RU2574396C1 - Способ разложения щавелевой кислоты из азотнокислых маточных растворов - Google Patents

Способ разложения щавелевой кислоты из азотнокислых маточных растворов Download PDF

Info

Publication number
RU2574396C1
RU2574396C1 RU2014143623/04A RU2014143623A RU2574396C1 RU 2574396 C1 RU2574396 C1 RU 2574396C1 RU 2014143623/04 A RU2014143623/04 A RU 2014143623/04A RU 2014143623 A RU2014143623 A RU 2014143623A RU 2574396 C1 RU2574396 C1 RU 2574396C1
Authority
RU
Russia
Prior art keywords
decomposition
oxalic acid
platinum
column
catalyst
Prior art date
Application number
RU2014143623/04A
Other languages
English (en)
Inventor
Алексей Владиленович Ананьев
Василий Юрьевич Кольцов
Павел Юрьевич Новиков
Татьяна Борисовна Юдина
Татьяна Вениаминовна Власова
Наталья Сергеевна Величкина
Иван Владимирович Кузнецов
Original Assignee
Открытое акционерное общество "Ведущий научно-исследовательский институт химической технологии"
Filing date
Publication date
Application filed by Открытое акционерное общество "Ведущий научно-исследовательский институт химической технологии" filed Critical Открытое акционерное общество "Ведущий научно-исследовательский институт химической технологии"
Application granted granted Critical
Publication of RU2574396C1 publication Critical patent/RU2574396C1/ru

Links

Images

Abstract

Изобретение относится к способу разложения щавелевой кислоты из азотнокислых маточных растворов на биметаллическом платино-рутениевом катализаторе. Процесс ведут в динамических условиях в сорбционной колонке, заполненной биметаллическим платино-рутениевым катализатором при соотношении платины к рутению (0,4-0,5):(0,6-0,5). При этом исходный раствор подают в колонку снизу вверх, разложение щавелевой кислоты проходит в колонке с выделением газообразных продуктов, а очищенный раствор свободно перетекает в приемную емкость. Предлагаемый способ позволяет повысить скорость разложения щавелевой кислоты и увеличить степень ее разложения в динамических условиях по сравнению со статическими условиями. 1 з.п. ф-лы, 2 ил., 3 табл., 4 пр.

Description

Изобретение относится к технологии переработки облученного ядерного топлива.
Щавелевая кислота используется для осаждения плутония в виде оксалата Pu (IV) из реэкстракта аффинажного отделения с целью последующего прокаливания и получения товарного продукта - диоксида плутония. Осаждение оксалата Pu (IV) проводят из 3 моль/л азотнокислого раствора введением стехиометрического к плутонию IV) количества щавелевой кислоты, плюс избыток ~0,2 моль/л H2C2O4. Маточные растворы после отделения оксалата плутония не являются сбросными. Они могут содержать до 100 мг/л и более Pu (IV) и направляются в «голову» экстракционного процесса для доизвлечения плутония. Однако присутствие в оборотном растворе избытка щавелевой кислоты препятствует полному извлечению плутония в органическую фазу из-за резкого снижения коэффициента распределения Pu (IV) вследствие комплексообразования с оксалат-ионами. В связи с этим появляется необходимость удаления избыточной щавелевой кислоты из маточного раствора перед его направлением в аппарат экстракции.
Известен способ разложения щавелевой кислоты действием сильных окислителей, таких как К2МnO4 [К.М. Harmon et al. // Reactor handbook/. V. 11, 2nd ed. New York: Intersci. Publ., 1961, p. 455], K2Cr2O7, O3 [J.L. Jenkins, N.J. Keen, A.G. Wain // Extractive and physical metallurgy of plutonium and its alloys / New York: Intersci. Publ., 1960, p. 25].
[Г.Н. Фрейдлин, Л.А. Голубков, Л.Г. Романова // ЖПХ. 1972, т. 45, №9, с. 219].
К недостаткам способа относятся - загрязнение перерабатываемых растворов посторонними примесями; при использовании озона требуется специальное оборудование для его генерирования.
Известен способ разложения щавелевой кислоты в растворах HNO3, включающий упаривание растворов до высоких концентраций азотной кислоты, при этом происходит постепенное разложение Н2С2О4 [J.L. Jenkins, N.J. Keen, A.G. Wain // Extractive and physical metallurgy of plutonium and its alloys/ New York: Intersci. Publ., 1960, p. 25].
К недостаткам способа относится то, что процесс прямого окисления Н2С2О4 нитрат-ионами протекает слишком медленно [[Г.Н. Фрейдлин, Л.А. Голубков, Л.Г. Романова // ЖПХ. 1972, т. 45, №9, с. 219] и его использование в технологии не целесообразно.
Известен способ взаимодействия H2C2O4 и ΗΝO3 при нагревании растворов в присутствии солей ванадия(II) [Г.Н. Фрейдлин, Л.А. Голубков, Л.Г. Романова // ЖПХ. 1972, т. 45, №9, с. 219], марганца(II) [K.М. Harmon et al. // Reactor handbook . V. 11, 2nd ed. New York: Intersci. Publ., 1961, p. 455], или палладия (II) [В.С. Колтунов // Кинетика и катализ. 1968, т. 9, №5, с. 1034], которые выступают в качестве гомогенных катализаторов реакции окисления Н2С2О4 азотной кислотой. При этом достигается полное разложение щавелевой кислоты. К недостаткам способа относятся - загрязнение перерабатываемых растворов каталитическими примесями.
Известен способ разложения H2C2O4 из азотнокислых растворов на твердофазных катализаторах. В качестве таковых были изучены различные марки активных углей, платина на силикагеле и на анионитах АВ-17 и ВП-3Ап [Н.Н. Крот, В.П. Шилов, В.И. Дзюбенко, В.А. Матюха, Н.Н. Малкова. Разложение Н2С2О4 на твердофазных катализаторах в растворах HNO3. // Радиохимия, 1994, т. 36, №1, с. 19-24],
[Н.Н. Крот, В.П. Шилов, В.И. Дзюбенко, В.А. Матюха, В.П. Стародумов, Н.Н. Малкова. Разложение H2C2O4 на твердофазных катализаторах в азотнокислых растворах в присутствии гидразина. // Радиохимия, 1995, т. 37, №1, с. 23-28], [Н.Н. Крот, В.П. Шилов, В.И. Дзюбенко, В.А. Матюха, В.П. Стародумов, Н.Н. Малкова. Стехиометрия и механизм разложения H2C2O4 на твердофазных катализаторах в растворах ΗΝO3. // Радиохимия, 1994, т. 36, №5, с. 426-428].
Если процесс осуществляют в статических условиях при перемешивании растворов с катализатором в реакционной ячейке, то происходит истирание и дробление основы (силикагеля, угля и сорбента), что является недостатком способа [Н.Н. Крот, В.П. Шилов, В.И. Дзюбенко, В.А. Матюха, Н.Н. Малкова. Разложение H2C2O4 на твердофазных катализаторах в растворах ΗΝO3. // Радиохимия, 1994, т. 36, №1, с 19-24].
Известен способ разложения H2C2O4 из азотнокислых растворов на рутениевом катализаторе 5% Ru/SiO2 [М.С. Тюменцев. Окислительно-восстановительные реакции актиноидов, гидразина и щавелевой кислоты в водных средах в присутствии рутениевых и платино-рутениевых катализаторов. Автореферат диссертации на соискание ученой степени кандидата химических наук. Москва, 2013]. При этом скорость процесса в сопоставимых экспериментальных условиях оказывается почти в 50 раз ниже, чем скорость разложения H2C2O4 в присутствии катализатора 1% Pt/SiO2.
Наиболее близким является способ разложения H2C2O4 из азотнокислых растворов на биметаллическом платино-рутениевом катализаторе в статических условиях [М.С. Тюменцев. Окислительно-восстановительные реакции актиноидов, гидразина и щавелевой кислоты в водных средах в присутствии рутениевых и платино-рутениевых катализаторов. Автореферат диссертации на соискание ученой степени кандидата химических наук. Москва, 2013].
Техническим результатом предлагаемого способа разложения щавелевой кислоты из азотнокислых растворов на биметаллическом платино-рутениевом катализаторе в динамических условиях является следующее:
- ускорение скорости реакции разложения щавелевой кислоты;
- увеличение степени разложения щавелевой кислоты в динамических условиях по сравнению со статическими условиями;
- снижение в 2 раза расхода платины на приготовление катализатора без потери его каталитической активности.
Технический результат достигается тем, что разложение Н2С2О4 в азотной кислоте на биметаллических Pt-Ru катализаторах ведут в динамических условиях при соотношении платины к рутению (0,4-0,5):(0,6-0,5). Исходный раствор подают в сорбционную колонку, заполненную биметаллическим платино-рутениевым катализатором, снизу вверх. Разложение щавелевой кислоты проходит в колонке на катализаторе с выделением газообразных продуктов, а очищенный раствор свободно перетекает в приемную емкость.
Процесс разложения щавелевой кислоты ведут при температуре исходного раствора 60-80°С. При этом степень превращения достигает 100%.
В присутствии наиболее активного для данной реакции катализатора, содержащего в металлической фазе 40% ат. Pt, константа скорости разложения Н2С2О4 в динамических условиях превышает константу скорости этой реакции на том же катализаторе в статических условиях более чем в два раза. Был обнаружен мощный синергетический эффект между Pt и Ru, состоящий в резком увеличении активности данных катализаторов относительно монометаллических при достижении определенного соотношения Pt/Ru.
Пример 1.
Проведены исследования по сравнительному изучению каталитической активности различных материалов (катализатор 1% Pt/SiO2, свойства которого известны, был выбран в качестве эталона) по отношению к реакции окислительной деструкции щавелевой кислоты в 3 моль/дм3 HNO3 в динамических условиях. Результаты представлены в таблице 1.
Анализ результатов, представленных в таблице 1, показывает, что металлический цирконий в виде «крупки» не катализирует реакцию разложения щавелевой кислоты в азотнокислом растворе. Каталитическое действие активированного угля БАУ становится заметным только при высокой температуре (80°С) и большом времени контакта жидкой фазы с материалом катализатора. При этом удельная массовая активность БАУ более чем на три порядка ниже, чем активность 1% Pt/SiO2.
Наиболее эффективным каталитическими материалами для разложения щавелевой кислоты в азотнокислом растворе оказались биметаллические платино-рутениевые катализаторы. Максимальную эффективность разложения щавелевой кислоты в динамических условиях показал катализатор (Pt0,4Ru0,6)/SiO2. Его удельная активность, в пересчете на 1 г платины, более чем в 2 раза превышает удельную каталитическую активность монометаллического платинового катализатора при одинаковых условиях эксперимента.
Figure 00000001
Пример 2.
Проведены исследования в статических и в динамических условиях в присутствии биметаллических Pt-Ru катализаторов с различным атомным отношением Pt/Ru по определению константы скорости реакции первого порядка, как функции процентного содержания (атомные %) платины в биметаллическом композите. Результаты опыта представлены на рисунке 1. Рисунок 1 - Зависимость скорости каталитического разложения щавелевой кислоты от состава платиново-рутениевых катализаторов и от условий проведения процесса
[H2C2O4]=0,32 моль/дм3; [ΗΝO3]=2,5 моль/дм3; t=60°С
1 - Pt/SiO2; 2 - (Pt0,8Ru0,2)/SiO2; 3 - (Pt0,4Ru0,6)/SiO2;
4 - (Pt0,4Ru0,6)/SiO2; 5 - (Pt0,4Ru0,6)/SiO2; 6 - (Pt0,2Ru0,8)/SiO2.
Из данных, редставленных на рисунке 1, идно, что при содержании платины в биметаллическом катализаторе 40 атомных процентов, скорость реакции разложения щавелевой кислоты в динамических условиях выше в два раза, чем при осуществлении процесса в статических условиях. Применение катализатора (Pt0,4Ru0,6)/SiO2 позволяет более чем в 2 раза сократить расход платины на приготовление катализатора для разложения щавелевой кислоты без потери его каталитической активности.
Пример 3
Проведены исследования по изучению влияния температуры и скорости подачи исходного раствора на разложение щавелевой кислоты для катализатора (Pt0,4Ru0,6)/SiO2 в динамических условиях. Результаты представлены в таблице 2.
На рисунке 2 показано влияние температуры на полноту разложения щавелевой кислоты в 3,0 моль/дм3 ΗΝO3 в присутствии (Pt0,4Ru0,6)/SiO2 при скорости фильтрации раствора 1,0 см /мин.
Figure 00000002
Как видно из полученных данных повышение температуры приводит к увеличению скорости разложения щавелевой кислоты, в то время как повышение скорости подачи исходного раствора в колонку не оказывает значительного влияния на степень разложения.
Пример 4
Проведены исследования по изучению влияния концентрации азотной кислоты в исходном растворе на разложение щавелевой кислоты для катализатора (Pt0,4Ru0,6)/SiO2 в динамических условиях. Результаты представлены в таблице 3.
Figure 00000003
Изменение концентрации азотной кислоты в интервале 2,5-3 моль/дм3 практически не сказывается на скорости каталитического разложения Н2С2О4 (таблица 3).
В процессе работы через колонку с катализатором было пропущено около литра рабочего раствора, что составляет более 150 свободных колоночных объемов. При этом снижения каталитической активности в отношении реакции разложения щавелевой кислоты не отмечено. Механической деградации катализатора также визуально не наблюдалось.

Claims (2)

1. Способ разложения щавелевой кислоты из азотнокислых маточных растворов на биметаллическом платино-рутениевом катализаторе, отличающийся тем, что процесс ведут в динамических условиях в сорбционной колонке, заполненной биметаллическим платино-рутениевым катализатором при соотношении платины к рутению (0,4-0,5):(0,6-0,5), при этом исходный раствор подают в колонку снизу вверх, разложение щавелевой кислоты проходит в колонке с выделением газообразных продуктов, а очищенный раствор свободно перетекает в приемную емкость.
2. Способ по п.1, отличающийся тем, что в динамических условиях процесс разложения щавелевой кислоты ведут при температуре исходного раствора 60-80°C.
RU2014143623/04A 2014-10-28 Способ разложения щавелевой кислоты из азотнокислых маточных растворов RU2574396C1 (ru)

Publications (1)

Publication Number Publication Date
RU2574396C1 true RU2574396C1 (ru) 2016-02-10

Family

ID=

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ТЮМЕНЦЕВ М.С., Окислительно-восстановительные реакции актинидов, гидразина и щавелевой кислоты в водных средах в присутствии рутениевых и платино-рутениевых катализаторов, Автореферат диссертации на соискание ученой степени кандидата наук, Москва, 2013. КРОТ Н.Н. И ДР., Разложение H 2 C 2 O 4 в азотнокислых растворах в присутствии твердофазных катализаторов, РАДИОХИМИЯ, 1994, т.36, вып.1, стр. 19-24. ANANIEV A.V. ET AL., Heterogeneous catalytic redox reactions in the chemistry and technology of the nuclear fuel cycle, RUSSIAN CHEMICAL RECIEWS, 2005, vol.74, no.11, pp.1039-1059 *

Similar Documents

Publication Publication Date Title
Ciriminna et al. Industrial applications of gold catalysis
Ye et al. Graphitic carbon nitride supported ultrafine Pd and Pd–Cu catalysts: enhanced reactivity, selectivity, and longevity for nitrite and nitrate hydrogenation
Kim et al. Recovery of platinum-group metals from recycled automotive catalytic converters by carbochlorination
Abe et al. Overall Water Splitting under Visible Light through a Two‐Step Photoexcitation between TaON and WO3 in the Presence of an Iodate–Iodide Shuttle Redox Mediator
Ogawa et al. High electron density on Ru in intermetallic YRu2: the application to catalyst for ammonia synthesis
Hisatomi et al. Aspects of the water splitting mechanism on (Ga1− x Zn x)(N1− x O x) photocatalyst modified with Rh2− y Cr y O3 cocatalyst
Qi et al. Catalytic ozonation of 2-isopropyl-3-methoxypyrazine in water by γ-AlOOH and γ-Al2O3: Comparison of removal efficiency and mechanism
CN102057066B (zh) 铼的回收
AU2013230403B2 (en) Method for preparing solid nitrosyl ruthenium nitrate by using waste catalyst containing ruthenium
Nakajima et al. Highly efficient supported palladium–gold alloy catalysts for hydrogen storage based on ammonium bicarbonate/formate redox cycle
Lan et al. Enhanced electroreductive removal of bromate by a supported Pd–In Bimetallic catalyst: kinetics and mechanism investigation
Nicol et al. Platinum Group Metals Recovery Using Secondary Raw Materials (PLATIRUS): project overview with a focus on processing spent autocatalyst: novel PGM recycling technologies ready for demonstration at next scale
Qin et al. Kinetics and mechanism of humic acids degradation by ozone in the presence of CeO2/AC
Makhatova et al. Degradation and mineralization of 4-tert-butylphenol in water using Fe-doped TiO2 catalysts
JP2008253978A (ja) ナノ金を含み酸化マンガン/酸化鉄に積載する触媒により及びその製造方法と応用
Grilli et al. Platinum group metals: Green recovery from spent auto-catalysts and reuse in new catalysts—A review
Papa et al. Supported Pd–Cu nanoparticles for water phase reduction of nitrates. Influence of the support and of the pH conditions
Wang et al. Extended study of ammonia conversion to N 2 using a Ru/0.2 TiZrO 4 catalyst via catalytic wet air oxidation
Reddy et al. Insight into wet oxidation of aqueous aniline over a Ru/SiO2 catalyst
RU2574396C1 (ru) Способ разложения щавелевой кислоты из азотнокислых маточных растворов
Ye et al. Pd nanoparticle catalysts supported on nitrogen-functionalized activated carbon for oxyanion hydrogenation and water purification
JP2013035805A (ja) グリセリンの液相酸化反応用触媒及びその触媒を用いたグリセリンの酸化反応方法
Zhao et al. New Insight toward Synergetic Effect for Platinum Recovery Coupling with Fe (III)-Oxalate Complexes Degradation through Photocatalysis
Li et al. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts
Kononova et al. Sorption of platinum and rhodium on carbon adsorbents from chloride solutions