RU2560496C1 - Способ работы тепловой электрической станции - Google Patents
Способ работы тепловой электрической станции Download PDFInfo
- Publication number
- RU2560496C1 RU2560496C1 RU2014109202/02A RU2014109202A RU2560496C1 RU 2560496 C1 RU2560496 C1 RU 2560496C1 RU 2014109202/02 A RU2014109202/02 A RU 2014109202/02A RU 2014109202 A RU2014109202 A RU 2014109202A RU 2560496 C1 RU2560496 C1 RU 2560496C1
- Authority
- RU
- Russia
- Prior art keywords
- steam
- condenser
- heat
- steam turbine
- low
- Prior art date
Links
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Изобретение относится к способу утилизации тепловой энергии, вырабатываемой тепловой электростанцией (ТЭС). Отработавший пар поступает из паровой турбины в паровое пространство конденсатора и полученный конденсат с помощью насоса направляют в систему регенерации. В ТЭС используют конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара и систему маслоснабжения ее подшипников с маслоохладителем. Осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара. Указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина , в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело. Технический результат заключается в повышении коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии, повышении ресурса и надежности работы конденсатора паровой турбины и снижении тепловых выбросов в окружающую среду. 2 з.п. ф-лы, 1 ил.
Description
Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара и утилизации высокопотенциальной теплоты пара производственного отбора.
Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, последовательно нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а затем направляют потребителям, охлаждение отработавшего пара производят циркуляционной водой, которую используют в качестве источника низкопотенциальной теплоты для испарителя теплонасосной установки, при этом весь поток сетевой воды после нижнего сетевого подогревателя дополнительно подогревают в конденсаторе теплонасосной установки (патент RU №2269656, МПК F01K 17/02, 10.02.2006).
Прототипом является способ работы тепловой электрической станции, содержащей подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей (патент RU №2268372, МПК F01K 17/02, 20.01.2006).
В известном способе сетевую воду, поступающую от потребителей по обратному трубопроводу сетевой воды, с помощью сетевого насоса подают в сетевые подогреватели, где нагревают паром отопительных отборов турбины. Отработавший в турбине пар охлаждают в конденсаторе, для чего подают в него по напорному трубопроводу и отводят по сливному трубопроводу циркуляционную воду. Нагретую в сетевых подогревателях сетевую воду перед подачей потребителям дополнительно нагревают в конденсаторе теплонасосной установки, в качестве низкопотенциального источника теплоты в испарителе теплонасосной установки используют циркуляционную воду из сливного трубопровода.
Таким образом, в известном способе работы тепловой электрической станции отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости.
Основным недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины, обусловленную наличием вторичного контура (теплонасосной установки), для дополнительной выработки электроэнергии.
Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.
Задачей изобретения является разработка способа утилизации теплоты ТЭС, в котором устранены указанные недостатки аналога и прототипа.
Техническим результатом является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.
Технический результат достигается тем, что в способе утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающий направление отработавшего пара из паровой турбины в паровое пространство конденсатора, в котором пар конденсируют на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, полученный конденсат с помощью конденсатного насоса направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара посредством охлаждающей жидкости, согласно настоящему изобретению, дополнительно используют конденсационную установку, состоящую из паровой турбины с производственным отбором пара, конденсатора с конденсатным насосом и системы маслоснабжения подшипников паровой турбины с производственным отбором пара, состоящей из маслоохладителя, маслобака и маслонасоса, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, при этом упомянутые утилизации осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина и состоящего из последовательно соединенных турбодетандера с электрогенератором, теплообменника-конденсатора и конденсатного насоса, а в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, причем упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в конденсаторе паровой турбины, нагревают в маслоохладителе,
нагревают и испаряют в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.
В качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара, которые осуществляют путем последовательного нагрева, соответственно, в конденсаторе паровой турбины, маслоохладителе системы маслоснабжения подшипников паровой турбины с производственным отбором пара и конденсаторе паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором и конденсационную установку.
На чертеже цифрами обозначены:
1 - паровая турбина,
2 - конденсатор паровой турбины,
3 - конденсатный насос конденсатора паровой турбины,
4 - основной электрогенератор,
5 - тепловой двигатель с замкнутым контуром циркуляции,
6 - турбодетандер,
7 - электрогенератор,
8 - теплообменник-конденсатор,
9 - конденсатный насос,
10 - конденсационная установка,
11 - паровая турбина с производственным отбором пара,
12 - электрогенератор паровой турбины с производственным отбором пара,
13 - конденсатор паровой турбины с производственным отбором пара,
14 - конденсатный насос конденсатора паровой турбины с производственным отбором пара,
15 - система маслоснабжения подшипников паровой турбины с производственным отбором пара,
16 - сливной трубопровод,
17 - маслобак,
18 - маслонасос,
19 - маслоохладитель,
20 - напорный трубопровод.
Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1.
В тепловую электрическую станцию введены тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, и конденсационная установка 10.
Конденсационная установка 10 содержит последовательно соединенные паровую турбину 11 с производственным отбором пара, имеющую электрогенератор 12, конденсатор 13 паровой турбины с производственным отбором пара, конденсатный насос 14 конденсатора паровой турбины с производственным отбором пара, а также систему 15 маслоснабжения подшипников паровой турбины 11 с производственным отбором пара, содержащую последовательно соединенные по греющей среде сливной трубопровод 16, маслобак 17, маслонасос 18 и маслоохладитель 19, выход которого по нагреваемой среде соединен с напорным трубопроводом 20.
Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, теплообменник-конденсатор 8, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя 19 системы маслоснабжения подшипников паровой турбины с производственным отбором пара, выход которого соединен по нагреваемой среде с входом конденсатора 13 паровой турбины с производственным отбором пара, выход конденсатора 13 паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.
Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, осуществляют следующим образом.
Способ включает в себя направление отработавшего пара из паровой турбины 1 в паровое пространство конденсатора 2, в котором пар конденсируют на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, полученный конденсат с помощью конденсатного насоса 3 направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара посредством охлаждающей жидкости.
Отличием предлагаемого способа является то, что дополнительно используют конденсационную установку 10, состоящую из паровой турбины 11 с производственным отбором пара, конденсатора 13 с конденсатным насосом 14 и системы 15 маслоснабжения подшипников паровой турбины 11 с производственным отбором пара, состоящей из маслоохладителя 19, маслобака 17 и маслонасоса 18, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы 15 маслоснабжения подшипников паровой турбины 11 с производственным отбором пара, при этом упомянутые утилизации осуществляют посредством теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина и состоящего из последовательно соединенных турбодетандера 6 с электрогенератором 7, теплообменника-конденсатора 8 и конденсатного насоса 9, а в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, причем упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе 9 теплового двигателя 5, нагревают в конденсаторе 2 паровой турбины 1, нагревают в маслоохладителе 19, нагревают и испаряют в конденсаторе 13 паровой турбины 11 с производственным отбором пара, расширяют в турбодетандере 6 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.
В качестве теплообменника-конденсатора 8 теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
Пример конкретного выполнения.
Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.
Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.
Преобразование сбросной низкопотенциальной тепловой энергии, отработавшего в турбине 1 пара, и низкопотенциальной тепловой энергии системы 15 маслоснабжения подшипников паровой турбины 11 с производственным отбором пара, а также высокопотенциальной тепловой энергии пара производственного отбора из паровой турбины 11, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.
Таким образом, утилизацию сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) отработавшего в турбине 1 пара, утилизацию низкопотенциальной теплоты системы 15 маслоснабжения подшипников паровой турбины с производственным отбором пара и утилизацию высокопотенциальной теплоты пара производственного отбора из паровой турбины 11 с производственным отбором пара осуществляют путем последовательного нагрева, соответственно, в конденсаторе 2 паровой турбины, маслоохладителе 19 системы маслоснабжения подшипников паровой турбины с производственным отбором пара и конденсаторе 13 паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Весь процесс начинается с сжатия в конденсатом насосе 9 сжиженного пропана C3H8, который последовательно направляют на нагрев в начале в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар с температурой в интервале от 300 К до 313,15 К, а затем в маслоохладитель 19, куда поступает нагретое масло системы 15 маслоснабжения подшипников паровой турбины 11. При этом в маслоохладителе 19 циркулирует масло с температурой в интервале от 318,15 К до 348,15 К.
В процессе конденсации отработавшего в турбине 1 пара в конденсаторе 2 паровой турбины, а также в процессе теплообмена нагретого масла с сжиженным пропаном C3H8 в маслоохладителе 19, происходит нагрев сжиженного пропана C3H8 в пределах критической температуры в интервале от 313,15 К до 343,15 К при сверхкритическом давлении от 4,2512 МПа до 13 МПа, и далее его направляют на нагрев и испарение в конденсатор 13 паровой турбины с производственным отбором пара, куда поступает пар производственного отбора из паровой турбины 11 при температуре около 573 К.
Пар, поступающий из производственного отбора паровой турбины 11 в паровое пространство конденсатора 13, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 11 передается соединенному на одном валу основному электрогенератору 12.
Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 14 конденсатора паровой турбины с производственным отбором пара направляют в систему регенерации.
В процессе конденсации пара производственного отбора в конденсаторе 13 паровой турбины, происходит нагрев сжиженного пропана C3H8 до критической температуры 369,89 К, с последующим его испарением и перегревом до сверхкритической температуры от 369,89 К до 420 К при сверхкритическом давлении от 4,2512 МПа до 13 МПа, который направляют в турбодетандер 6.
Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан C3H8 имеет температуру около 288 К с влажностью не превышающей 12%.
Далее, при снижении температуры газообразного пропана C3H8, происходит его сжижение в теплообменнике-конденсаторе 8, выполненного, например, в виде конденсатора воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.
После теплообменника-конденсатора 8 в сжиженном состоянии пропан C3H8 направляют для сжатия в конденсатный насос 9 теплового двигателя.
Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.
Использование в работе тепловой электрической станции конденсационной установки 10 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6.
Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) отработавшего пара, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара, для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду.
Claims (3)
1. Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающий направление отработавшего пара из паровой турбины в паровое пространство конденсатора, в котором пар конденсируют на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, полученный конденсат с помощью конденсатного насоса направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара посредством охлаждающей жидкости, отличающийся тем, что дополнительно используют конденсационную установку, состоящую из паровой турбины с производственным отбором пара, конденсатора с конденсатным насосом и системы маслоснабжения подшипников паровой турбины с производственным отбором пара, состоящей из маслоохладителя, маслобака и маслонасоса, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, при этом упомянутые утилизации осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина и состоящего из последовательно соединенных турбодетандера с электрогенератором, теплообменника-конденсатора и конденсатного насоса, а в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, причем упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в конденсаторе паровой турбины, нагревают в маслоохладителе, нагревают и испаряют в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.
2. Способ по п. 1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
3. Способ по п. 1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014109202/02A RU2560496C1 (ru) | 2014-03-11 | 2014-03-11 | Способ работы тепловой электрической станции |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014109202/02A RU2560496C1 (ru) | 2014-03-11 | 2014-03-11 | Способ работы тепловой электрической станции |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2560496C1 true RU2560496C1 (ru) | 2015-08-20 |
Family
ID=53880670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014109202/02A RU2560496C1 (ru) | 2014-03-11 | 2014-03-11 | Способ работы тепловой электрической станции |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2560496C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2776610C1 (ru) * | 2022-01-11 | 2022-07-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" | Способ работы тепловой электрической станции |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2268372C2 (ru) * | 2004-03-05 | 2006-01-20 | Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" | Тепловая электрическая станция |
RU2366821C1 (ru) * | 2008-02-26 | 2009-09-10 | Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" | Теплотрубный осевой двигатель |
US20120200092A1 (en) * | 2008-04-07 | 2012-08-09 | Wastedry, Llc | Systems and Methods for Processing Municipal Wastewater Treatment Sewage Sludge |
-
2014
- 2014-03-11 RU RU2014109202/02A patent/RU2560496C1/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2268372C2 (ru) * | 2004-03-05 | 2006-01-20 | Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" | Тепловая электрическая станция |
RU2366821C1 (ru) * | 2008-02-26 | 2009-09-10 | Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" | Теплотрубный осевой двигатель |
US20120200092A1 (en) * | 2008-04-07 | 2012-08-09 | Wastedry, Llc | Systems and Methods for Processing Municipal Wastewater Treatment Sewage Sludge |
Non-Patent Citations (2)
Title |
---|
SU1838636A39 , 30.08.1993. * |
АНДРЮЩЕНКО В.И. и др. "Теплофикационные установки и их использование", М.,Высшая школа,1989, C.233-235 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2776610C1 (ru) * | 2022-01-11 | 2022-07-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" | Способ работы тепловой электрической станции |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2560503C1 (ru) | Способ работы тепловой электрической станции | |
RU2559655C9 (ru) | Способ работы тепловой электрической станции | |
RU2562745C1 (ru) | Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией | |
RU2560502C1 (ru) | Способ работы тепловой электрической станции | |
RU2560505C1 (ru) | Способ работы тепловой электрической станции | |
RU2552481C1 (ru) | Способ работы тепловой электрической станции | |
RU140801U1 (ru) | Тепловая электрическая станция | |
RU2560496C1 (ru) | Способ работы тепловой электрической станции | |
RU2560615C1 (ru) | Способ работы тепловой электрической станции | |
RU144911U1 (ru) | Тепловая электрическая станция | |
RU145185U1 (ru) | Тепловая электрическая станция | |
RU2560495C1 (ru) | Способ работы тепловой электрической станции | |
RU2560504C1 (ru) | Способ работы тепловой электрической станции | |
RU2560500C1 (ru) | Способ работы тепловой электрической станции | |
RU2560512C1 (ru) | Способ работы тепловой электрической станции | |
RU2570961C2 (ru) | Способ работы тепловой электрической станции | |
RU2575252C2 (ru) | Способ работы тепловой электрической станции | |
RU2560514C1 (ru) | Способ работы тепловой электрической станции | |
RU2560497C1 (ru) | Способ работы тепловой электрической станции | |
RU2560507C1 (ru) | Способ работы тепловой электрической станции | |
RU2568348C2 (ru) | Способ работы тепловой электрической станции | |
RU2560509C1 (ru) | Способ работы тепловой электрической станции | |
RU2560499C1 (ru) | Способ работы тепловой электрической станции | |
RU2555600C1 (ru) | Способ работы тепловой электрической станции | |
RU2569994C2 (ru) | Способ работы тепловой электрической станции |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20160312 |