кратным объемом этилацетата в три приема при нагревании на водяной бане с обратным холодильником по 20 минут. Объединенный этилацетатный экстракт концентрируют на ротационном испарителе в вакууме при температуре не выше 50°C до остатка, превышающего в 3 раза массу сырья. Полученный экстракт вливают тонкой струей при помешивании в 6-кратный объем хлороформа. Выпадает хлопьевидный осадок белого цвета, который отфильтровывают через воронку со стеклянным фильтром №4. Полученный осадок высушивают в вакууме. Выход осадка составляет 5-10% от массы сырья. Количественное содержание определяют спектрофотометрически, при взаимодействии экстракта с 1%-ным раствором ванилина в концентрированной соляной кислоте образуется малиновое окрашивание, плотность раствора определяют на спектрофотометре при длине волны 504 нм. Пересчетный коэффициент рассчитывают по (+)-катехину. Содержание флаванолов в препарате - около 70%.
Пример 3. Характеристика противовирусного средства на основе суммы флавоноидов из Alchemilla vulgaris L.
Новое противовирусное средство представляет собой природную смесь хорошо очищенных и высокоактивных флавоноидных веществ, выделяемых из корней (катехины и лейкоантоцианы) (розоватого цвета) или надземной части (флавонолы) манжетки обыкновенной (Alchemilla vulgaris L.) в виде желтого порошка горьковато-вяжущего вкуса, хорошо растворимого в воде и спирте.
Пример 4. Изучение токсичности препаратов на основе суммы флавоноидов из Alchemilla vulgaris L. на перевиваемых культурах клеток MDCK и Vero
Токсичность препаратов была предварительно изучена в отношении перевиваемых культур клеток MDCK и Vero, полученных из коллекции культур клеток ФБУН ГНЦ ВБ «Вектор». Суспензию с известной концентрацией клеток MDCK или Vero разводили подогретой до температуры 37°C средой RPMI-1640 («Биолот», Санкт-Петербург) или DMEM («Биолот», Санкт-Петербург) соответственно, содержащими 10% сыворотки крови плодов коровы (СКПК) («Gibco», США), до концентрации 1×105 кл./мл и по 100 мкл вносили в лунки 96-луночных планшетов. Планшеты с клетками помещали в термостат на 2-3 сут до образования монослоя при температуре 37°C, 5% CO2 и 100% влажности.
При определении токсических доз для клеток MDCK или Vero препараты разводили в 5, 10, 102, 103, 104, 105, 106 раз средой RPMI-1640 или DMEM соответственно, вносили по 100 мкл/лунку разведений препаратов и ставили в термостат на 2 и 4 соответственно суток при температуре 37°C, 5% CO2 и 100% влажности. Через 2 и 4 сут с помощью инвертированного микроскопа оценивали деструктивные изменения в монослое клеток MDCK или Vero соответственно, инкубированных с разными концентрациями препаратов. В качестве контроля использовали монослои культур клеток MDCK или Vero без препаратов.
Определяли минимально токсическую концентрацию (МТК) и максимально переносимую концентрацию (МПК), равную половине концентрации вещества, не оказывающей на клетки токсического действия, а также для каждого препарата определяли 50%-ную токсическую концентрацию (ТС50), т.е. концентрацию препарата, вызывающую гибель 50% клеток в культуре.
В исследованиях противовирусной активности препаратов использовали МПК или более низкие концентрации [Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ / Под ред. Хабриева Р.У. М.: Медицина; 2005; 832].
Как показали исследования токсичности препаратов, полученных из манжетки обыкновенной, препараты №5, №6 и №7 были малотоксичными для перевиваемой культуры клеток MDCK (максимально переносимые концентрации для этих клеток для всех препаратов составили 250 мкг/мл), а для клеток Vero наибольшие токсические свойства из всех препаратов проявил образец №7, полученный из надземной части растения (максимально переносимые концентрации составили 350, 250 и 25 мкг/мл для препаратов №5, №6 и №7 соответственно) (табл. 2).
Figure 00000002
Пример 5. Определение вирулицидной активности средства на основе суммы флавоноидов из Alchemilla vulgaris L. в отношении РНК- и ДНК-геномных вирусов
Вирулицидную активность препаратов на основе суммы флавоноидов манжетки обыкновенной исследовали после экспозиции их с вируссодержащим материалом при комнатной температуре в течение 10 минут. Затем титровали инфекционную активность вируса гриппа в каждом варианте опыта в культуре клеток MDCK, а инфекционную активность ДНК-геномных вирусов (вируса осповакцины (ВО), вируса оспы мышей (ВОМ) и вируса простого герпеса (ВПГ)) в культуре клеток Vero. Препарат характеризовался вирулицидной активностью в случае снижения инфекционного титра вируса гриппа для клеток MDCK или титра ДНК-геномных вирусов для клеток Vero после экспозиции в 100 раз и более.
Исследование вирулицидного действия препаратов в отношении ДНК-геномных вирусов показало, что препараты из корней манжетки (№5 и №6) проявляли вирулицидную активность в отношении ортопоксвирусов (снижение инфекционной активности ВО под действием этих препаратов происходит на 2,2 и 2,5 lg, a BOM на 2,0 и 2,4 lg соответственно) и не обнаруживали такого действия в отношении ВПГ 2-го типа, в то время как препарат №7 (из надземных органов растения) вирулицидными свойствами не обладает ни в отношении ортопоксвирусов, ни в отношении вируса герпеса (табл. 3).
Figure 00000003
Пример 6. Изучение противовирусной активности препаратов на основе суммы флавоноидов из Alchemilla vulgaris L. в отношении РНК- и ДНК-геномных вирусов на перевиваемых культурах клеток
Изучение противовирусной активности препаратов в отношении РНК-геномных вирусов на перевиваемой культуре клеток MDCK.
Культура клеток. Для тестирования противовирусной активности препаратов использовали перевиваемые культуры клеток MDCK и Vero, полученные из коллекции культур клеток ФБУН ГНЦ ВБ «Вектор». По 100 мкл суспензии клеток MDCK в среде RPMI-1640, содержащей 10% сыворотки крови плодов коровы, или суспензии клеток Vero в среде DMEM, содержащей 10% сыворотки крови плодов коровы, вносили в 96-луночные планшеты. Планшеты с клетками MDCK и Vero помещали в термостат при температуре +37°C, 5% СO2 и 100% влажности на 2 и 4 сут соответственно до образования клеточного монослоя.
Определение токсичности препаратов для перевиваемых клеточных культур MDCK и Vero. Для определения токсических концентраций препараты разводили в несколько раз и оценивали наличие токсического действия в монослоях культур клеток MDCK и Vero с помощью инвертированного микроскопа. Для этого препараты растворяли в среде RPMI-1640 или DMEM, содержащей 5% сыворотки крови плодов коровы, делали разведения препаратов в 5 раз, в 10, 100, 1000, 10000, 100000, 1000000 раз средой, вносили по 100 мкл в соответствующие лунки планшета с клетками MDCK и Vero и ставили в термостат при температуре +37°C, 5% CO2 и 100% влажности на 2 и 4 сут соответственно. Через 2 или 4 сут с помощью инвертированного микроскопа оценивали наличие токсического действия в монослое клеток MDCK или Vero, инкубированных с разными концентрациями препаратов из манжетки обыкновенной. В опытах по определению противовирусной активности препаратов на культуре клеток MDCK или Vero использовали предварительно определенные их максимально переносимые концентрации (МПК) для каждой из этих клеточных культур.
Определение противовирусной активности препаратов в отношении вируса гриппа. В работе использовали штамм вируса гриппа птиц A/chicken/Kurgan/05/2005 (H5N1) и штамм вируса гриппа человека A/Aichi/2/68 (H3N2), полученные из Государственной коллекции возбудителей вирусных инфекций и риккетсиозов ФБУН ГНЦ ВБ «Вектор» (п. Кольцово, Новосибирская обл.).
Наработку вируса гриппа производили на 10-суточных куриных эмбрионах (КЭ), титрование вируса гриппа проводили на культуре клеток MDCK. Концентрация разных субтипов вируса гриппа в вирусаллантоисной жидкости (ВАЖ) составляла от 5,5 до 9,5 lg ТЦД50/мл (десятичных логарифмов 50% тканевых цитопатических доз в мл). В опытах по определению противовирусной активности препаратов из манжетки обыкновенной в отношении вируса гриппа готовили разведения ВАЖ каждого вируса от 1 до 8 с десятикратным шагом с использованием поддерживающей среды RPMI-1640 (ООО «Биолот», Россия), содержащей 2 мкг/мл трипсина ТРСК (Sigma, США).
Для определения противовирусной активности образцов в монослой культуры клеток MDCK вносили по 50 мкл выбранного разведения препарата на поддерживающей среде RPMI-1640, содержащей 2 мкг/мл трипсина, и инкубировали в течение 1 часа при 37°C в атмосфере 5% CO2 в термостате ТС-1/80 СПУ (Россия). Затем в лунки с препаратом добавляли по 50 мкл разведенной поддерживающей средой от 10-1 до 10-8 вирусаллантоисной жидкости (ВАЖ). Клетки инкубировали 2 сут при температуре 37°C в атмосфере 5% CO2. Через 2 сут в каждой лунке с помощью инвертированного микроскопа регистрировали цитопатическое действие (ЦПД) в монослое клеток и определяли наличие вируса в среде культивирования по реакции гемагглютинации (РГА) с 1%-й суспензией эритроцитов кур. За титр вируса в контроле и опыте принимали величину, обратную десятичному логарифму наибольшего разведения исходного вируса, способного вызвать положительную реакцию гемагглютинации в лунке, и выражали в количестве 50% инфекционных доз (ИД50). Титры вируса определяли в lg ТЦД50/мл в контроле (50%-я инфицирующая доза - ИД50 in vitro без препарата) и в опыте (ИД50 in vitro с препаратом). Вирусингибирующее действие исследуемых препаратов оценивали по снижению титра вируса в опыте по сравнению с контролем, для этого высчитывали индекс нейтрализации (ИН) вирусов под влиянием экстракта: ИН = ИД50контроль - ИД50опыт (lg).
На основании полученных данных рассчитывали 50% ингибирующую дозу IC50, т.е. концентрацию препарата, снижающую уровень вирусной репликации вдвое (на 0,3 lg ИД50), и индекс селективности, или химиотерапевтический индекс (SI), представляющий собой отношение ТС50 к IC50.
В качестве контроля использовали следующее.
1. Контроль клеток MDCK, культивируемых в питательной среде RPMI-1640 (ООО «Биолот», С-Петербург), содержащей 2 мкг/мл трипсина ТРСК (Sigma, США).
2. Контроль репродукции штаммов вируса гриппа A/chicken/Kurgan/05/2005 (H5N1) и A/Aichi/2/68 (H3N2) с 1 до 8 разведения с десятикратным шагом без внесения экстрактов.
В процессе исследования ингибирования репродукции вируса гриппа человека A/Aichi/2/68 (H3N2) и вируса гриппа птиц A/chicken/Kurgan/05/2005 (H5N1) препаратами из Alchemilla vulgaris L. и эталонами сравнения (римантадином, тамифлю и рибавирином) по профилактической схеме в монослое клеток MDCK были получены результаты, представленные в таблице 4.
Figure 00000004
Как видно из таблицы 3, препараты №5 и №6, полученные из корней манжетки обыкновенной, по сравнению с препаратом №7 из надземных органов этого растения в отношении вируса гриппа субтипа H3N2 проявили более выраженный противовирусный эффект (индексы нейтрализации вируса гриппа A/Aichi/2/68 (H3N2) под действием препаратов №5 и №6 составили 2,0 и 1,5 lg соответственно, тогда как под действием препарата №7 - только 1,0 lg). В отношении вируса гриппа птиц A/chicken/Kurgan/05/2005 (H5N1) все исследуемые препараты, полученные из манжетки обыкновенной, обнаружили более выраженную противовирусную активность по сравнению с таковой в отношении вируса гриппа человека субтипа H3N2 (индексы нейтрализации вируса гриппа субтипа H5N1 под действием всех трех препаратов составили 4,0 lg) (табл. 4).
На основании полученных данных были рассчитаны среднетоксические (ТС50) и среднеэффективные вирусингибирующие (IC50) концентрации препаратов из Alchemilla vulgaris L. в отношении используемых штаммов вируса гриппа, снижающие уровень вирусной репликации вдвое (на 0,3 lg ИД50), и индексы селективности, или химиотерапевтические индексы (SI), представляющие собой отношение ТС50 к IC50 (табл. 5).
Представленные в таблице 5 результаты показывают, что препараты №5, №6 и №7, приготовленные из манжетки обыкновенной, подавляют размножение вируса гриппа человека A/Aichi/2/68 (H3N2) в культуре клеток MDCK, при этом среднеэффективные ингибирующие концентрации составляют 7,0, 14,0 и 20,0 мкг/мл, а индексы селективности - 71,4; 35,7 и 22,5 соответственно.
Оценка противовирусной активности этих же препаратов (№5, №6 и №7) по отношению к вирусу гриппа птиц A/chicken/Kurgan/05/2005 (H5N1) показала, что значения среднеэффективных вирусингибирующих концентраций (IC50) для них были ниже по сравнению со значениями данного показателя в отношении вируса гриппа человека и составляли 5,0; 10,0 и 15,0 мкг/мл соответственно, при этом индексы селективности были выше и составляли 100,0; 50,0 и 30,0 соответственно, что говорит о низкой токсичности этих препаратов для эукариотических клеток MDCK.
Таким образом, получены препараты на основе суммы флавоноидов из Alchemilla vulgaris L., обладающие низкой токсичностью и выраженной противовирусной активностью в культуре клеток MDCK. Данные растительные препараты способны ингибировать репликацию вирусов гриппа A/H3N2 и A/H5N1 в концентрациях от нескольких микрограмм до 1,5-2,0-х десятков микрограмм в миллилитре.
Figure 00000005
Изучение противовирусной активности препаратов в отношении ДНК-геномных вирусов на перевиваемой культуре клеток Vero
Было проведено определение противовирусной активности препаратов в отношении ортопоксвирусов и вируса простого герпеса. В работе использовали штамм Л-ИВП вируса осповакцины (ВО), штамм К-1 вируса оспы мышей (ВОМ) и штамм MS вируса простого герпеса 2-го типа, полученные из Государственной коллекции возбудителей вирусных инфекций и риккетсиозов ФБУН ГНЦ ВБ «Вектор» (п. Кольцово, Новосибирская обл.).
Наработку и титрование всех ДНК-геномных вирусов проводили на перевиваемой культуре клеток Vero. Концентрация разных вирусов в культуральной вируссодержащей жидкости (КВЖ) составляла от 5,5 до 7,5 lg ТЦД50/мл (десятичных логарифмов 50% тканевых цитопатических доз в мл). В опытах по определению противовирусной активности препаратов из манжетки обыкновенной в отношении ДНК-содержащих вирусов готовили разведения КВЖ каждого вируса от 1 до 8 с десятикратным шагом с использованием поддерживающей среды DMEM (ООО «Биолот», Россия).
Для определения противовирусной активности образцов в монослой культуры клеток Vero вносили по 50 мкл выбранного разведения препарата на поддерживающей среде DMEM и инкубировали в течение 1 часа при 37°C в атмосфере 5% СO2 в термостате ТС-1/80 СПУ (Россия). Затем в лунки с препаратом добавляли по 50 мкл разведенной поддерживающей средой от 10-1 до 10-8 культуральной вируссодержащей жидкости (КВЖ). Клетки инкубировали 4 сут при температуре 37°C в атмосфере 5% CO2. Через 4 сут в каждой лунке с помощью инвертированного микроскопа регистрировали наличие вируса по цитопатическому действию (ЦПД) на монослой клеток. За титр вируса в контроле и опыте принимали величину, обратную десятичному логарифму наибольшего разведения исходного вируса, способного вызвать ЦПД в монослое клеток, и выражали в количестве 50% инфекционных доз (ИД50). Титры вируса определяли в lg ТЦД50/мл в контроле (50%-я инфицирующая доза - ИД50 in vitro без препарата) и в опыте (ИД50 in vitro с препаратом). Вирусингибирующее действие исследуемых препаратов оценивали по снижению титра вируса в опыте по сравнению с контролем, для этого высчитывали индекс нейтрализации (ИН) вирусов под влиянием экстракта: ИН = ИД50контроль - ИД50опыт (lg).
В качестве контроля использовали следующее.
1. Контроль клеток Vero, культивируемых в питательной среде DMEM (ООО «Биолот», С-Петербург).
2. Контроль репродукции вируса простого герпеса 2-го типа, вирусов осповакцины и оспы мышей с 1 до 8 разведения с десятикратным шагом без внесения препаратов.
Результаты исследования ингибирования репродукции ДНК-содержащих вирусов в культуре клеток Vero препаратами из Alchemilla vulgaris L. по профилактической схеме представлены в таблице 6.
Как видно из таблицы 6, все препараты, полученные как из корней, так и из надземных органов манжетки обыкновенной, обнаружили противовирусный эффект в отношении используемых в данных экспериментах ДНК-содержащих вирусов. При этом наибольшей антивирусной активностью в отношении этих вирусов обладал препарат №6, полученный из корней растения, в концентрации 100 мкг/мл (индексы нейтрализации вирусов: ВО, ВОМ и ВПГ под действием этого препарата составляли 3,1; 2,6 и 2,0 lg соответственно) (табл. 6).
В целом показано, что полученные препараты на основе суммы флавоноидов из Alchemilla vulgaris L. способны ингибировать репликацию ДНК-геномных вирусов (ортопоксвирусов: вируса осповакцины и вируса оспы мышей, а также вируса простого герпеса 2-го типа) в культуре клеток Vero.
Figure 00000006
Пример 7. Изучение противовирусной активности препаратов на основе суммы флавоноидов из Alchemilla vulgaris L. в отношении вируса гриппа на модели лабораторных животных
В опытах по изучению протективных свойств препаратов на основе манжетки обыкновенной в отношении вируса гриппа A использовали профилактическую схему: препараты вводили перорально мышам (по 200 мкл/мышь) за час до заражения вирусом гриппа A/Aichi/2/68 (H3N2) или вирусом гриппа A/chicken/Kurgan/05/2005 (H5N1) в дозе 10 ЛД50 (50%-х летальных доз in vivo), далее препараты вводили 1 раз в сутки в течение 5 суток. За животными наблюдали в течение 14 суток. Высчитывали процент выживаемости животных в опыте и контроле и коэффициент защиты (КЗ) мышей. КЗ высчитывали по формуле. % гибели мышей в контроле - % гибели мышей в опыте.
Введение мышам препаратов №5, №6 и №7 до заражения вирусом гриппа A/Aichi/2/68 (H3N2) и после заражения в течение 5 суток вызывало их значительную защиту (выживаемость животных составила 81, 61,0 и 44,0% соответственно). В инфицированной группе сравнения (введение Тамифлю) и контрольной инфицированной группе (введение дистиллированной воды) выжило 100 и 24,1% животных соответственно. Наибольший коэффициент защиты (КЗ), который составлял 56,9%, проявил препарат №5, полученный из корней Alchemilla vulgaris L. (табл. 7).
Figure 00000007
При проведении аналогичных исследований в отношении вируса гриппа птиц A/chicken/Kurgan/05/2005 (H5N1) установлено, что при введении лабораторным мышам препаратов №5, №6, №7 и препарата сравнения Тамифлю процент выживаемости животных составлял 44,7; 33,4, 16,8% и 50,0% соответственно при 100% гибели животных в контроле (введение дистиллированной воды). Наибольший коэффициент защиты (44,7%) в отношении вируса гриппа птиц так же, как и в отношении вируса гриппа человека, обнаружил препарат №5, полученный из корней Alchemilla vulgaris L. (табл. 7).
Таким образом, препараты на основе суммы флавоноидов из манжетки обыкновенной проявляют выраженную противовирусную активность в отношении вируса гриппа в культуре клеток MDCK и в отношении ортопоксвирусов (вируса осповакцины и вируса оспы мышей) и вируса простого герпеса 2-го типа в культуре клеток Vero, а также обнаруживают протективные свойства в модели на лабораторных мышах в отношении вируса гриппа, в связи с чем они могут быть использованы для создания новых эффективных противовирусных препаратов против инфекций, вызванных данными вирусами.

Claims (1)

  1. Применение суммы флавоноидов из корней или надземной части Alchemilla vulgaris L. (манжетки обыкновенной), полученных путем экстракции корней 50-кратным объемом этилацетата в три приема при нагревании на водяной бане с обратным холодильником по 20 минут, объединения этилацетатного экстракта, концентрирования его упариванием и осаждения концентрата в хлороформе или экстракции надземной части манжетки обыкновенной, собранной в начале цветения, 90-96° этиловым спиртом в соотношении 1:10 при комнатной температуре в течение 24 часов с повторением 3-4 раза с последующим объединением и упариванием экстракта, разведения его дистиллированной водой, очистки водного экстракта хлороформом, экстракции очищенного водного остатка этилацетатом, упаривания полученного экстракта и осаждения продукта хлороформом, в качестве противовирусного средства в отношении РНК-содержащего вируса гриппа А и ДНК-содержащих ортопоксвирусов и вируса простого герпеса 2-го типа.
RU2015106729/15A 2015-02-26 2015-02-26 ПРОТИВОВИРУСНОЕ СРЕДСТВО НА ОСНОВЕ СУММЫ ФЛАВОНОИДОВ ИЗ Alchemilla vulgaris L. RU2580304C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015106729/15A RU2580304C1 (ru) 2015-02-26 2015-02-26 ПРОТИВОВИРУСНОЕ СРЕДСТВО НА ОСНОВЕ СУММЫ ФЛАВОНОИДОВ ИЗ Alchemilla vulgaris L.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015106729/15A RU2580304C1 (ru) 2015-02-26 2015-02-26 ПРОТИВОВИРУСНОЕ СРЕДСТВО НА ОСНОВЕ СУММЫ ФЛАВОНОИДОВ ИЗ Alchemilla vulgaris L.

Publications (1)

Publication Number Publication Date
RU2580304C1 true RU2580304C1 (ru) 2016-04-10

Family

ID=55794009

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015106729/15A RU2580304C1 (ru) 2015-02-26 2015-02-26 ПРОТИВОВИРУСНОЕ СРЕДСТВО НА ОСНОВЕ СУММЫ ФЛАВОНОИДОВ ИЗ Alchemilla vulgaris L.

Country Status (1)

Country Link
RU (1) RU2580304C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2006228C1 (ru) * 1992-03-26 1994-01-30 Александр Михайлович Шепеленко Состав для лечения гриппа
WO2010045969A1 (en) * 2008-10-21 2010-04-29 Naturveda New synergic association for the treatment of deep skin or mucosa injuries
US20130028995A1 (en) * 2010-01-11 2013-01-31 Vitro Bio Sarl New synergistic compositions for the treatment of topical viral infections

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2006228C1 (ru) * 1992-03-26 1994-01-30 Александр Михайлович Шепеленко Состав для лечения гриппа
WO2010045969A1 (en) * 2008-10-21 2010-04-29 Naturveda New synergic association for the treatment of deep skin or mucosa injuries
US20130028995A1 (en) * 2010-01-11 2013-01-31 Vitro Bio Sarl New synergistic compositions for the treatment of topical viral infections

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Вичканова С.А. Изучение листьев облепихи и создание на их основе отечественного противовирусного средства "Гипорамин" // В книге: "Актуальные проблемы создания новых лекарственных препаратов природного происхождения". V Междунар. съезд. Матер. съезда. - С.-П. - 2001. - С. 198-204. *

Similar Documents

Publication Publication Date Title
ES2529705T3 (es) Composición normalizada novedosa, método de fabricación y uso en la resolución de infección por virus ARN
TWI453026B (zh) 魚針草萃取物及其純化物抗流感病毒之用途
Wirotesangthong et al. Effects of Clinacanthus siamensis leaf extract on influenza virus infection
TW200826954A (en) Herbal extract with anti-influenza virus activity and preparation of same
KR101731607B1 (ko) 음양곽 추출물을 유효성분으로 함유하는 항 바이러스용 조성물
ASHRAF et al. Comparative anti-influenza potential of Moringa oleifera leaves and amantadine invitro
Nerome et al. Functional growth inhibition of influenza A and B viruses by liquid and powder components of leaves from the subtropical plant Melia azedarach L.
RU2580304C1 (ru) ПРОТИВОВИРУСНОЕ СРЕДСТВО НА ОСНОВЕ СУММЫ ФЛАВОНОИДОВ ИЗ Alchemilla vulgaris L.
RU2580305C1 (ru) ПРОТИВОВИРУСНОЕ СРЕДСТВО НА ОСНОВЕ СУХОГО ЭКСТРАКТА ЛИШАЙНИКА Cetraria islandica
CN103735599B (zh) 臭灵丹提取物及组合物在抗甲型病毒性流感药物中的应用
JP5173813B2 (ja) インフルエンザの予防および処置のための薬剤
KR101989349B1 (ko) 동백나무 추출물을 유효성분으로 함유하는 바이러스 감염 예방 및 치료용 약학적 조성물
US7815945B2 (en) Medicament for the prevention and treatment of influenza
RU2584751C1 (ru) ПРОТИВОВИРУСНОЕ СРЕДСТВО НА ОСНОВЕ СУХОГО ЭКСТРАКТА ПЛОДОВОГО ТЕЛА БАЗИДИОМИЦЕТА Coprinus comatus
RU2580296C1 (ru) ПРОТИВОВИРУСНОЕ СРЕДСТВО НА ОСНОВЕ СУХОГО ЭКСТРАКТА ПЛОДОВОГО ТЕЛА КСИЛОТРОФНОГО БАЗИДИОМИЦЕТА Bjerkandera adusta
RU2753609C1 (ru) Противовирусное гуминовое средство
KR101704111B1 (ko) 차가버섯 자실체로부터 분리된 폴리페놀성분을 포함하는 인플루엔자 바이러스 감염 예방 및 치료용 조성물
WO2011036883A1 (ja) 抗インフルエンザウイルス剤
NP Neem as Antiviral Agents.
Yadav et al. EUCALYPTUS ROBUSTA LEAVES EXTRACT EXERTS ANTIVIRAL ACTIVITY BY INHIBITING VIRAL ENTRY, REPLICATION AND BUDDING.
TWI599366B (zh) 含地榆之抗流感病毒醫藥組合物
TWI389700B (zh) 解決rna病毒感染之新穎標準化組成物、製造方法及用途
BR102012032588B1 (pt) Composições farmacêuticas à base de extratos de baccharis trimera e uso destas na preparação de agentes terapêuticos para prevenção e controle da cinomose canina
KR20140023357A (ko) 항 신형 인플루엔자 바이러스제
Zhang et al. Investigating the Antiviral Activity of Erigeron Annuus (L.) Pers Extract Against Rsv and Examining its Active Components