RU2574217C2 - Стартер-генераторная установка для автономной системы электроснабжения на базе роторно-лопастного двигателя с внешним подводом теплоты и способ ее использования - Google Patents
Стартер-генераторная установка для автономной системы электроснабжения на базе роторно-лопастного двигателя с внешним подводом теплоты и способ ее использования Download PDFInfo
- Publication number
- RU2574217C2 RU2574217C2 RU2013149680/07A RU2013149680A RU2574217C2 RU 2574217 C2 RU2574217 C2 RU 2574217C2 RU 2013149680/07 A RU2013149680/07 A RU 2013149680/07A RU 2013149680 A RU2013149680 A RU 2013149680A RU 2574217 C2 RU2574217 C2 RU 2574217C2
- Authority
- RU
- Russia
- Prior art keywords
- voltage
- control system
- multiplier
- valve
- rotary
- Prior art date
Links
- 230000001360 synchronised Effects 0.000 claims abstract description 13
- 239000004065 semiconductor Substances 0.000 claims abstract description 4
- 230000005611 electricity Effects 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000009434 installation Methods 0.000 description 10
- 238000010248 power generation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 125000001145 hydrido group Chemical group *[H] 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001105 regulatory Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Images
Abstract
Изобретение относится к области электротехники и может быть использовано в стартер-генераторе низкоскоростного роторно-лопастного двигателя в составе автономной кооперационной системы энергоснабжения, ветроэнергетических и других установок на основе альтернативных источников энергии. Техническим результатом является обеспечение работы установки на базе роторно-лопастного двигателя с внешним подводом теплоты с высокими показателями энергетической эффективности в трех режимах с использованием типовых вентильных преобразователей и общепромышленного вентильного двигателя и повышение эффективности системы управления. Вентильный преобразователь напряжения (3) выполнен на активных полупроводниковых элементах с двусторонней проводимостью. В систему добавлены аккумуляторная батарея (9) и вторичные источники питания (10). Управление потоком электрической энергии осуществляется с использованием обратной связи по напряжению или току звена постоянного напряжения с учетом скорости вращения синхронной машины (2) и изменения нагрузки переменного напряжения. Система управления мультипликатором (7) связана с главной системой управления (6) роторно-лопастного двигателя (1). 2 н. и 1 з.п. ф-лы, 2 ил.
Description
Изобретение относится к области использования трехфазных синхронных машин, силовых преобразователей для выработки электроэнергии и может быть использовано для стартер-генератора низкоскоростного роторно-лопастного двигателя в составе автономной когенерационной системы энергоснабжения, ветроэнергетических и других установок на основе альтернативных источников энергии.
Известна система «синхронный генератор с постоянными магнитами - активный выпрямитель - инвертор напряжения» для ветроэнергетических установок [Харитонов С.А. «Электромагнитные процессы в системах генерирования электрической энергии для автономных объектов», Новосибирск, Изд-во НГТУ, 2011, схема с. 370].
С точки зрения применения данной системы к низкоскоростному роторно-лопастному двигателю с переменной частотой вращения вала, она обладает рядом недостатков. Отсутствие мультипликатора частоты вращения вала либо напряжения генератора, либо напряжения на звене постоянного тока делает невозможным применение низкоскоростного двигателя. Применение мультипликатора частоты вращения вала (редуктора) либо напряжения генератора (трансформатора) существенно повышает массогабаритные показатели энергетической установки. Проблематично использование синхронного генератора в режиме стартера для роторно-лопастного двигателя.
Наиболее близкой к предлагаемой является система для выработки электроэнергии, используемая в малых гидро- и ветроустановках с переменной частотой вращения вала электрической машины, представляющая собой структуру «неуправляемый выпрямитель - корректор коэффициента мощности (мультипликатор постоянного напряжения) - инвертор напряжения» [Т. Sobczyk, W. Mazgaj, Z. Shular, Т. Wegiel, L. Kopchak, B. Kopchak, R. Jacukowicz, M. Twerd. «Power electronic conversion system for small power plants based on renewable sources», журнал «Электротехнические и компьютерные системы» (Одесса), №3, 2011, с. 367-370], содержащая возбуждаемую постоянными магнитами синхронную машину, которая со стороны ротора механически связана с приводной турбиной, со стороны статора электрически связана с трехфазным вентильным преобразователем напряжения, выход которого соединен с входом вентильного мультипликатора постоянного напряжения, при этом выход мультипликатора соединен с входом инвертора, который со стороны переменного напряжения подключен к трехфазной нагрузке переменного напряжения или промышленной сети, причем управление инвертором осуществляется системой управления с обратной связью по напряжению и току трехфазной нагрузки, при этом система управления инвертором связана с системой управления турбиной, тогда как управление вентильным мультипликатором постоянного напряжения осуществляется системой управления с обратной связью по току или напряжению на выходе мультипликатора.
К недостаткам данной системы (автономной установки) относятся:
- система предназначена только для обеспечения генераторного режима работы. Ввиду того что данная система имеет в составе неуправляемый выпрямитель, для обеспечения пусковых режимов низкоскоростного роторно-лопастного двигателя необходимо подключение дополнительной системы пуска;
- система управления автономной установкой связана с системой управления электрической подсистемой через систему управления инвертором, которая не требуется.
В основе предлагаемого устройства лежит задача построения автономной стартер-генераторной установки (полупроводниковой преобразовательной системы) для работы с роторно-лопастным двигателем с внешним подводом теплоты (низкоскоростным двигателем с переменной частотой вращения) таким образом, чтобы обеспечивались необходимые режимы работы: режим выработки электроэнергии, режим запуска двигателя от аккумуляторной батареи и дополнительный режим запуска от сети при ее наличии, задача выработки электроэнергии с помощью такой установки, а также задача организации более эффективного управления установкой.
На фигуре 1 показана функциональная схема стартер-генераторной установки для системы электроснабжения на базе роторно-лопастного двигателя с внешним подводом теплоты, обеспечивающей режимы выработки электроэнергии и запуска системы от трехфазной промышленной сети при ее наличии, а также с изменениями в системе управления.
Согласно фигуре 1 система состоит из следующих элементов.
Роторно-лопастной двигатель (1) механически связан с возбуждаемой постоянными магнитами синхронной машиной (2) со стороны ротора. Возбуждаемая постоянными магнитами синхронная машина (2) со стороны статора электрически связана с трехфазным вентильным преобразователем напряжения (3), выход которого соединен с входом вентильного мультипликатора постоянного напряжения (4), при этом выход мультипликатора соединен с входом инвертора (5), который со стороны переменного напряжения подключен к трехфазной нагрузке переменного напряжения или промышленной сети.
Роторно-лопастной двигатель (1) управляется главной системой управления (6), вентильный мультипликатор постоянного напряжения (4) управляется системой управления (7) с обратной связью по току или напряжению на выходе мультипликатора. Главная система управления роторно-лопастным двигателем (6) связана с системой управления мультипликатором постоянного напряжения (7).
На фигуре 2 изображена итоговая функциональная схема стартер-генераторной установки для автономной системы электроснабжения на базе роторно-лопастного двигателя с внешним подводом теплоты с добавлением элементов, обеспечивающих режим запуска двигателя от аккумуляторной батареи. Остальные элементы идентичны фигуре 1.
Аккумуляторная батарея (8) соединена с вентильным преобразователем напряжения (3) со стороны постоянного напряжения и вторичными источниками питания (9), которые соединены с питанием системы управления (7), вентильного преобразователя напряжения (3) и инвертора (5).
Техническое решение поставленной задачи обеспечения необходимых режимов работы установки на базе роторно-лопастного двигателя с внешним подводом теплоты достигается тем, что вентильный преобразователь напряжения (3) выполнен на активных полупроводниковых элементах с двусторонней проводимостью. Обеспечение режима запуска от сети достигается также тем, что в систему добавлены аккумуляторная батарея (8) и вторичные источники питания (9). Задача организации более эффективного управления установкой достигается тем, что управление потоком электрической энергии осуществляется с использованием обратной связи по напряжению или току звена постоянного напряжения с учетом скорости вращения синхронной машины (2) и изменения нагрузки переменного напряжения, при этом система управления мультипликатором (7) связана с главной системой управления (6) роторно-лопастного двигателя (1).
Обеспечение необходимых режимов работы установки на базе роторно-лопастного двигателя с внешним подводом теплоты и организация эффективного управления установкой осуществляются следующим образом:
1. Режим выработки электроэнергии (в т.ч. параллельная работа с сетью (или аналогичными системами)).
Возбуждаемая постоянными магнитами синхронная машина (2) работает в генераторном режиме, приводится во вращение низкоскоростным роторно-лопастным двигателем с внешним подводом теплоты (1), работающим с переменной частотой вращения вала. В качестве синхронной машины с постоянными магнитами может быть использован любой общепромышленный вентильный двигатель с постоянными магнитами необходимой мощности. Трехфазный вентильный преобразователь (3) работает в режиме активного выпрямителя и выдает на выходе постоянное напряжение низкого уровня, подаваемое на вход повышающего преобразователя постоянного напряжения (4) (коэффициента корректора мощности).
Необходимое для работы постоянное напряжение высокого уровня подается на вход инвертора (5) (в случае применения трехфазного инвертора свыше 450 В), и тем самым обеспечивается выходное напряжение трехфазной сети 380 В/50 Гц.
Управление системой выработки электроэнергии и связь с главной системой управления (6) производится через систему управления вентильным мультипликатором постоянного напряжения (7). Управление через мультипликатор совмещает управление в зависимости от подключения нагрузки (не требуется система управления инвертором) и в зависимости от переменной скорости вращения роторно-лопастного двигателя. Таким образом, система управления инвертором с обратной связью по току и напряжению не требуется, а в качестве инвертора может быть использован любой типовой однофазный или трехфазный инвертор соответствующей мощности. Частота сети 50 Гц остается постоянной, а регулирование напряжения сети регулируется значением напряжения высокого уровня на выходе преобразователя постоянного напряжения (4).
2. Режим запуска двигателя от аккумуляторной батареи. Аккумуляторная батарея (8) питает блок вторичных источников питания (9), который, в свою очередь, питает системы управления всей когенерационной установки и управляющие цепи вентильных преобразователей (3, 4, 5). В пусковом режиме питаемый от низкого постоянного напряжения вентильный преобразователь (3) работает в режиме инвертора и запускает синхронную машину с постоянными магнитами (2) и, соответственно, роторно-лопастной двигатель с внешним подводом теплоты (1) на малую частоту вращения.
3. Дополнительный режим запуска от сети при ее наличии.
Данный режим требует переключения в силовой части энергетической установки и осуществляется путем отключения преобразователя постоянного напряжения (4) и соединения по звену постоянного тока вентильных преобразователей (3) и (5). Вентильный преобразователь (3) подключается к трехфазной сети повышенного напряжения и работает в режиме активного выпрямителя, выдавая на выходе достаточное для инвертора (5) напряжение звена постоянного тока. Инвертор (5) питает синхронную машину с постоянными магнитами (2), осуществляя ее запуск (и, соответственно, облегченный режим запуска роторно-лопастного двигателя с внешним подводом теплоты (1)). Системы управления и управляющие цепи преобразователей запитываются от внешней сети.
Заявляемый способ предназначен для выработки электроэнергии с помощью вышеописанной стартер-генераторной установки с усовершенствованной организацией системы управления (фигура 1), с элементами для запуска установки (фигура 2) и без них (фигура 1).
Техническим результатом является обеспечение работы установки на базе роторно-лопастного двигателя с внешним подводом теплоты с высокими показателями энергетической эффективности в трех режимах с использованием типовых вентильных преобразователей и общепромышленного вентильного двигателя, а также повышение эффективности системы управления такой установки.
Claims (3)
1. Стартер-генераторная установка, содержащая возбуждаемую постоянными магнитами синхронную машину, которая со стороны ротора механически связана с роторно-лопастным двигателем, со стороны статора электрически связана с трехфазным вентильным преобразователем напряжения, выход которого соединен с входом вентильного мультипликатора постоянного напряжения, при этом выход мультипликатора соединен с входом инвертора, который со стороны переменного напряжения подключен к трехфазной нагрузке переменного напряжения или промышленной сети, причем управление вентильным мультипликатором постоянного напряжения осуществляется системой управления с обратной связью по току или напряжению на выходе мультипликатора, отличающаяся тем, что вентильный преобразователь напряжения выполнен на активных полупроводниковых элементах с двусторонней проводимостью, а также система управления вентильным мультипликатором постоянного напряжения связана с системой управления роторно-лопастным двигателем, в свою очередь, система управления инвертором с обратной связью по напряжению и току трехфазной нагрузки отсутствует.
2. Стартер-генераторная установка по п. 1, отличающаяся тем, что содержит аккумуляторную батарею, которая соединена с вентильным преобразователем напряжения со стороны постоянного напряжения и вторичными источниками питания, которые соединены с питанием системы управления вентильным мультипликатором постоянного напряжения, вентильного преобразователя напряжения и инвертора.
3. Способ выработки электрической энергии, отличающийся тем, что используется устройство по пп. 1, 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013149680/07A RU2574217C2 (ru) | 2013-11-06 | Стартер-генераторная установка для автономной системы электроснабжения на базе роторно-лопастного двигателя с внешним подводом теплоты и способ ее использования |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013149680/07A RU2574217C2 (ru) | 2013-11-06 | Стартер-генераторная установка для автономной системы электроснабжения на базе роторно-лопастного двигателя с внешним подводом теплоты и способ ее использования |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013149680A RU2013149680A (ru) | 2015-05-20 |
RU2574217C2 true RU2574217C2 (ru) | 2016-02-10 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU177678U1 (ru) * | 2017-08-04 | 2018-03-06 | Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" (ФГУП "ГосНИИАС") | Автономная система электроснабжения с электрозапуском силовой установки |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1983002099A1 (en) * | 1981-12-17 | 1983-06-23 | Peter Jan Fournais | Method and generating plant for ships having a shaft generator |
JPH04232341A (ja) * | 1990-12-28 | 1992-08-20 | Ishikawajima Harima Heavy Ind Co Ltd | ガスタービンエンジンの操作装置 |
US5512811A (en) * | 1994-01-21 | 1996-04-30 | Sundstrand Corporation | Starter/generator system having multivoltage generation capability |
RU2236079C2 (ru) * | 1999-07-02 | 2004-09-10 | Самарский государственный технический университет | Способ управления стартер-генераторной системой с планетарным редуктором и устройство для его осуществления |
RU64146U1 (ru) * | 2007-02-19 | 2007-06-27 | Государственное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" | Газотурбовоз |
DE10103538B4 (de) * | 2001-01-26 | 2007-11-22 | Siemens Ag | Elektromotorisch angetriebenes Schienenfahrzeug mit Verbrennungsmotor |
RU2341680C2 (ru) * | 2007-02-19 | 2008-12-20 | Валентин Иванович Власов | Преобразователь энергии потока |
EP2149975A1 (en) * | 2008-07-30 | 2010-02-03 | C.R.D. Centro Ricerche Ducati Trento S.r.l. | Method and integrated phasing system for a synchronous electric machine and engine assembly |
RU2436217C2 (ru) * | 2007-03-30 | 2011-12-10 | Абб Текнолоджи Лтд. | Устройство и способ для подачи энергии к критичной нагрузке |
RU2460224C1 (ru) * | 2011-04-11 | 2012-08-27 | Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военная академия связи имени маршала Советского Союза С.М. Буденного" Министерства Обороны Российской Федерации (Минобороны России) | Демодулятор сигналов с относительной фазовой модуляцией |
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1983002099A1 (en) * | 1981-12-17 | 1983-06-23 | Peter Jan Fournais | Method and generating plant for ships having a shaft generator |
JPH04232341A (ja) * | 1990-12-28 | 1992-08-20 | Ishikawajima Harima Heavy Ind Co Ltd | ガスタービンエンジンの操作装置 |
US5512811A (en) * | 1994-01-21 | 1996-04-30 | Sundstrand Corporation | Starter/generator system having multivoltage generation capability |
RU2236079C2 (ru) * | 1999-07-02 | 2004-09-10 | Самарский государственный технический университет | Способ управления стартер-генераторной системой с планетарным редуктором и устройство для его осуществления |
DE10103538B4 (de) * | 2001-01-26 | 2007-11-22 | Siemens Ag | Elektromotorisch angetriebenes Schienenfahrzeug mit Verbrennungsmotor |
RU64146U1 (ru) * | 2007-02-19 | 2007-06-27 | Государственное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" | Газотурбовоз |
RU2341680C2 (ru) * | 2007-02-19 | 2008-12-20 | Валентин Иванович Власов | Преобразователь энергии потока |
RU2436217C2 (ru) * | 2007-03-30 | 2011-12-10 | Абб Текнолоджи Лтд. | Устройство и способ для подачи энергии к критичной нагрузке |
EP2149975A1 (en) * | 2008-07-30 | 2010-02-03 | C.R.D. Centro Ricerche Ducati Trento S.r.l. | Method and integrated phasing system for a synchronous electric machine and engine assembly |
RU2460224C1 (ru) * | 2011-04-11 | 2012-08-27 | Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военная академия связи имени маршала Советского Союза С.М. Буденного" Министерства Обороны Российской Федерации (Минобороны России) | Демодулятор сигналов с относительной фазовой модуляцией |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU177678U1 (ru) * | 2017-08-04 | 2018-03-06 | Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" (ФГУП "ГосНИИАС") | Автономная система электроснабжения с электрозапуском силовой установки |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2060786A3 (en) | Controlling the temperature of a wind turbine electric generator by varying the electrical power factor | |
US20160006254A1 (en) | Serial Hybrid Microgrid with PPSA-mediated interface to Genset and to Non-Dispatchable Power | |
US20150292469A1 (en) | Electric unit for a pump-storage power plant | |
CN102305914A (zh) | 风力发电实验装置 | |
Kumar et al. | Grid interfaced solar PV powered brushless DC motor driven water pumping system | |
Zentani et al. | DC-DC boost converter with P&O MPPT applied to a stand-alone small wind turbine system | |
Mathivanan et al. | Assessment of photovoltaic powered flywheel energy storage system for power generation and conditioning | |
TW201249073A (en) | Enclosed energy multi-circulation system and operating method thereof | |
CN201903629U (zh) | 交流变压型励磁同步风力发电实验装置 | |
Kumar et al. | SEPIC converter with 3-level NPC multi-level inverter for wind energy system (WES) | |
WO2011161692A3 (en) | Reactive power management for wind turbine applications | |
Borkowski | Small hydropower plant as a supplier for the primary energy consumer | |
RU144521U1 (ru) | Стартер-генераторная установка для автономной системы электроснабжения на базе роторно-лопастного двигателя с внешним подводом теплоты | |
WO2015159968A1 (ja) | 再生可能自然エネルギーによる発電装置 | |
RU2574217C2 (ru) | Стартер-генераторная установка для автономной системы электроснабжения на базе роторно-лопастного двигателя с внешним подводом теплоты и способ ее использования | |
WO2018063529A1 (en) | Electronic sub-system and dfig based power generation system for powering variable frequency electrical devices | |
Khitrov et al. | Electrical subsystem of the low-power cogeneration plant with low-speed vehicle | |
Amuhaya et al. | Effect of rotor field winding MMF on performance of grid-compliant hybrid-PM slip synchronous wind generator | |
Shchur et al. | Analysis of methods of electrical load of permanent magnet synchronous generator for small wind turbines | |
Kimura et al. | Minimum reactive power tracking with mppt of converter excited induction generator for wind power generation | |
Gadkari et al. | Generation of electricity from fans | |
RU97227U1 (ru) | Электроэнергетическая установка | |
RU66635U1 (ru) | Асинхронизированный синхронный генератор | |
El Akhrif et al. | Experimental dSPACE analysis for permanent magnet synchronous generator used in voltage control | |
Mohammed et al. | A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications |