RU2571272C2 - Способ работы тепловой электрической станции - Google Patents
Способ работы тепловой электрической станции Download PDFInfo
- Publication number
- RU2571272C2 RU2571272C2 RU2013158790/06A RU2013158790A RU2571272C2 RU 2571272 C2 RU2571272 C2 RU 2571272C2 RU 2013158790/06 A RU2013158790/06 A RU 2013158790/06A RU 2013158790 A RU2013158790 A RU 2013158790A RU 2571272 C2 RU2571272 C2 RU 2571272C2
- Authority
- RU
- Russia
- Prior art keywords
- steam
- condenser
- steam turbine
- low
- heat
- Prior art date
Links
Images
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего подогревателей, утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. В качестве низкокипящего рабочего тела используют сжиженный углекислый газ СО2. Изобретение позволяет повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду. 2 з.п. ф-лы, 1 ил.
Description
Изобретение относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины.
Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, последовательно нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а затем направляют потребителям, охлаждение отработавшего пара производят циркуляционной водой, которую используют в качестве источника низкопотенциальной теплоты для испарителя теплонасосной установки, при этом весь поток сетевой воды после нижнего сетевого подогревателя дополнительно подогревают в конденсаторе теплонасосной установки (патент RU №2269656, МПК F01K 17/02, 10.02.2006).
Прототипом является способ работы тепловой электрической станции, содержащей подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей (патент RU №2268372, МПК F01K 17/02, 20.01.2006).
В известном способе сетевую воду, поступающую от потребителей по обратному трубопроводу сетевой воды, с помощью сетевого насоса подают в сетевые подогреватели, где нагревают паром отопительных отборов турбины. Отработавший в турбине пар охлаждают в конденсаторе, для чего подают в него по напорному трубопроводу и отводят по сливному трубопроводу циркуляционную воду. Нагретую в сетевых подогревателях сетевую воду перед подачей потребителям дополнительно нагревают в конденсаторе теплонасосной установки, в качестве низкопотенциального источника теплоты в испарителе теплонасосной установки используют циркуляционную воду из сливного трубопровода.
Таким образом, в известном способе работы тепловой электрической станции пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости.
Основным недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины, обусловленную наличием вторичного контура (теплонасосной установки), а также отсутствия утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины, для дополнительной выработки электроэнергии.
Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.
Задачей изобретения является разработка способа утилизации теплоты ТЭС, в котором устранены указанные недостатки аналога и прототипа.
Техническим результатом является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.
Технический результат достигается тем, что в способе работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего подогревателей, конденсируется на поверхности подогреваемых трубок подогревателей, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, причем конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, согласно настоящему изобретению,дополнительно осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в конденсаторе паровой турбины, испаряют в нижнем подогревателе паровой турбины, перегревают в верхнем подогревателе паровой турбины, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.
В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.
Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины, которые осуществляют путем последовательного нагрева, соответственно, в конденсаторе паровой турбины, в нижнем и верхнем подогревателях, низкокипящего рабочего тела (сжиженного углекислого газа СО2) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором и подогреватели верхние и нижние.
На чертеже (Фиг.1) цифрами обозначены:
1 - паровая турбина,
2 - конденсатор паровой турбины,
3 - конденсатный насос конденсатора паровой турбины,
4 - основной электрогенератор,
5 - тепловой двигатель с замкнутым контуром циркуляции,
6 - турбодетандер,
7 - электрогенератор,
8 - теплообменник-конденсатор,
9 - конденсатный насос,
10 - верхний подогреватель,
11 - нижний подогреватель.
Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 подогревателями, которые между собой соединены по нагреваемой среде.
В тепловую электрическую станцию введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.
Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, теплообменник-конденсатор 8, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход которого соединен по нагреваемой среде с входом нижнего подогревателя 11, а выход верхнего подогревателя 10 соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.
Способ работы тепловой электрической станции осуществляют следующим образом.
Отработавший пар поступает из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, а пар отопительных параметров из отборов паровой турбины 1 поступает в паровое пространство нижнего 11 и верхнего 10 подогревателей, конденсируется на поверхности подогреваемых трубок подогревателей 11 и 10, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара при помощи охлаждающей жидкости, причем конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.
Отличием предлагаемого способа является то, что дополнительно осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины 1, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины 1 осуществляют при помощи теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе 9 теплового двигателя, нагревают в конденсаторе 2 паровой турбины, испаряют в нижнем подогревателе 11 паровой турбины 1, перегревают в верхнем подогревателе 10 паровой турбины 1, расширяют в турбодетандере 6 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.
В качестве теплообменника-конденсатора 8 теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный углекислый газ СО2.
Пример конкретного выполнения.
Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный углекислый газ СО2). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.
Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.
Преобразование сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара, и низкопотенциальной тепловой энергии пара отопительных отборов из паровой турбины 1 в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.
Таким образом, утилизацию сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) отработавшего в турбине 1 пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины 1 осуществляют путем последовательного нагрева, соответственно, в конденсаторе 2 паровой турбины, в нижнем 11 и верхнем 10 подогревателях, низкокипящего рабочего тела (сжиженного углекислого газа СО2) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного углекислого газа СО2, который направляют на нагрев в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар.
В процессе конденсации отработавшего в турбине 1 пара происходит нагрев сжиженного углекислого газа СО2 до критической температуры 304,13 K при сверхкритическом давлении от 7,4 МПа до 25 МПа, и далее его направляют на нагрев и испарение в нижний 11 подогреватель, куда поступает пар отопительного отбора из паровой турбины 1 при температуре около 365 K.
Пар, поступающий из отопительного отбора паровой турбины 1 в паровое пространство нижнего 11 подогревателя, конденсируется на поверхности подогреваемых трубок, внутри которых протекает сжиженный углекислый газ CO2.
В процессе конденсации пара отопительного отбора в нижнем 11 подогревателе паровой турбины 1 происходит нагрев сжиженного углекислого газа СО2 свыше критической температуры 304,13 K, при котором происходит его интенсивное испарение. После нижнего 11 подогревателя газообразный углекислый газ СО2 направляют на нагрев в верхний 10 подогреватель, куда поступает пар отопительного отбора из паровой турбины 1 при температуре около 400 K.
Пар, поступающий из отопительного отбора паровой турбины 1 в паровое пространство верхнего 10 подогревателя, конденсируется на поверхности подогреваемых трубок, внутри которых протекает газообразный углекислый газ СО2.
В процессе конденсации пара отопительного отбора в верхнем 10 подогревателе паровой турбины 1 происходит перегрев газообразного углекислого газа СО2 до сверхкритической температуры от 304,13 K до 390 K при сверхкритическом давлении от 7,4 МПа до 25 МПа, который направляют в турбодетандер 6.
Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации углекислого газа СО2 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 углекислый газ СО2 имеет температуру около 288 K с влажностью не превышающей 12%.
Далее, при снижении температуры углекислого газа СО2, происходит его сжижение в теплообменнике-конденсаторе 8, выполненном, например, в виде конденсатора воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 K до 283,15 K.
После теплообменника-конденсатора 8 в сжиженном состоянии углекислый газ СО2 направляют для сжатия в конденсатный насос 9 теплового двигателя.
Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.
Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты отработавшего пара и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду.
Claims (3)
1. Способ работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, а пар из отборов паровой турбины поступает в паровое пространство нижнего и верхнего подогревателей, конденсируется на поверхности подогреваемых трубок подогревателей, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, причем конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, отличающийся тем, что дополнительно осуществляют утилизацию низкопотенциальной теплоты пара из отборов паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара из отборов паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в конденсаторе паровой турбины, испаряют в нижнем подогревателе паровой турбины, перегревают в верхнем подогревателе паровой турбины, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.
2. Способ работы тепловой электрической станции по п.1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
3. Способ работы тепловой электрической станции по п.1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный углекислый газ СО2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013158790/06A RU2571272C2 (ru) | 2013-12-27 | 2013-12-27 | Способ работы тепловой электрической станции |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013158790/06A RU2571272C2 (ru) | 2013-12-27 | 2013-12-27 | Способ работы тепловой электрической станции |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013158790A RU2013158790A (ru) | 2015-08-10 |
RU2571272C2 true RU2571272C2 (ru) | 2015-12-20 |
Family
ID=53795604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013158790/06A RU2571272C2 (ru) | 2013-12-27 | 2013-12-27 | Способ работы тепловой электрической станции |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2571272C2 (ru) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3218802A (en) * | 1960-11-28 | 1965-11-23 | Aerojet General Co | Binary vapor power plant |
RU2273742C1 (ru) * | 2004-09-03 | 2006-04-10 | ООО "Центр КОРТЭС" | Энергоаккумулирующая установка |
-
2013
- 2013-12-27 RU RU2013158790/06A patent/RU2571272C2/ru not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3218802A (en) * | 1960-11-28 | 1965-11-23 | Aerojet General Co | Binary vapor power plant |
RU2273742C1 (ru) * | 2004-09-03 | 2006-04-10 | ООО "Центр КОРТЭС" | Энергоаккумулирующая установка |
Non-Patent Citations (1)
Title |
---|
ГАФУРОВ А.М. и др. Энергетическая установка на базе ГТУ НК-37 с двумя теплоутилизирующими рабочими контурами, Энергетика Татарстана, 2012, N 3, с. 35-41. Галашов Н.Н. и др. Анализ влияния основных параметров партурбинного цикла на эффективность тринарных парогазовых установок, Известия Томского политехнического университета, 2013, т. 323, N 4, с. 14-21, рис. 4.US 3234734 A, 15.02.1966. * |
Also Published As
Publication number | Publication date |
---|---|
RU2013158790A (ru) | 2015-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2560503C1 (ru) | Способ работы тепловой электрической станции | |
RU2552481C1 (ru) | Способ работы тепловой электрической станции | |
RU2559655C9 (ru) | Способ работы тепловой электрической станции | |
RU2560505C1 (ru) | Способ работы тепловой электрической станции | |
RU2571272C2 (ru) | Способ работы тепловой электрической станции | |
RU2560502C1 (ru) | Способ работы тепловой электрической станции | |
RU2560615C1 (ru) | Способ работы тепловой электрической станции | |
RU2562735C1 (ru) | Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией | |
RU140801U1 (ru) | Тепловая электрическая станция | |
RU2562730C1 (ru) | Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией | |
RU2571275C2 (ru) | Способ работы тепловой электрической станции | |
RU2564748C1 (ru) | Способ работы тепловой электрической станции | |
RU2564470C2 (ru) | Способ работы тепловой электрической станции | |
RU2575216C2 (ru) | Способ работы тепловой электрической станции | |
RU2560496C1 (ru) | Способ работы тепловой электрической станции | |
RU2564466C2 (ru) | Способ работы тепловой электрической станции | |
RU2570961C2 (ru) | Способ работы тепловой электрической станции | |
RU2555597C1 (ru) | Способ работы тепловой электрической станции | |
RU2560509C1 (ru) | Способ работы тепловой электрической станции | |
RU2560504C1 (ru) | Способ работы тепловой электрической станции | |
RU2560512C1 (ru) | Способ работы тепловой электрической станции | |
RU2575247C2 (ru) | Способ работы тепловой электрической станции | |
RU2560500C1 (ru) | Способ работы тепловой электрической станции | |
RU2568026C2 (ru) | Способ работы тепловой электрической станции | |
RU2562506C2 (ru) | Способ работы тепловой электрической станции |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20160207 |