RU2572525C1 - Способ локализации запасов в нефтематеринских толщах - Google Patents
Способ локализации запасов в нефтематеринских толщах Download PDFInfo
- Publication number
- RU2572525C1 RU2572525C1 RU2014134321/28A RU2014134321A RU2572525C1 RU 2572525 C1 RU2572525 C1 RU 2572525C1 RU 2014134321/28 A RU2014134321/28 A RU 2014134321/28A RU 2014134321 A RU2014134321 A RU 2014134321A RU 2572525 C1 RU2572525 C1 RU 2572525C1
- Authority
- RU
- Russia
- Prior art keywords
- oil
- maps
- density
- results
- coherence
- Prior art date
Links
Images
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Изобретение относится к области геофизики и может найти применение при разработке нефтяных залежей. Способ включает проведение геолого-геофизических и промысловых исследований скважин, комплексный анализ их результатов, выделение литотипов по данным ГИС, оценку разделения литотипов в полях скоростей продольных, поперечных волн и плотности, проведение синхронной инверсии частичных угловых сумм сейсморазведочных работ 3Д, в результате чего получают трехмерные кубы скоростей продольной, поперечной волн и плотности. Пересчитывают их в дискретный куб литологии на основе литотипов, выделенных по скважинным данным, и проводят калибровку и верификацию по данным ГИС. На основе результатов обработки и интерпретации сейсморазведочных работ 3Д строят карты когерентности волнового поля по кровле баженовской свиты и подошве ближайшего вышележащего проницаемого пласта. Определяют критическое значение индекса когерентности, ниже которого продуктивность скважин близка к нулю. Проводят совместный анализ карт когерентности и выделяют потенциально продуктивные зоны баженовской свиты. Проводят анализ зависимости мощности литотипов от запускных дебитов скважин. Затем на основе разработанных петрофизических алгоритмов и выявленных связей по данным ГИС и исследований керна рассчитывают коэффициенты пористости и нефтенасыщенности, по результатам чего строят карты эффективных нефтенасыщенных мощностей, пористости, нефтенасыщенности и распределения плотности запасов нефти. Технический результат - повышение точности прогнозирования распространения запасов нефти. 8 ил.
Description
Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке нефтяных залежей нетрадиционных коллекторов нефтематеринских толщ баженовской свиты.
Объектом прогнозирования являются запасы нефти в отложениях, представляющих собой переслаивание пачек черных глинистых пород с высоким содержанием органического вещества и маломощных плотных пропластков преимущественно карбонатного и кремнистого состава.
С одной стороны, рассматриваемые отложения формируют нефтематеринские толщи, а с другой (в то же время) - вмещают промышленные скопления подвижной нефти, доступной для разработки на современном технологическом уровне.
Залежи нефти аккумулируются в трещинных и трещинно-кавернозных (трещинно-поровых) коллекторах, по своему типу относятся к полностью литологически экранированным и не контролируются структурным планом толщи. Дебиты нефти при этом меняются в широких пределах.
Открытие промышленных залежей нефти в такого рода толщах происходит, как правило, случайно при опоисковании и разведке нижележащих горизонтов. Запасы нефти оцениваются только в радиусе дренажа скважин, давших промышленные притоки. Подсчетные параметры при этом назначаются формально по рекомендациям директивных органов управления недропользованием. Например, эффективная толщина принимается равной 1/3 общей мощности пласта, а пористость - равной 8%.
Такое положение резко снижает эффективность разведки и освоения нефтяного потенциала рассматриваемого типа отложений.
Известен способ обнаружения нефтегазосодержащих толщ путем выполнения комплексных геофизических исследований (гравиметрической и аэромагнитометрической съемки) с выделением контура аномальных зон, который отождествляют с контуром залежи полезного ископаемого (см. патент РФ №2050015, МПК G01V 11/00, опубл. 10.12.1995).
Недостатком способа является его трудоемкость.
Известен способ поиска залежей углеводородов в карбонатных породах фундамента нефтегазоносных рифтогенных осадочных бассейнов. Способ заключается в отборе образцов породы в процессе бурения и измерении их магнитной восприимчивости, по которым судят о наличии залежей. Образцы породы отбирают с нефтегазоносных площадей с карбонатным фундаментом, соседствующим с погребенным континентальным палеорифтом, а о наличии залежей судят по значениям магнитной восприимчивости из интервала 13,0·106-31,01·106 (см. патент РФ №2276390, МПК G01V 3/08, опубл. 10.05.2006).
Однако данный способ рассчитан исключительно на карбонатные, а не на битуминозные глинистые отложения.
Известен способ поиска залежей углеводородов (см. патент РФ №№2194293, МПК G01V 11/00, опубл. 10.12.2002), в котором в качестве перспективных районов выбирают нефтегазоносные районы с фундаментом, представляющим собой тафрогенную структуру. Производят измерение магнитных и гравитационных полей. Выявляют наличие кислых экструзивных куполов в породах фундамента по совпадению отрицательных аномалий магнитного и гравитационного полей. Выбирают места заложения проверочных скважин в центральной зоне экструзивных куполов.
Однако данный способ также достаточно трудоемок и дорогостоящ, т.к. необходимо осуществлять бурение на значительно большие глубины.
Дальнейшим шагом на пути изучения промышленной нефтеносности нефтематеринских толщ явилось изобретение «Способ геофизической разведки для определения нефтепродуктивности трещинных глинистых коллекторов в межскважинном пространстве» (патент РФ №2225020, опубл. 27.02.2004). Особенностью рассматриваемой работы является то, что авторы предпринимают смелую попытку непосредственно связать коэффициент продуктивности в разведочных и эксплуатационных скважинах с сейсмическими динамическими параметрами, минуя работу с такими важнейшими характеристиками резервуара и залежей, как емкость, запасы и общая конструкция залежей. Способ по патенту №2225020 не обеспечивает выделение коллекторов в разрезе скважин, оценку их пустотности и емкости, что исключает возможность подсчета запасов. Оптимизация размещения скважин в рамках данного патента возможна только по одному критерию - максимальная продуктивность. В то время как по всем канонам необходимо учитывать как продуктивность, так массу и плотность запасов.
Известен способ прогнозирования зон развития вторичных коллекторов трещиноватого типа в осадочном чехле, который является наиболее близким к заявляемому техническому решению (прототипом), патент РФ №№2183332, опубл. 10.06.2002. Способ включает проведение и анализ результатов геолого-геофизических исследований: обработку сейсмически отраженных волн, привязанных к выбранному комплексу отложений, проведение литолого-петрофизических исследований образцов пород для определения наиболее вероятного генезиса вторичных коллекторов, выделение литотипов, по которым происходит формирование вторичных коллекторов трещиноватого типа, определение площади развития этих литотипов. Авторы связывают развитие трещиноватости в твердых хрупких пропластках исключительно с действием тектонических напряжений. Тектонические напряжения, по мнению авторов, формируют систему дизъюнктивных дислокаций разного масштаба при формировании окончательного структурного плана осадочного бассейна. Распределение трещиноватости по патенту РФ №2183332 является результатом математического, тектоноструктурного и оптико-поляризационного моделирования. Принятый авторами генезис трещиноватости привязывает зоны развития «вторичной трещиноватости» к структурному плану, картируемому сейсморазведкой. Предложенный способ имеет следующие недостатки.
1. Практика опровергла однозначную привязку зон развития вторичных трещиноватых коллекторов к каким-либо элементам структурного плана в осадочных толщах.
2. В способе, изложенном в патенте №2183332, не рассматриваются процессы, приведшие к миграции нефти в перекрывающие породы, не учитывается литологический состав разреза.
В заявляемом способе основной упор делается на выделение потенциально продуктивных зон по результатам комплексного анализа сейсморазведочных работ 3Д и промысловых испытаний разведочных и эксплуатации добывающих скважин; выделение интервалов коллектора в разрезе баженовской свиты.
Стоит задача повышения степени прогнозирования распространения запасов нефти в баженовской свите за счет возможности построения карт распределения плотности запасов нефти, которые позволяют повысить эффективность бурения эксплуатационных скважин и увеличить накопленную добычу нефти на скважину.
Поставленная задача решается тем, что в способе локализации запасов в нефтематеринских толщах, включающем проведение геолого-геофизических и промысловых исследований скважин, комплексный анализ их результатов, выделение литотипов по данным ГИС, согласно изобретению оценивают разделение литотипов в полях скоростей продольных, поперечных волн и плотности, проводят синхронную инверсию частичных угловых сумм сейсморазведочных работ 3Д, в результате чего получают трехмерные кубы скоростей продольной, поперечной волн и плотности, пересчитывают их в дискретный куб литологии на основе литотипов, выделенных по скважинным данным, проводят калибровку и верификацию по данным ГИС, на основе результатов обработки и интерпретации сейсморазведочных работ 3Д строят карты когерентности волнового поля по кровле баженовской свиты и подошве ближайшего вышележащего проницаемого пласта, определяют критическое значение индекса когерентности, ниже которого продуктивность скважин близка к нулю, проводят совместный анализ карт когерентности и выделяют потенциально продуктивные зоны баженовской свиты, проводят анализ зависимости мощности литотипов от запускных дебитов скважин, затем на основе разработанных петрофизических алгоритмов и выявленных связей по данным ГИС и исследований керна рассчитывают коэффициенты пористости и нефтенасыщенности, по результатам чего строят карты эффективных нефтенасыщенных мощностей, пористости, нефтенасыщенности и распределения плотности запасов нефти.
Способ реализуется следующим образом.
1. На выбранной площади проводят геолого-геофизические и промысловые исследования разведочных и эксплуатационных скважин (ГИС), вскрывших баженовскую свиту, в том числе кросс-дипольный широкополосный акустический и плотностной каротаж. Проводят комплексный анализ и интерпретацию их результатов, выделяют основные литотипы.
2. Оценивают разделение литотипов в полях скоростей продольных и поперечных волн, плотности.
3. Проводят синхронную инверсию частичных угловых сумм сейсморазведочных данных 3Д, в результате получают трехмерные кубы скоростей продольной, поперечной волн и плотности, пересчитывают их в дискретный куб литологии на основе литотипов, выделенных по скважинным данным, и результата по п. 2. Далее проводится калибровка и верификация по данным ГИС.
4. На основе результатов обработки и интерпретации сейсморазведочных работ 3Д строят карты когерентности волнового поля по кровле баженовской свиты и подошве ближайшего вышележащего проницаемого пласта.
5. По данным испытаний разведочных и эксплуатации добывающих скважин определяют критическое значение индекса когерентности, ниже которого продуктивность скважин близка к нулю.
6. После этого проводят совместный анализ карт когерентности баженовской свиты и вышележащих проницаемых отложений с целью выделения потенциально продуктивных зон баженовской свиты.
7. Проводят анализ зависимости мощности литотипов от запускных дебитов скважин. Тот литотип, для которого устанавливается хорошая зависимость (высокий коэффициент корреляции), считают нефтеотдающим и его мощность принимают за толщину нефтенасыщенных пород.
8. По результатам пунктов 3, 6 и 7 рассчитывают карту эффективных нефтенасыщенных мощностей, соответствующих мощности нефтеотдающего литотипа в пределах потенциально продуктивных зон.
9. На основе разработанных петрофизических алгоритмов и выявленных связей по данным ГИС и исследований керна рассчитывают коэффициенты пористости и нефтенасыщенности. По результатам строят карты пористости и нефтенасыщенности путем 2Д, либо 3Д моделирования.
10. По результатам пунктов 8, 9 рассчитывают карту распределения плотности запасов нефти.
Пример конкретного выполнения способа представлен на следующих иллюстрациях:
Фиг. 1 - Выделение основных литотипов в разрезе скважины.
Фиг. 2 - Разделение литотипов в поле скорость-плотность по данным ГИС.
Фиг. 3 - Куб литологии.
Фиг. 4 - Карта когерентности по кровле баженовской свиты.
Фиг. 5 - Карта когерентности по подошве ближайшего проницаемого пласта.
Фиг. 6 - Карта потенциально продуктивных зон баженовской свиты.
Фиг. 7 - Зависимость запускных дебитов скважин от мощности кремнистых пород.
Фиг. 8 - Карта плотности запасов нефти.
В качестве примера рассмотрен участок, расположенный на территории Западной Сибири, находящийся в разработке. На выбранной площади были проведены геолого-геофизические и промысловые исследования разведочных и эксплуатационных скважин (ГИС), вскрывших баженовскую свиту, в том числе кросс-дипольный широкополосный акустический и плотностной каротаж. Рассматриваемая территория покрыта сейсморазведочными работами 3Д, в процессе обработки которых были рассчитаны кубы частично кратных угловых сумм и проведена интерпретация.
Была проведена интерпретация стандартного комплекса ГИС разведочных и эксплуатационных скважин, вскрывших баженовскую свиту и выделены основные литотипы (см. фиг. 1: литотип 1 - керогеносодержащие интервалы, литотип 2 - глинистые породы, литотип 3 - кремнистые породы, литотип 4 - карбонатизированные породы). В скважинах с наличием кросс-дипольного широкополосного акустического и плотностного каротажа проведено разделение литотипов в полях скоростей продольных, поперечных волн и плотности (фиг. 2). Проводилась синхронная инверсия частичных угловых сумм сейсморазведочных данных 3Д, были получены трехмерные кубы скоростей продольной, поперечной волн и плотности, которые пересчитывались в дискретный куб литологии на основе литотипов, выделенных по скважинным данным. Была выполнена калибровка и верификация на данные ГИС (фиг. 3). На основе результатов обработки и интерпретации сейсморазведочных работ 3Д построили карты когерентности по кровле баженовской свиты и подошве ближайшего вышележащего проницаемого пласта (фиг. 4, 5). По данным испытаний разведочных и эксплуатации добывающих скважин определено критическое значение индекса когерентности, ниже которого продуктивность скважин близка к нулю, которое для данного участка составило 0,95. Далее проводился совместный анализ карт когерентности баженовской свиты и вышележащих проницаемых отложений, в результате которого выделили потенциально продуктивные зоны баженовской свиты (фиг. 6). Была определена зависимость между запускными дебитами скважин и толщиной литотипов. Литотип 3, для которого устанавливается хорошая зависимость (высокий коэффициент корреляции), считаем нефтеотдающим (фиг. 7), его мощность принимаем за толщину нефтенасыщенных пород. На основе 3Д модели распределения куба литологии, с учетом карт продуктивных зон и толщины литотипа 3 была рассчитана карта эффективных нефтенасыщенных мощностей. На основе разработанных петрофизических алгоритмов и выявленных связей по данным ГИС и исследований керна были рассчитаны коэффициенты пористости, нефтенасыщенности и методом 2Д моделирования получены соответствующие карты распределения пористости и нефтенасыщенности. Затем рассчитана карта распределения плотности запасов нефти (фиг. 8).
Таким образом, предлагаемый способ локализации запасов осуществляют, произведя сейсморазведочные работы 3Д, геофизические и промысловые исследования скважин. Используются результаты стандартных и специальных исследований керна и разработанных для данных залежей петрофизических алгоритмов оценки фильтрационно-емкостных свойств. Выявляются потенциально продуктивные зоны, области миграции нефти в вышележащие проницаемые пласты, выделяются зоны развития коллекторов и их свойства.
По предлагаемому способу локализации запасов достигается высокая степень прогнозирования распространения запасов нефти в баженовской свите, что обеспечивает эффективность бурения эксплуатационных скважин и увеличение накопленной добычи нефти на скважину.
Claims (1)
- Способ локализации запасов в нефтематеринских толщах, включающий проведение геолого-геофизических и промысловых исследований скважин, комплексный анализ их результатов, выделение литотипов по данным ГИС, отличающийся тем, что оценивают разделение литотипов в полях скоростей продольных, поперечных волн и плотности, проводят синхронную инверсию частичных угловых сумм сейсморазведочных работ 3Д, в результате чего получают трехмерные кубы скоростей продольной, поперечной волн и плотности, пересчитывают их в дискретный куб литологии на основе литотипов, выделенных по скважинным данным, проводят калибровку и верификацию по данным ГИС, на основе результатов обработки и интерпретации сейсморазведочных работ 3Д строят карты когерентности волнового поля по кровле баженовской свиты и подошве ближайшего вышележащего проницаемого пласта, определяют критическое значение индекса когерентности, ниже которого продуктивность скважин близка к нулю, проводят совместный анализ карт когерентности и выделяют потенциально продуктивные зоны баженовской свиты, проводят анализ зависимости мощности литотипов от запускных дебитов скважин, затем на основе разработанных петрофизических алгоритмов и выявленных связей по данным ГИС и исследований керна рассчитывают коэффициенты пористости и нефтенасыщенности, по результатам чего строят карты эффективных нефтенасыщенных мощностей, пористости, нефтенасыщенности и распределения плотности запасов нефти.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014134321/28A RU2572525C1 (ru) | 2014-08-22 | 2014-08-22 | Способ локализации запасов в нефтематеринских толщах |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014134321/28A RU2572525C1 (ru) | 2014-08-22 | 2014-08-22 | Способ локализации запасов в нефтематеринских толщах |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2572525C1 true RU2572525C1 (ru) | 2016-01-20 |
Family
ID=55086957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014134321/28A RU2572525C1 (ru) | 2014-08-22 | 2014-08-22 | Способ локализации запасов в нефтематеринских толщах |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2572525C1 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110107283A (zh) * | 2019-04-26 | 2019-08-09 | 中国石油化工股份有限公司 | 依据势能值和物性值进行油气富集区预测的方法及系统 |
RU2742077C1 (ru) * | 2020-07-21 | 2021-02-02 | Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") | Способ локализации запасов углеводородов в кремнистых отложениях верхнего мела |
RU2761935C1 (ru) * | 2021-04-29 | 2021-12-14 | Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") | Способ локализации перспективных зон в нефтематеринских толщах |
RU2762078C1 (ru) * | 2021-04-29 | 2021-12-15 | Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") | Способ локализации перспективных зон в нефтематеринских толщах |
RU2814152C1 (ru) * | 2023-11-15 | 2024-02-22 | Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") | Способ локализации запасов трещинных кремнистых коллекторов |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2107309C1 (ru) * | 1993-09-03 | 1998-03-20 | Спайpал Сеpвисез Лимитед, GB | Оценка литологии сейсмической последовательности |
RU2183332C1 (ru) * | 2000-11-08 | 2002-06-10 | Зубков Михаил Юрьевич | Способ прогнозирования зон развития вторичных коллекторов трещиноватого типа в осадочном чехле |
GB2415807A (en) * | 2004-06-30 | 2006-01-04 | Inst Francais Du Petrole | Method of simulating the sedimentary deposition in a basin |
RU2289829C1 (ru) * | 2005-08-18 | 2006-12-20 | ОАО "НК "Роснефть" | Способ геофизической разведки для выявления нефтегазовых объектов |
EP1435527B1 (fr) * | 2002-12-20 | 2009-04-08 | Institut Francais Du Petrole | Méthode de modélisation pour constituer un modèle simulant le remplissage multilithologique d'un bassin sédimentaire |
-
2014
- 2014-08-22 RU RU2014134321/28A patent/RU2572525C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2107309C1 (ru) * | 1993-09-03 | 1998-03-20 | Спайpал Сеpвисез Лимитед, GB | Оценка литологии сейсмической последовательности |
RU2183332C1 (ru) * | 2000-11-08 | 2002-06-10 | Зубков Михаил Юрьевич | Способ прогнозирования зон развития вторичных коллекторов трещиноватого типа в осадочном чехле |
EP1435527B1 (fr) * | 2002-12-20 | 2009-04-08 | Institut Francais Du Petrole | Méthode de modélisation pour constituer un modèle simulant le remplissage multilithologique d'un bassin sédimentaire |
GB2415807A (en) * | 2004-06-30 | 2006-01-04 | Inst Francais Du Petrole | Method of simulating the sedimentary deposition in a basin |
RU2289829C1 (ru) * | 2005-08-18 | 2006-12-20 | ОАО "НК "Роснефть" | Способ геофизической разведки для выявления нефтегазовых объектов |
Non-Patent Citations (1)
Title |
---|
ЗИГАНБАЕВ А.Х., СУЛЕЙМАНОВ Д.Д., "ПРОГНОЗИРОВАНИЕ ЛИТОЛОГИЧЕСКОЙ ИЗМЕНЧИВОСТИ БАЖЕНОВСКОЙ СВИТЫ ПРИ ПОМОЩИ СИНХРОННОЙ ИНВЕРСИИ", ж-л "Нефтяное хозяйство", 2013 г., N10, с.46-49. НЕМОВА В.Д., БОРДЮГ М.А., РЕВЯКО А.В., "СЕЙСМОГЕОЛОГИЧЕСКОЕ МОДЕЛИРОВАНИЕ ИЗМЕНЕНИЙ СВОЙСТВ ОТЛОЖЕНИЙ БАЖЕНОВСКОЙ СВИТЫ В МЕЖСКВАЖИННОМ ПРОСТРАНСТВЕ", ж-л "Технологии сейсморазведки", 2013 г., N2, с.72-97. * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110107283A (zh) * | 2019-04-26 | 2019-08-09 | 中国石油化工股份有限公司 | 依据势能值和物性值进行油气富集区预测的方法及系统 |
RU2742077C1 (ru) * | 2020-07-21 | 2021-02-02 | Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") | Способ локализации запасов углеводородов в кремнистых отложениях верхнего мела |
RU2761935C1 (ru) * | 2021-04-29 | 2021-12-14 | Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") | Способ локализации перспективных зон в нефтематеринских толщах |
RU2762078C1 (ru) * | 2021-04-29 | 2021-12-15 | Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") | Способ локализации перспективных зон в нефтематеринских толщах |
RU2814152C1 (ru) * | 2023-11-15 | 2024-02-22 | Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") | Способ локализации запасов трещинных кремнистых коллекторов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105468886B (zh) | 基于岩石物理学参数计算地层压力的方法 | |
EP3788412B1 (en) | System and method for mapping hydrocarbon source rock using seismic attributes | |
CN107917865A (zh) | 一种致密砂岩储层多参数渗透率预测方法 | |
CN106842301B (zh) | 一种凝灰质砂岩有利储层的定量识别与预测方法 | |
CN103914620B (zh) | 一种计算断层破裂带裂缝张开空间分布的方法 | |
RU2572525C1 (ru) | Способ локализации запасов в нефтематеринских толщах | |
CN105005077A (zh) | 稀井条件下实钻井与虚拟井联合的薄层厚度预测方法 | |
AlRassas et al. | CO2 storage capacity estimation under geological uncertainty using 3-D geological modeling of unconventional reservoir rocks in Shahejie Formation, block Nv32, China | |
RU2722861C1 (ru) | Способ расчета статических поправок | |
CN104991286A (zh) | 一种基于沉积模式的沉积相表征方法 | |
Yasin et al. | Fault and fracture network characterization using seismic data: a study based on neural network models assessment | |
RU2630852C1 (ru) | Способ прогноза эффективной емкости коллекторов на основе получаемых поляризационных параметров и проводимости для выбранного типа среды | |
RU2598979C1 (ru) | Способ прогноза параметров газовых залежей | |
Tounkara et al. | Analyzing the seismic attributes, structural and petrophysical analyses of the Lower Goru Formation: A case study from Middle Indus Basin Pakistan | |
Yang et al. | Addressing microseismic uncertainty from geological aspects to improve accuracy of estimating stimulated reservoir volumes | |
CN112505754B (zh) | 基于高精度层序格架模型的井震协同划分沉积微相的方法 | |
Orellana et al. | Influence of variograms in 3D reservoir-modeling outcomes: An example | |
RU2610517C1 (ru) | Способ выделения нефтегазонасыщенных залежей в нетрадиционных коллекторах | |
CN116047602B (zh) | 基于生烃数值模拟的ii型水合物饱和度预测方法 | |
RU2700836C1 (ru) | Способ прогноза насыщения коллекторов на основе комплексного анализа данных СРР, 3СБ, ГИС | |
RU2363966C1 (ru) | Способ разведки и оценки запасов залежей нефти в плотных трещиноватых пропластках, развитых в нефтематеринских толщах | |
Naseer | Application of instantaneous spectral decomposition-based porosity simulations for imaging shallow-marine stratigraphic traps of Lower-Eocene carbonates sequences of Indus Basin, Onshore Pakistan | |
Shofiqul et al. | Reservoir characterization of Habiganj gas field | |
CN113376692B (zh) | 致密砂岩气水平井压裂改造方案优化方法及装置 | |
CN104749618A (zh) | 泥页岩缓倾角裂缝叠后概率定量表征方法 |