RU2577056C1 - Хладоноситель для термостабилизации вечномерзлого грунта - Google Patents
Хладоноситель для термостабилизации вечномерзлого грунта Download PDFInfo
- Publication number
- RU2577056C1 RU2577056C1 RU2014137298/05A RU2014137298A RU2577056C1 RU 2577056 C1 RU2577056 C1 RU 2577056C1 RU 2014137298/05 A RU2014137298/05 A RU 2014137298/05A RU 2014137298 A RU2014137298 A RU 2014137298A RU 2577056 C1 RU2577056 C1 RU 2577056C1
- Authority
- RU
- Russia
- Prior art keywords
- soil
- freezing
- coolant
- refrigerant
- minus
- Prior art date
Links
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Изобретение относится к области строительства и холодильной техники, а именно к жидким рабочим составам для термостабилизации грунта при устройстве оснований и опор зданий, сооружений, трубопроводных систем в зоне вечной мерзлоты, конкретно к хладоносителям, используемым в устройствах и системах замораживания грунта. Хладоноситель обладает низкой вязкостью, высокой противокоррозионной активностью и теплопроводностью, сохраняет однородный состав при эксплуатации и является смесью компонентов, мас. %: пропиленгликоль 40-45%, глицерин 5-7%, целевые добавки 1-4%, остальное - вода. Его вязкость имеет значение в пределах от 10 до 90 мПа·с, а теплопроводность от 0,420 до 0,446 Вт/(м·К) в диапазоне температур от минус 5 до минус 30°C. Изобретение обеспечивает повышение эффективности замораживания и термостабилизации грунта и уменьшение стоимости свайного строительства сооружений за счет увеличения объема и устойчивости замораживаемого массива грунта.
Description
Изобретение относится к области строительства и холодильной техники, а именно к жидким рабочим составам для термостабилизации грунта при устройстве оснований и опор зданий, сооружений, трубопроводных систем и т.п. в зоне вечной мерзлоты, конкретно к хладоносителям, используемым в устройствах и системах замораживания грунта.
Специфика строительства сооружений в зоне вечной мерзлоты (криолитозоне) связана с ее климатическими особенностями, которые проявляются «пучением» или просадкой грунта, деформацией опор и возведенных на их основе объектов при градиенте температур зима-лето. Следствием отепления верхней части массива вечной мерзлоты летом и последующего замораживания зимой является нарушение целостности фундаментов и опорных конструкций.
Данное обстоятельство требует принятия специальных мер предохранительного характера. Как установлено практикой мирового строительства в криолитозоне наиболее эффективным является установка опор и фундаментных оснований, охлаждаемых с помощью термостабилизаторов (ТСГ), известных также в публикациях как сезонные охлаждающие устройства (СОУ).
ТСГ с залитым в них хладагентом, без дополнительных устройств, работают как безкомпрессорная холодильная машина и поддерживают режим отрицательных температур вечномерзлого грунта вокруг опоры путем его замораживания зимой и длительного, частичного отепления летом [1].
Уровень отрицательных температур вокруг термостабилизатора образуется и поддерживается за счет режима испарения хладагента в испарителе (заглубленной части ТСГ). Пар переходит в жидкую фазу при минусовых температурах воздуха (обычно ниже минус 5ºС) путем конденсации в конденсаторе (наружной части ТСГ) со свободным гравитационным стеканием по внутренним стенкам ТСГ вниз в зону испарения.
В подобном режиме работы ТСГ происходит отбор тепла от грунта и его охлаждение/замораживание до отрицательных температур, обычно около минус 2…5ºС, что позволяет поддерживать опоры и в целом сооружение в стабильном замороженном состоянии и зимой, и летом. Для летнего периода применяют также сложные устройства принудительной циркуляции хладагента и отбора тепла от грунта путем искусственного его охлаждения.
Аналогичным образом используются широко известные хладоносители - рассолы на основе солей кальция, натрия, магния и др., которые будучи охлажденными в теплообменнике холодильной машины хладагентом поступают в замораживающие колонки - ТСГ, где производят отбор тепла от грунта [2]. При этом образуется массив замороженного грунта.
Недостатками известных хладоносителей являются их агрессивная коррозионность по отношению к конструкционным материалам и необходимость искусственного охлаждения в теплообменниках холодильных машин, что удорожает процесс заморозки. Кроме того, при протечке подобного хладоносителя в грунт заморозка последнего становится невозможной из-за резкого изменения его теплофизических свойств.
Известен также хладоноситель - трихлорэтилен (C2HCl3), который используется в колонках для замораживания грунта - ТСГ, будучи предварительно охлажденным в контакте с криоагентом (твердая углекислота) [3].
Использование данного хладоносителя улучшает условия заморозки и термостабилизации грунта, однако его эффективность невысока из-за сложностей заготовки и поставки в зону работ промышленных партий криоагента и обслуживания системы заморозки в отдаленных нежилых зонах вечной мерзлоты. Необходимость электроснабжения насосов для перекачки хладоносителя удорожает техническое решение и не позволяет использовать его автономно, что исключительно важно на магистральных трубопроводах Заполярья и Крайнего Севера.
Наиболее близким техническим решением - прототипом - является теплопередающая жидкость - хладоноситель (заводская марка XHT-HB) состоящая из компонентов, мас. %: пропиленгликоль 10-65; нитрат натрия 0,003-0,15; бензоат натрия 0,015-075; продукты взаимодействия глицерина с муравьиной кислотой 0,002-0,10; вода - остальное [4].
Подобный хладоноситель заливают в промежуток между испарителем с хладагентом и внешней трубой (гильзой) комбинированного, автономного от источников энергоснабжения ТСГ и используют для замораживания и термостабилизации грунта в зоне вечной мерзлоты [5].
Данное техническое решение позволяет улучшить рабочие и эксплуатационные характеристики процесса замораживания и термостабилизации грунта, однако оно не является оптимальным для различных зон свайного (опорного) строительства в криолитозоне.
Предлагаемое изобретение позволяет получить новый технический результат, заключающийся в увеличении эффективности работы хладоносителя с ТСГ по объему замораживания массива грунта, а также по времени его отепления. В целом это приводит к сокращению количества опор на единицу площади замораживаемого грунта, сокращению трудозатрат и материалов при строительстве сооружений, объектов и систем трубопроводного транспорта в зоне вечной мерзлоты, а также позволяет устранить аварийные ситуации из-за сезонных колебаний температуры.
Инновационное сочетание предлагаемого хладоносителя, обладающего высокими теплофизическими свойствами и стабильными техническими характеристиками в широком временном и температурном диапазоне, с конструктивом комбинированного ТСГ позволяет получать результат, лучший, чем у известных аналогов.
Высокая эффективность работы нового хладоносителя заключается в нижеследующем.
Эмпирически установлены и теоретически обоснованы особенности недостаточно высокой эффективности работы известных автономных ТСГ или СОУ с хладагентом без внешнего хладоносителя, размещаемого между испарителем и гильзой [6, 7]. Такого рода устройства массово используются при строительстве объектов в Заполярье, на Крайнем Севере и в Сибири. Вот почему, важно разрабатывать и применять новые высокоэффективные хладоносители, которые в сочетании с хладагентами в ТСГ комбинированного типа дают лучшие результаты по заморозке и термостабилизации грунтов в криолитозоне.
Известные ТСГ из-за сложного, зачастую непредсказуемого механизма испарения и конденсации хладагента соответственно в испарителе и конденсаторе недостаточно эффективны по отбору тепла от грунта, как по вертикали, так и по поперечному сечению испарителя вследствие неравномерности потока конденсата внутри испарителя и неравномерности структуры грунта, а значит и теплового потока от него.
В процессе эксплуатации ТСГ в потоке конденсата хладагента могут появляться газовые разрывы и сухие участки внутренней поверхности испарителя, что резко изменяет термосопротивление данного участка, снижая теплоприток от грунта и нарушая его равномерность. Данное обстоятельство связано с вариациями режима кипения хладагента, которое согласно [6] может быть пузырьковым, снарядным и кольцевым. Это в свою очередь приводит к разбалансировке работы всей системы охлаждения.
Следует отметить также, что все расчеты механизма и ожидаемого результата заморозки грунта базируются на среднезимней температуре минус 15ºС. Однако реально бывают повышения температуры до минус 5ºС и резкие ее колебания, вызванные естественным изменением метеоусловий. В результате также происходит разбалансировка работы ТСГ, в том числе и за счет нарушения баланса между теплопритоком от грунта и выносом тепла на поверхность через конденсатор.
Стекающая пленка жидкого хладагента внизу испарителя (в зоне испарения) под давлением паровой фазы хладагента может прерываться, не доходя до поверхности жидкого хладагента, в особенности в снарядном режиме кипения. В этой зоне превалирования паровой фазы резко возрастает разница теплопередачи между верхней частью испарителя с пленкой в жидкой фазе и нижней, с преобладанием паровой фазы испаряющегося хладагента [7]. Это - также причина разбалансировки работы ТСГ.
В целом, замороженный объем грунта для ТСГ из стали без внешнего хладоносителя имеет вид перевернутого, усеченного конуса с основанием на поверхности земли радиусом около 1,5 м и 0,5 м у его заглубленной вершины.
Известный хладоноситель (теплопередающая жидкость) - прототип [4], улучшает результат работы ТСГ, однако он недостаточно эффективен в различных зонах вечной мерзлоты с учетом разницы состава грунта (твердомерзлые, пластичномерзлые и сыпучемерзлые породы) и метеоусловий в регионе эксплуатации.
Для устранения недостатков известного хладоносителя был подобран новый состав, обладающий низкой вязкостью, высокой противокоррозионной активностью и теплопроводностью, сохраняющий однородный состав при эксплуатации. Были также определены эффективные границы его технических характеристик для применения в зонах вечной мерзлоты.
Новый хладоноситель для термостабилизации вечномерзлого грунта отличается от известных тем, что он имеет состав, мас. %: пропиленгликоль 40-45, глицерин 5-7, целевые добавки 1-4, остальное - вода, а его вязкость находится в пределах от 10 до 90 мПа·с и теплопроводность от 0,420 до 0,446 Вт/(м·К) в диапазоне температур от(-5) до (-30)°C. Его получают путем смешивания компонентов в водном растворе пропиленгликоля.
Для нового хладоносителя в ТСГ, по сравнению с известными, промораживаемый объем грунта в 1,5-2,5 раза больше и имеет вид, близкий к цилиндру с радиусом до 2,7 метров по пятну на поверхности земли. Это, в конечном итоге, позволяет снизить количество ТСГ на единицу площади и их суммарную стоимость, увеличить время частичного инерционного отепления замороженного объема, а значит и его устойчивость во времени и повысить надежность свайных опор и, соответственно, всего объекта.
Новый хладоноситель, размещаемый между корпусом испарителя и гильзой, позволяет устранить все недостатки известных аналогов и прототипа и заметно повысить эффективность работы ТСГ. Результатом применения нового хладоносителя является повышение сезонного интегрального значения теплоотдачи от грунта, устранение возможных перекосов и выравнивание теплоотдачи по всей площади теплообмена со стороны испарителя и от грунта через гильзу и предотвращение разбалансировки работы системы при колебаниях параметров теплового потока от грунта через ТСГ в атмосферу и изменениях внешней среды.
Предлагаемый хладноноситель работает нижеследующим образом.
Новый хладоноситель, имеющий низкую вязкость, высокую антикоррозионную активность и теплопроводность, сохраняющий однородный состав при эксплуатации, состоящий из компонентов смеси, мас. %: пропиленгликоль 40-45, глицерин 5-7, целевые добавки 1-4, остальное - вода, и имеющий вязкость в пределах от 10 до 90 мПа·с, а теплопроводность от 0,420 до 0,446 Вт/(м·К) в диапазоне температур от (-5) до (-30)°C, заливали в промежуток между гильзой и корпусом испарителя с хладагентом комбинированного ТСГ.
Целевые добавки ингибитора коррозии в количестве 1-4 мас. % смеси в новом хладоносителе представляют собой смесь, мас. %: нитрата натрия от 0,003 до 0,15, бензоата натрия от 0,015 до 0,75 и продуктов взаимодействия глицерина с муравьиной кислотой от 0,002 до 0,10, как это указано в прототипе [4].
Цель изобретения - повышение эффективности замораживания грунта и его термостабилизации, уменьшение стоимости свайного строительства сооружений за счет увеличения объема и устойчивости замораживаемого массива грунта.
Заправку хладоносителем с различным составом компонентов (в пределах и за пределами заявленных в формуле параметров) проводили в комбинированные ТСГ, которые размещали в скважины, пробуренные в массиве вечной мерзлоты с различным составом грунта (твердомерзлый, пластичномерзлый и сыпучемерзлый) и вели мониторинг замораживания, термостабилизации и последующего инерционного отепления грунта (устойчивости замороженного массива) в течение года.
В результате проведенных экспериментов установлено, что эффективным для замораживания сыпучемерзлого грунта является новый хладоноситель в составе, мас. %: пропиленгликоль 45, глицерин 7, целевые добавки ингибитора коррозии 4 (в составе, мас. %: нитрат натрия 0,15, бензоат натрия 0,75 и продукты взаимодействия глицерина с муравьиной кислотой 0,10, как это указано в прототипе), остальное - вода, имеющий вязкость 90 мПа·с, и теплопроводность 0,420 Вт/(м·К) при температуре (-30°C). В этом случае пятно заморозки на поверхности достигало в радиусе не менее 2 м. Объем замораживания грунта в 1,5 больше прототипа и время отепления грунта возрастало.
Увеличение концентрации пропиленгликоля, мас. % до 47, глицерина до 8, целевых добавок до 5 (в составе, мас. %: нитрат натрия 0,16, бензоат натрия 0,80 и продукты взаимодействия глицерина с муравьиной кислотой 0,15, по аналогии с прототипом), остальное - вода, при значении вязкости 93 мПа·с, теплопроводности 0,415 Вт/(м·К) и температуры (-33°C), за пределами оптимальных параметров указанных в формуле, не давало улучшения эффективности заморозки и по времени отепления грунта.
Оптимальным для пластичномерзлого грунта является новый хладоноситель в составе, мас. %: пропиленгликоль 43, глицерин 6, целевые добавки ингибитора коррозии 2,5 (в составе, мас. %: нитрат натрия 0,075, бензоат натрия 0,35 и продукты взаимодействия глицерина с муравьиной кислотой 0,05, в пределах концентраций по прототипу), остальное - вода, при значении вязкости 40 мПа, теплопроводности 0,425 Вт/(м·К) и температуры (-20°C). В этом случае пятно заморозки на поверхности достигало в радиусе 2,3 м, а объем замораживания грунта в 2 раза больше прототипов, время отепления грунта возрастало.
Уменьшение или увеличение концентрации компонентов хладоносителя (пропиленгликоля, глицерина, целевых добавок, остальное вода), а также вязкости, теплопроводности и температуры, за пределами оптимальных параметров не давало видимого улучшения эффективности заморозки для пластичномерзлого грунта, а время его отепления не возрастало.
Установлено, что оптимальным для твердомерзлых грунтов является новый хладоноситель в составе, мас. %: пропиленгликоль 40, глицерин 5, целевые добавки ингибитора коррозии 1 (в составе, мас. %: нитрат натрия 0,003, бензоат натрия 0,015 и продукты взаимодействия глицерина с муравьиной кислотой 0,002, как это указано в прототипе), остальное вода при значении вязкости 10 мПа·с, теплопроводности 0,446 Вт/(м·К) и температуры (-5°C). В этом случае пятно заморозки на поверхности достигало в радиусе 2,7 м, а объем замораживания грунта в 2,5 раза больше прототипа, соответственно и время отепления грунта увеличилось.
Уменьшение концентрации, мас. %: пропиленгликоля до 38, глицерина до 4,5, целевых добавок до 0,5(в составе, мас. %: нитрат натрия 0,002, бензоат натрия 0,012 и продукты взаимодействия глицерина с муравьиной кислотой 0,001 по аналогии с прототипом), остальное - вода, при значении вязкости 9 мПа·с, теплопроводности 0,450 Вт/(м·К) и температуры минус 4°C, за пределами оптимальных параметров, указанных в формуле, не давало видимого улучшения эффективности заморозки, более того, она имела тенденцию к снижению так же, как и время отепления грунта.
Источники информации
1. Долгих Г., Окунев С. Температурная стабилизация вечномерзлых грунтов приносит прибыль // ООО НПО «Фундаментстройаркос», TCP, №5, 2009.
2. Справочник по сооружению шахтных стволов специальными способами. Под ред. Н.Г. Трупака. М., 1980.
3. Патент RU 2235827, кл. E02D 3/115, E21D 1/12, 2003.
4. Патент RU 2296790, кл. C09K 5/10, 2007.
5. Генель Л.С., Галкин М.Л. и Рукавишников A.M. Термостабилизация вечномерзлых грунтов // Холодильная техника, №10, 2013, с. 44-47.
6. Голубин С.И. Повышение эксплуатационной надежности магистральных газопроводов в криолитозоне с применением технологии и технических средств термостабилизации грунтов //Автореферат диссертации на соискание степени канд. тех. наук. М., 2013.
7. Ховалыг Д.М., Бараненко А.В. Теплоотдача при кипении хладагентов в малых каналах // Вестник МАХ, №4, 2013. С. 3-11.
Claims (1)
- Хладоноситель для термостабилизации вечномерзлого грунта состоящий из смеси водного раствора пропиленгликоля с целевыми добавками ингибитора коррозии, отличающийся тем, что он содержит в составе компоненты, мас. %: пропиленгликоль 40-45%, глицерин 5-7%, целевые добавки ингибитора коррозии 1-4%, остальное - вода, а его вязкость находится в пределах от 10 до 90 мПа·с и теплопроводность от 0,420 до 0,446 Вт/(м·К) в диапазоне температур от минус 5 до минус 30°C, причем он обладает низкой вязкостью, высокой противокоррозионной активностью и теплопроводностью и сохраняет однородный состав при эксплуатации.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014137298/05A RU2577056C1 (ru) | 2014-09-16 | 2014-09-16 | Хладоноситель для термостабилизации вечномерзлого грунта |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014137298/05A RU2577056C1 (ru) | 2014-09-16 | 2014-09-16 | Хладоноситель для термостабилизации вечномерзлого грунта |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2577056C1 true RU2577056C1 (ru) | 2016-03-10 |
Family
ID=55654352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014137298/05A RU2577056C1 (ru) | 2014-09-16 | 2014-09-16 | Хладоноситель для термостабилизации вечномерзлого грунта |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2577056C1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2726281A1 (fr) * | 1994-10-28 | 1996-05-03 | Profroid Ind Sa | Liquide frigo-porteur et composition pour la preparation d'un tel liquide |
RU2235827C1 (ru) * | 2003-03-28 | 2004-09-10 | Московский государственный горный университет | Способ замораживания грунтов при строительстве подземных сооружений |
RU2296790C1 (ru) * | 2005-08-31 | 2007-04-10 | Леонид Самуилович Генель | Теплопередающая жидкость |
RU2489467C2 (ru) * | 2011-04-18 | 2013-08-10 | Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет низкотемпературных и пищевых технологий" | Хладоноситель |
-
2014
- 2014-09-16 RU RU2014137298/05A patent/RU2577056C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2726281A1 (fr) * | 1994-10-28 | 1996-05-03 | Profroid Ind Sa | Liquide frigo-porteur et composition pour la preparation d'un tel liquide |
RU2235827C1 (ru) * | 2003-03-28 | 2004-09-10 | Московский государственный горный университет | Способ замораживания грунтов при строительстве подземных сооружений |
RU2296790C1 (ru) * | 2005-08-31 | 2007-04-10 | Леонид Самуилович Генель | Теплопередающая жидкость |
RU2489467C2 (ru) * | 2011-04-18 | 2013-08-10 | Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет низкотемпературных и пищевых технологий" | Хладоноситель |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9611608B2 (en) | Zone freeze pipe | |
US9709337B2 (en) | Arrangement for storing thermal energy | |
AU2019417822B2 (en) | Ladder-structural gravity-assisted-heat-pipe geothermal energy recovery system without liquid-accumulation effect | |
US20070089447A1 (en) | Direct exchange geothermal heating/cooling system sub-surface tubing installation with supplemental sub-surface tubing configuration | |
RU2519012C2 (ru) | Способ и устройство для круглогодичных охлаждения, замораживания грунта основания фундамента и теплоснабжения сооружения на вечномерзлом грунте в условиях криолитозоны | |
JP7269674B2 (ja) | 地熱発電システム | |
RU116871U1 (ru) | Система термостабилизации грунта оснований на вечномерзлых грунтах | |
RU2577056C1 (ru) | Хладоноситель для термостабилизации вечномерзлого грунта | |
RU2655857C1 (ru) | Охлаждающий термосифон для площадочной термостабилизации грунтов (варианты) | |
CN203082445U (zh) | 一种热棒支撑架防治冻土区埋地管体融沉的装置 | |
CN103836258B (zh) | 热棒与粗颗粒土相结合的冻土区埋地管道融沉防治方法及装置 | |
JP2003239270A (ja) | 凍結工法及びその凍結工法に使用されるパイプ材 | |
RU143963U1 (ru) | Охлаждаемое основание сооружений | |
RU181403U1 (ru) | Сезонное охлаждающее устройство для стабилизации оснований | |
RU51636U1 (ru) | Устройство для компенсации теплового воздействия фундамента строения на грунт вечной мерзлоты | |
US20150377523A1 (en) | Support member with dual use rebar for geothermal underground loop | |
Yarmak | Permafrost foundations thermally stabilized using thermosyphons | |
KR20120056521A (ko) | 온도제어형 기초 보강 구조물 및 그 공법 | |
RU155180U1 (ru) | Конструкция для термостатирования грунтов под зданиями и сооружениями | |
Morais et al. | Energy pile and ground temperature response to heating test: a case study in Brazil | |
RU2650005C1 (ru) | Способ аккумуляции холода в грунте | |
RU2250302C1 (ru) | Тепловая свая | |
RU2552253C1 (ru) | Способ устройства плитного фундамента на сваях для резервуара с низкотемпературным продуктом | |
RU141110U1 (ru) | Система температурной стабилизации грунтов оснований зданий и сооружений | |
RU2813272C1 (ru) | Способ заморозки и поддержания стабильного состояния многолетнемерзлых грунтов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20160917 |