RU2571080C1 - Способ нанесения биокерамического покрытия на имплантаты - Google Patents

Способ нанесения биокерамического покрытия на имплантаты Download PDF

Info

Publication number
RU2571080C1
RU2571080C1 RU2014145683/15A RU2014145683A RU2571080C1 RU 2571080 C1 RU2571080 C1 RU 2571080C1 RU 2014145683/15 A RU2014145683/15 A RU 2014145683/15A RU 2014145683 A RU2014145683 A RU 2014145683A RU 2571080 C1 RU2571080 C1 RU 2571080C1
Authority
RU
Russia
Prior art keywords
implant
hydroxyapatite
powder
binder
implants
Prior art date
Application number
RU2014145683/15A
Other languages
English (en)
Inventor
Игорь Владимирович Родионов
Александр Александрович Фомин
Елена Юрьевна Пошивалова
Марина Алексеевна Фомина
Наталия Владимировна Петрова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.)
Priority to RU2014145683/15A priority Critical patent/RU2571080C1/ru
Application granted granted Critical
Publication of RU2571080C1 publication Critical patent/RU2571080C1/ru

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

Изобретение относится к медицине и заключается в способе нанесения биокерамических покрытий на имплантат. При осуществлении способа смешивают порошок гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, наносят полученную суспензию на поверхность имплантата, сушат имплантат, проводят термообработку в условиях индукционного нагрева при потребляемой электрической мощности 0,45-0,55 кВт, частоте тока на индукторе 100±10 кГц и продолжительности термообработки 0,5-1,0 мин. Технический результат заключается в получении механически прочного биокерамического покрытия на внутрикостных и чрескостных медицинских имплантатах с помощью технологически простого способа. 1 табл., 2 пр.

Description

Изобретение относится к области медицины, а именно к способам нанесения биоактивных гидроксиапатитовых покрытий на металлические имплантаты для стоматологии, травматологии и ортопедии.
Биокерамическое гидроксиапатитовое покрытие медицинских внутрикостных и чрескостных имплантатов из биоинертных и биотолерантных металлов и сплавов обеспечивает их ускоренное и эффективное приживление в костных структурах за счет высокого уровня биологической активности поверхности. Наиболее распространенной технологией нанесения порошковых гидроксиапатитовых покрытий является плазменное напыление, заключающееся в пропускании порошка гидроксиапатита через плазмотрон, расплавлении и ускорении частиц порошка в плазменной струе с последующим их оседанием на поверхность имплантата. Однако нанесение гидроксиапатитового покрытия порошково-плазменным методом является технологически сложным процессом и характеризуется низкой экономической эффективностью расхода напыляемого материала, т.к. только 40-50% частиц гидроксиапатитового порошка оседает на поверхности обрабатываемого изделия, а остальное их количество - на стенках напылительной камеры, не попадая на изделие. При этом механическая прочность покрытия во многих случаях находится на низком уровне, часто наблюдается отскок частиц порошка от подложки при соударении с ней.
Известен способ изготовления имплантатов с биокерамическим покрытием (гидроксиапатит, биоситалл), наносимым методом плазменного напыления [патент РФ №2157245, МПК: A61L 27/06, A61F 2/28, опубл. 10.10.2000 г.].
Недостатком данного способа является сложность осуществления технологического процесса нанесения биокерамического покрытия, большой расход используемого порошкового материала и низкий уровень механической прочности получаемого покрытия.
Известен способ нанесения гидроксиапатитовых покрытий, включающий смешивание порошка гидроксиапатита со связующим веществом, в качестве которого используют фосфатные связки, взятые в соотношении к порошку 1,0-1,5:1,5-2,0, сушку и термообработку обжигом при температуре 250-600С [патент РФ №2158189, МПК: B05D 7/24, B05D 7/14, A61L 27/00, опубл. 27.10.2000 г.].
Недостатком данного способа является недостаточная механическая прочность получаемого биокерамического покрытия.
Ближайшим прототипом, по мнению авторов, является способ нанесения гидроксиапатитового покрытия на имплантаты [патент РФ №2417107, МПК: A61L 27/30, B05D 7/24, A61L 27/32, опубл. 27.04.2011 г.], включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на металлическую поверхность, сушку и последующую термообработку аргоноплазменной струей при токе дуги 300-500 А, продолжительности 0,5-2,0 мин на дистанции 40-100 мм.
Однако недостатком данного способа является то, что процесс нанесения биокерамического покрытия является технологически сложным, требующим применения сложного и дорогостоящего оборудования.
Задачей изобретения является создание технологически простого и экономически эффективного способа нанесения биокерамического порошкового покрытия на основе гидроксиапатита с повышенной механической прочностью.
Технический результат изобретения заключается в получении механически прочного биокерамического покрытия на внутрикостных и чрескостных медицинских имплантатах с помощью технологически простого и экономически эффективного способа.
Поставленная задача достигается за счет того, что в предлагаемом способе нанесения биокерамического покрытия на имплантаты, включающем смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки, при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, согласно новому техническому решению термообработку имплантата с нанесенной суспензией проводят в условиях индукционного нагрева при величине потребляемой электрической мощности 0,45-0,55 кВт, частоте тока на индукторе 10010 кГц и продолжительности 0,5-1,0 мин. При этом происходит ускоренный нагрев поверхности имплантата с нанесенной суспензией, оплавление частиц порошка гидроксиапатита и их усиленная физико-механическая связь с металлической основой имплантата и друг с другом.
Сущность изобретения заключается в том, что процесс получения биокерамического покрытия осуществляется путем смешивания порошка гидроксиапатита с фосфатной связкой, нанесения получаемой суспензии на поверхность металлического имплантата, сушки нанесенной суспензии для предварительного закрепления объема покрытия на изделии и последующей термообработки в условиях индукционного нагрева при величине потребляемой электрической мощности 0,45-0,55 кВт, приводящей к достижению температуры нагрева имплантата 1000-1100С, частоте тока на индукторе 10010 кГц и продолжительности 0,5-1,0 мин. При этом порошок гидроксиапатита смешивают со связующим веществом для удержания гидроксиапатитовых частиц на поверхности имплантата, а термообработку индукционным нагревом проводят для обеспечения ускоренного оплавления частиц биокерамического порошка и их усиленной физико-механической взаимосвязи с металлической основой и друг с другом за счет эффекта приваривания частиц.
Приведенные пределы значений технологического режима индукционно-термической обработки обеспечивают получение биокерамических гидроксиапатитовых покрытий с повышенной адгезией и когезией, являющимися основными показателями механической прочности покрытий.
Осуществление индукционно-термической обработки вихревыми токами, наведенными в металлических имплантатах, при значениях потребляемой электрической мощности менее 0,45 кВт (температура нагрева имплантатов менее 1000С), частоте тока на индукторе ниже диапазона 10010 кГц и продолжительности термообработки менее 0,5 мин является не эффективным, т.к. образующееся покрытие не обладает достаточной механической прочностью и склонно к разрушению даже при небольших функциональных нагрузках на имплантат, особенно на этапе его установки в кость. Это связано с тем, что индукционно-термическая обработка вихревыми токами при таких значениях режима не обеспечивает поверхностного оплавления частиц гидроксиапатитового порошка, в результате чего не происходит их усиленного взаимодействия с основой имплантата и друг с другом.
Индукционно-термическая обработка вихревыми токами при значениях потребляемой мощности более 0,55 кВт (температура нагрева имплантатов более 1100С), частоте тока на индукторе свыше 10010 кГц и продолжительности термообработки более 1,0 мин не эффективна, т.к. существенного повышения прочности покрытия не происходит, возникает опасность протекания нежелательных фазово-структурных превращений в материале биокерамического покрытия (преобразование гидроксиапатита в более легкорезорбируемые фазы трикальцийфосфата и тетракальцийфосфата), резко возрастают энерго- и трудозатраты, приводящие в целом к снижению технико-экономической эффективности процесса получения биокерамического покрытия.
Мощность индукционного нагрева выбирается исходя из требуемой продолжительности процесса нагрева, которая должна приводить к достижению температуры основы имплантата 1000-1100С, что обеспечивает необходимое термическое воздействие на частицы гидроксиапатита для получения механически прочного биокерамического покрытия.
Частота тока на индукторе в предлагаемом диапазоне выбирается исходя из требуемой глубины проникновения вихревых токов в металлическую основу имплантата, которая составляет около 1,0-1,2 мм и обеспечивает наибольшую эффективность индукционного нагрева в выбранном диапазоне потребляемой мощности. Указанный диапазон частоты выбран исходя из необходимости подстройки резонансной частоты в системе индукционного нагрева, включающей индуктор и нагреваемое изделие, форма и размеры которого изменяются в зависимости от типа и размеров имплантатов.
Продолжительность индукционно-термической обработки в предлагаемом диапазоне обеспечивает надежное закрепление частиц порошка гидроксиапатита на поверхности имплантата за счет эффекта приваривания, сплавление их между собой с сохранением достаточной величины открытой пористости и шероховатости, которые необходимы для эффективной остеоинтеграции имплантата и его надежной фиксации в кости челюсти.
Пример 1. Приготавливают суспензию из порошка гидроксиапатита дисперсностью =50 мкм и биологически совместимого связующего вещества так, чтобы получаемый раствор был насыщен частицами гидроксиапатита и содержал минимальное количество связующего вещества, достаточное для удержания суспензии на поверхности имплантата. В качестве связующего вещества берут кальцийфосфатную связку и смешивают ее с порошком гидроксиапатита в соотношении 1,0:1,5. С помощью кисти полученную суспензию наносят на имплантат и подвергают сушке в печи при температуре 50С в течение 20 мин. Затем имплантат с закрепленной суспензией помещают в камеру устройства индукционного нагрева и производят индукционно-термическую обработку при величине потребляемой электрической мощности 0,45 кВт, частоте тока на индукторе 10010 кГц и продолжительности 1,0 мин. При этом температура нагрева имплантата составляет 1000С. В данных технологических условиях происходит оплавление поверхности гидроксиапатитовых частиц, их приваривание к металлической основе имплантата и друг к другу при сохранении внутреннего термически неизмененного ядра частиц, а также формирование прочного покрытия с повышенными параметрами шероховатости и открытой пористости.
Пример 2. Приготавливают суспензию из порошка гидроксиапатита дисперсностью =70 мкм и биологически совместимого связующего вещества так, чтобы получаемый раствор был насыщен частицами гидроксиапатита и содержал минимальное количество связующего вещества, достаточное для удержания суспензии на поверхности имплантата. В качестве связующего вещества берут магнийфосфатную связку и смешивают ее с порошком гидроксиапатита в соотношении 1,2:1,9. С помощью кисти суспензию наносят на имплантат и подвергают сушке в печи при температуре 50С в течение 20 мин. Затем имплантат с закрепленной суспензией помещают в камеру устройства индукционного нагрева и производят индукционно-термическую обработку при величине потребляемой электрической мощности 0,55 кВт, частоте тока на индукторе 10010 кГц и продолжительности 0,5 мин. При этом температура нагрева имплантата составляет 1100С. В данных технологических условиях происходит оплавление поверхности гидроксиапатитовых частиц, их приваривание к металлической основе имплантата и друг к другу при полном проплавлении частиц порошка гидроксиапатита, а также формирование высокопрочного биокерамического покрытия.
Полученные предлагаемым способом биокерамические покрытия прошли испытания на механическую прочность, определяемую методами нормального отрыва, сдвига и измерения микротвердости. Результаты проведенных испытаний представлены в табл.
Figure 00000001
Положительный эффект предлагаемого изобретения - технологическая простота способа нанесения механически прочного биокерамического покрытия на основе гидроксиапатита - заключается в применении более эффективного процесса термообработки поверхности металлического имплантата с нанесенной суспензией из порошка гидроксиапатита и фосфатной связки, а именно процесса индукционного нагрева при следующих режимах: потребляемая электрическая мощность 0,45-0,55 кВт, частота тока на индукторе 10010 кГц, температура нагрева 1000-1100С, продолжительность термообработки 0,5-1,0 мин. Кроме того, для осуществления данного способа не требуется применение конструктивно сложного, высокоэнергоемкого, крупногабаритного и дорогостоящего оборудования.

Claims (1)

  1. Способ нанесения биокерамического покрытия на имплантаты, включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, отличающийся тем, что термообработку имплантата с нанесенной суспензией проводят в условиях индукционного нагрева при потребляемой электрической мощности 0,45-0,55 кВт, частоте тока на индукторе 100±10 кГц и продолжительности термообработки 0,5-1,0 мин.
RU2014145683/15A 2014-11-13 2014-11-13 Способ нанесения биокерамического покрытия на имплантаты RU2571080C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014145683/15A RU2571080C1 (ru) 2014-11-13 2014-11-13 Способ нанесения биокерамического покрытия на имплантаты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014145683/15A RU2571080C1 (ru) 2014-11-13 2014-11-13 Способ нанесения биокерамического покрытия на имплантаты

Publications (1)

Publication Number Publication Date
RU2571080C1 true RU2571080C1 (ru) 2015-12-20

Family

ID=54871244

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014145683/15A RU2571080C1 (ru) 2014-11-13 2014-11-13 Способ нанесения биокерамического покрытия на имплантаты

Country Status (1)

Country Link
RU (1) RU2571080C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2745534C1 (ru) * 2020-08-07 2021-03-26 Общество с ограниченной ответственностью Научно-производственное объединение "Медицинские инструменты" (ООО НПО "Медицинские инструменты") Способ нанесения биоактивного покрытия на титановую пластину для остеосинтеза

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759376A (en) * 1994-09-07 1998-06-02 Dot Dunnschicht- Und Oberflaechen-Technologie Gmbh Method for the electrodeposition of hydroxyapatite layers
RU2158189C1 (ru) * 1999-03-30 2000-10-27 Закрытое акционерное общество Клиническое научно-производственное объединение "Биотехника" Способ нанесения гидроксиапатитовых покрытий
RU2417107C1 (ru) * 2009-12-08 2011-04-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) Способ нанесения гидроксиапатитового покрытия на имплантаты
CN103705977A (zh) * 2013-12-31 2014-04-09 深圳大学 含掺杂型羟基磷灰石涂层碳/碳复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759376A (en) * 1994-09-07 1998-06-02 Dot Dunnschicht- Und Oberflaechen-Technologie Gmbh Method for the electrodeposition of hydroxyapatite layers
RU2158189C1 (ru) * 1999-03-30 2000-10-27 Закрытое акционерное общество Клиническое научно-производственное объединение "Биотехника" Способ нанесения гидроксиапатитовых покрытий
RU2417107C1 (ru) * 2009-12-08 2011-04-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) Способ нанесения гидроксиапатитового покрытия на имплантаты
CN103705977A (zh) * 2013-12-31 2014-04-09 深圳大学 含掺杂型羟基磷灰石涂层碳/碳复合材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2745534C1 (ru) * 2020-08-07 2021-03-26 Общество с ограниченной ответственностью Научно-производственное объединение "Медицинские инструменты" (ООО НПО "Медицинские инструменты") Способ нанесения биоактивного покрытия на титановую пластину для остеосинтеза

Similar Documents

Publication Publication Date Title
Roy et al. Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants
Roy et al. Compositionally graded hydroxyapatite/tricalcium phosphate coating on Ti by laser and induction plasma
Durdu et al. Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation
US6846853B2 (en) Calcium phosphate bone graft material, process for making same and osteoimplant fabricated from same
Lee et al. Surface characteristics and biological studies of hydroxyapatite coating by a new method
Diefenbeck et al. The effect of plasma chemical oxidation of titanium alloy on bone-implant contact in rats
Quek et al. Influence of processing parameters in the plasma spraying of hydroxyapatite/Ti–6Al–4V composite coatings
Sariibrahimoglu et al. Injectable biphasic calcium phosphate cements as a potential bone substitute
Cao et al. Plasma‐sprayed hydroxyapatite coating on carbon/carbon composite scaffolds for bone tissue engineering and related tests in vivo
WO2008073190A2 (en) Materials and methods and systems for delivering localized medical treatments
RU2417107C1 (ru) Способ нанесения гидроксиапатитового покрытия на имплантаты
Liu et al. Effect of post-heat treatment on the microstructure of micro-plasma sprayed hydroxyapatite coatings
RU2571080C1 (ru) Способ нанесения биокерамического покрытия на имплантаты
Xu et al. Radio frequency (rf) plasma spheroidized HA powders: powder characterization and spark plasma sintering behavior
Yang et al. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications
Suntharavel Muthaiah et al. Electrophoretic deposition of nanocrystalline calcium phosphate coating for augmenting bioactivity of additively manufactured Ti-6Al-4V
Choy et al. In situ synthesis of osteoconductive biphasic ceramic coatings on Ti6Al4V substrate by laser-microwave hybridization
RU2581824C1 (ru) Способ нанесения биокерамического покрытия на имплантаты
RU2641597C1 (ru) Способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата
Pawłowski Synthesis, properties and applications of hydroxyapatite
Kang et al. Some problems associated with thermal sprayed ha coatings: a review
Sariibrahimoglu et al. Characterization of α/β-TCP based injectable calcium phosphate cement as a potential bone substitute
RU2549984C1 (ru) Способ модифицирования поверхности титановых имплантатов порошковыми биокерамическими материалами
RU2525737C1 (ru) Способ изготовления внутрикостного стоматологического имплантата
Xin-bo et al. The effect of electromagnetic heating frequencies on CaHPO4 coatings deposited on the C/C by induction heating deposition technology

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201114