RU2570215C1 - Древесно-мраморно-цементная смесь - Google Patents

Древесно-мраморно-цементная смесь Download PDF

Info

Publication number
RU2570215C1
RU2570215C1 RU2014124572/03A RU2014124572A RU2570215C1 RU 2570215 C1 RU2570215 C1 RU 2570215C1 RU 2014124572/03 A RU2014124572/03 A RU 2014124572/03A RU 2014124572 A RU2014124572 A RU 2014124572A RU 2570215 C1 RU2570215 C1 RU 2570215C1
Authority
RU
Russia
Prior art keywords
mixture
cement
wood
marble
water
Prior art date
Application number
RU2014124572/03A
Other languages
English (en)
Inventor
Александр Александрович Андреев
Александр Викторович Андреев
Геннадий Николаевич Колесников
Андрей Андреевич Чалкин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петрозаводский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петрозаводский государственный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петрозаводский государственный университет"
Priority to RU2014124572/03A priority Critical patent/RU2570215C1/ru
Application granted granted Critical
Publication of RU2570215C1 publication Critical patent/RU2570215C1/ru

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Древесно-мраморо-цементная смесь для изготовления теплоизоляционных и конструкционных строительных материалов содержит в качестве неорганической добавки полипропиленовые волокна длиной 8-30 мм и диаметром 0,08-0,3 мм, а также микромрамор с частицами крупностью не более 10 микрометров, в том числе до 0,02 мас.% частиц крупностью до 0,5 микрометров, включая наночастицы, при следующем соотношении компонентов, мас.%: портландцемент 38-39, известь строительная гидратная гашеная 4-5, опилки хвойных пород 43,6-45,6, микромрамор 4-5, жидкое стекло 6-7,5, хлорид кальция 2,3-4,3, полипропиленовые волокна 0,1-0,2, причем добавка воды к указанной смеси выполнена до получения водоцементного отношения, равного 0,8-1,2. Технический результат заключается в повышении прочности и экологичности материала из предлагаемой смеси. 2 табл.

Description

Предлагаемое техническое решение относится к древесно-цементным смесям, которые содержат неорганические связующие и используются для изготовления конструкционных и теплоизоляционных материалов в малоэтажном строительстве.
Известна арболитовая смесь по патенту RU 2455264 [1], содержащая цемент, древесную дробленку, известь, пенообразователь, жидкое стекло и листовое молотое стекло. Однако для получения данной смеси необходимы затраты ресурсов на производство древесной дробленки и молотого листового стекла, что отрицательно влияет на характеристики данной смеси по критериям ресурсосбережения и энергоэффективности.
Известен опилкобетон по патенту RU 2106322 [2] для изготовления строительных изделий, включающий, мас.%: портландцемент 30, гашеную известь 5, мелкий гравий или песок 10, опилки 30, глину 5 и воду 20. При использовании портландцемента марки 500 прочность опилкобетона при сжатии достигает 2,1 МПа. Однако гравий и песок увеличивают плотность и снижают теплоизоляционные свойства изделий из данной смеси. Кроме того, опилкобетон из данной смеси имеет низкую прочность.
Известен состав для изготовления строительных блоков по заявке RU 93058241/33 [3], содержащий (мас.% в сухом состоянии): опилки до 70%, цемент 20-50%, известь до 20%. Однако такой состав не обеспечивает достаточную прочность строительных блоков.
Известна арболитовая смесь по патенту RU 2466952 [4], которая содержит древесную дробленку, гипс, мылонафт, стекловолокно, нарезанное на отрезки 3-15 мм. В данном случае отрезки стекловолокна, распределенные в смеси, выполняют функцию дисперсного армирования изделий из данной смеси, что уменьшает трещинообразование и, как следствие, повышает прочность блоков и плит из смеси. Однако для получения данной арболитовой смеси необходимо дополнительное производство древесной дробленки, что отрицательно влияет на характеристики выпускаемой продукции по критериям ресурсосбережения и энергоэффективности. Кроме того, не достигается высокая прочность и жесткость строительных элементов из данной смеси.
Наиболее близким аналогом предлагаемого технического решения, т.е. древесно-цементной смеси для изготовления строительных материалов, является арболитовая смесь по патенту RU 2476399 [5], которая принята в качестве прототипа. Указанная смесь содержит следующие компоненты, количество которых выражено в весовых частях: портландцемент 20-25; древесная дробленка 60,5-62; гипс 1-1,5; известь 1-1,5; асбестовое волокно длиной 5-50 мм 1-1,5; предварительно обожженные и молотые асбестоцементые отходы 10-15, причем водоцементное отношение составляет 0,9-1,1.
Однако для получения данной арболитовой смеси необходимы обжиг и помол асбестоцементных отходов, что отрицательно влияет на характеристики выпускаемой продукции по критериям ресурсосбережения и энергоэффективности. Кроме того, асбест в форме волокон является канцерогенным материалом, что существенно ограничивает область применения смеси.
Технический результат от применения предлагаемого технического решения заключается в увеличении прочности блоков и плит из предлагаемой смеси, а также в улучшении экологических характеристик плит за счет применения канцерогенно безопасных компонентов и, кроме того, решается задача повышения эффективности использования отходов камнеобработки и деревообработки.
Данный технический результат достигается за счет того, что древесно-мраморно-цементная смесь, содержащая измельченную древесину в виде опилок хвойных пород, портландцемент, гашеную известь, жидкое стекло, хлорид кальция, а также полимерную и неорганическую добавки, содержит также в качестве полимерной добавки полипропиленовые волокна длиной от 8 до 30 мм и диаметром от 0,08 до 0,3 мм, а в качестве неорганической добавки использован микромрамор в виде порошка с частицами крупностью не более 10 микрометров, в том числе до 0,02% частиц крупностью до 0,5 микрометров, включая наночастицы, при следующем соотношении компонентов, мас.%: портландцемент 38,0-39,0; известь строительная гашеная 4,0-5,0; опилки хвойных пород 43,6-45,6; микромрамор 4,0-5,0; жидкое стекло 6,0-7,5; хлорид кальция 2,3-4,3; полипропиленовые волокна 0,1-0,2; причем добавка воды к указанной смеси выполнена до получения водоцементного отношения, равного 0,8-1,2.
На фиг. 1 изображен образец из предлагаемой древесно-мраморно-цементной смеси в процессе его функционирования в испытаниях на сжатие.
На фиг. 2 изображен образец из предлагаемой древесно-мраморно-цементной смеси после испытаний на сжатие при его функционирования в испытаниях на теплопроводность зондовым методом.
Древесно-мраморно-цементная смесь включает в себя измельченную древесину в виде опилок хвойных пород, портландцемент, гашеную известь, жидкое стекло, хлорид кальция, а также полимерную и неорганическую добавки, содержит также в качестве полимерной добавки полипропиленовые волокна длиной от 8 до 30 мм и диаметром от 0,08 до 0,3 мм, а в качестве неорганической добавки использован микромрамор в виде порошка с частицами крупностью не более 10 микрометров, в том числе до 0,02% частиц крупностью до 0,5 микрометров, включая наночастицы, при следующем соотношении компонентов, мас.%: портландцемент 38,0-39,0; известь строительная гашеная 4,0-5,0; опилки хвойных пород 43,6-45,6; микромрамор 4,0-5,0; жидкое стекло 6,0-7,5; хлорид кальция 2,3-4,3; полипропиленовые волокна 0,1-0,2, причем добавка воды к указанной смеси выполнена до получения водоцементного отношения, равного 0,8-1,2.
Получение предлагаемой смеси включает в себя следующие технологические операции.
Выполняется дозирование компонентов смеси. При этом в момент подачи на дозирование все компоненты должны иметь положительную температуру.
Перемешивают полипропиленовое волокно в виде отрезков длиной от 8 до 30 мм и диаметром от 0,08 до 0,3 мм с ненасыщенными влагой опилками для достижения равномерного распределения данного волокна в смеси. Для перемешивания используют, например, миксер с электроприводом для приготовления строительных растворов и бетонов.
После равномерного распределения волокон в опилках добавляют воду с температурой не более 20°С с растворенным в ней хлоридом кальция.
При дальнейшем перемешивании в смесь добавляют портландцемент, и отходы камнеобработки в виде порошка микромрамора.
Затем добавляют жидкое стекло. Указанные компоненты перемешивают до получения однородной смеси, которой заполняют формы для получения блоков или плит.
В зимнее время формы должны иметь положительную температуру, но не более 40°С. Смесь в формах уплотняют, например, с помощью вибропресса. При этом частоту и амплитуду вибрирования подбирают так, чтобы избежать расслоения смеси.
Затем изделие выдерживают в формах до достижения распалубочной прочности. Признаком достижения распалубочной прочности является стабильность геометрической формы изделия при воздействии на него только его собственного веса после извлечения из формы.
Затем изделие выдерживают для набора достаточной для хранения на складе прочности в естественных условиях, при температуре воздуха 12-35°С и относительной влажности воздуха 30-70%. Отпускная прочность изделий достигается в течение 28 суток.
Прочность образцов на сжатие в возрасте 28 суток определяется экспериментально, например, с использованием испытательной машины с максимальной допустимой нагрузкой 50 kN. Для испытаний использованы образцы стандартной формы в виде куба с длиной ребра 0,1 м (фиг. 1).
Прочность при сжатии образцов из предлагаемой смеси составляет не менее 4,3 МПа, что достаточно для использования при строительстве малоэтажных зданий в соответствии с установленными требованиями [6-8].
Среднее значение коэффициента теплопроводности материала из предлагаемой смеси в изделии, высушенном до постоянной плотности в естественных условиях, близких к условиям эксплуатации реальных конструкций, определенное зондовым методом (фиг. 2) равно 0,134 Вт/м*К.
Среднее значение плотности материала изделий из предлагаемой смеси в возрасте 28 суток составит 827 кг/м3.
Если доля цемента в смеси меньше 33 мас.%, то прочность блоков и плит из данной смеси будет недостаточна. С увеличением доли цемента прочность возрастает. Однако увеличение доли цемента сверх 42 мас.% неэффективно, поскольку приращение прочности становится незначительным, но существенно возрастает плотность и ухудшаются теплоизоляционные свойства блоков и плит из данной смеси.
Если доля извести в смеси меньше 4 мас.%, то прочность блоков и плит из данной смеси будет недостаточна. Однако с увеличением доли извести рост прочности замедляется и прекращается.
Если доля опилок в смеси меньше 43,5 мас.%, то существенно возрастает плотность и ухудшаются теплоизоляционные свойства блоков и плит из данной смеси.
Если доля опилок в смеси больше 48 мас.%, то для консолидации частиц опилок требуется увеличение доли цемента, что увеличивает плотность и ухудшает теплоизоляционные свойства блоков и плит из данной смеси.
Если доля микромрамора в смеси меньше 3 мас.%, то эффективность его применения недостаточна. С увеличением этой доли прочность материала из данной смеси растет. Однако, если доля больше 5 мас.%, то рост прочности замедляется и прекращается.
Если доля жидкого стекла в смеси меньше 5 мас.%, то эффективность его применения по критерию прочности недостаточна. С увеличением этой доли прочность материала из данной смеси растет, однако, если доля жидкого стекла в смеси больше 7,5 мас.%, то эффективность его применения уменьшается, увеличивается плотность изделия, ухудшаются теплоизоляционные свойства, а рост прочности незначителен.
Если доля хлорида кальция в смеси меньше 2,3 мас.%, то эффективность его применения недостаточна. С увеличением этой доли эффективность его применения растет, однако, если его доля больше 5 мас.%, то рост эффективности его применения прекращается.
Если доля полипропиленовых волокон в смеси меньше 0,1 мас.%, то эффективность их применения недостаточна. С увеличением их доли прочность изделия из смеси растет за счет армирования материала. Однако, если доля волокон больше 0,2 мас.%, то рост эффективности их применения прекращается.
К указанной смеси компонентов добавляется вода в количестве, необходимом для получения водоцементного отношения в пределах от 0,8 до 1,2. Такое соотношение воды и цемента (по массе) обеспечивает оптимальные условия консолидации смеси с образованием достаточно прочного материала. Уменьшение количества воды не обеспечивает полного использования свойств цемента как вяжущего компонента. Увеличение количества воды приводит к уменьшению прочности изделий из смеси.
В качестве измельченной древесины в заявляемой смеси используются отходы лесопиления в виде опилок без дополнительной из обработки, что уменьшает затраты на получение заявляемой смеси. Все компоненты заявленной смеси являются экологически безопасными.
Микромрамор это микронизированный или молотый кристаллический мрамор, полученный путем микроизмельчения и разделенный на фракции в зависимости от крупности частиц известного также как микрокальцит.
Микромрамор характеризуется высоким содержанием карбоната кальция - не менее 95-98%. Незначительные примеси, в количестве 2-5%, как правило, являются силикатами, оксидами железа, серы, магния, графита и алюминия (http://www.mramor-m.ru/mikrokalcit).
В заявленной смеси технический эффект достигается за счет взаимодействия компонентов, количественное соотношение которых обеспечивает получение синергетического эффекта, итоговым проявлением которого является повышение эффективности использования экологически безопасных отходов камнеобработки и деревообработки, увеличение прочности изделий (блоков и плит) из предлагаемой смеси, а также упрощение технологии и уменьшение трудоемкости изготовления смеси и изделий из нее. Эти факторы положительно влияют на характеристики изделий из предлагаемой смеси по критериям ресурсосбережения, экологической безопасности и конкурентоспособности.
Пример технической реализации древесно-цементной смеси. При технической реализации заявляемой смеси использовался микромрамор, крупность частиц не более 10 микрометров, в том числе до 0,022% частиц крупностью до 0,5 микрометров, включая наночастицы.
При разработке заявляемой смеси учтено, что древесные опилки отличаются большой вариабельностью физико-механических свойств, зависящих, в числе других факторов, от типа лесопильного оборудования. Заявляемое техническое решение было реализовано с использованием опилок, гранулометрический состав которых приведен в таблице 1.
Таблица 1
Гранулометрический состав опилок
Ячейка сита, мм Остаток нa сите, %
Станок 1 Станок 2
10 1,81 0,94
7 2,39 2,83
5 5,35 6,51
3 19,76 16,14
2 24,70 28,77
1 42,82 38,68
0,5 2,14 2,85
0,25 0,99 2,81
поддон 0,04 0,47
Всего: 100 100
При технической реализации заявляемой смеси использовался портландцемент марки М500 по ГОСТ 30515-97, жидкое стекло по ГОСТ 13078-81 плотностью 1,45 г/см3 с массовой долей двуокиси кремния 34,2% и силикатным модулем 2.6, хлорид кальция технический по ГОСТ 450-77, полипропиленовые волокна в виде отрезков длиной 18 мм по ТУ 2272-001-90345062-2012, микромрамор КМ-5 по ТУ 5716-001-12574404-2006, вода водопроводная. В таблице 2 приведены составы предлагаемой смеси без учета воды, поскольку вода добавляется с учетом естественной влажности опилок до получения требуемого водоцементного отношения, находящегося в интервале от 0,8 до 1,2.
В соответствии с предлагаемым способом получения смеси выполняется дозирование компонентов согласно таблице 2. Как указано выше, в момент подачи на дозирование все компоненты должны иметь положительную температуру.
Данные образцы изготовлены из предлагаемой древесно-цементной смеси, которая содержит компоненты в различных долях, однако находящихся в указанных выше интервалах и представленных далее в таблице 2.
Таблица 2
Составы предлагаемой смеси
Компоненты Содержание, мас.%
Состав №1 Состав №2 Состав №3
Портландцемент М500 38 38,5 38,7
Опилки хвойных пород 45,3 45 44,9
Известь гашеная 4,0 4,3 4,5
Микромрамор 4,3 4 4,3
Жидкое стекло 6 5,8 4,3
Хлорид кальция 2,3 2,3 3,1
Полипропиленовые волокна 0,1 0,1 0,2
Всего: 100 100 100
Для достижения наилучшего распределения полипропиленового волокна в готовой смеси его перемешивают с ненасыщенными влагой опилками. После равномерного распределения волокон в опилках следует затворить их водой с растворенным в ней хлоридом кальция. При дальнейшем перемешивании в смесь добавляют портландцемент и микромрамор. Указанные компоненты перемешивают до получения однородной смеси. Затем добавляют жидкое стекло. Процесс перемешивания прекращается в момент подачи готовой смеси в формы.
В зимнее время формы должны иметь положительную температуру, но не более 40°С. Смесь в формах уплотняют, например, с помощью вибропресса. При этом частоту и амплитуду вибрирования подбирают так, чтобы не допускать расслоения смеси. Затем изделие выдерживают до достижения распалубочной прочности. Извлекают изделие из формы и выдерживают для набора прочности в естественных условиях, при температуре воздуха 12-35°С и относительной влажности воздуха 30-70%. Отпускная прочность достигается в течение 28 суток.
Прочность образцов на сжатие в возрасте 28 суток определялась экспериментально, с использованием испытательной машины с максимальной допустимой нагрузкой 50 kNX (фиг. 1). Образцы имели форму куба с ребром 100 мм.
Прочность при сжатии серии образцов составила не менее 4,3 МПа, что достаточно для использования при строительстве малоэтажных зданий в соответствии с установленными требованиями [6-8].
Среднее значение коэффициента теплопроводности материала из предлагаемой смеси в изделии, высушенном до постоянной плотности в естественных условиях, близких к условиям эксплуатации реальных конструкций, определенное зондовым методом, равно 0,134 Вт/м*К.
Среднее значение плотности материала образцов в возрасте 28 суток составило 827 кг/м3.
Если исключить из смеси микромрамор, то прочность при сжатии уменьшается примерно в два раза. Объясняется это тем, что в предлагаемой смести за счет использования микромрамор и его синергетического взаимодействия с другими компонентами при заявленном их соотношении в предлагаемой смеси существенно улучшается структура материала и прочность материала, что инструментально подтверждается механическими испытаниями на прочность при сжатии (фиг. 1).
Библиография
1. Арболитовая смесь. Патент на изобретение RU 2455264. МПК С04В 38/10. Опубликовано: 10.07.2012.
2. Опилкобетон. Патент RU 2106322. МПК С04В 28/00; С04В 28/00; С04В 18:26; С04В 111:20. Опубликовано: 10.03.1998.
3. Состав для изготовления строительных блоков, строительный элемент и способ его изготовления. Заявка: RU 93058241. МПК Е04С 2/10; B27N 3/02. Опубликовано: 10.01.1996.
4. Арболитовая смесь. Патент RU 2466952. МПК С04В 28/02. Опубликовано: 20.11.2012.
5. Арболитовая смесь. Патент RU 2476399 МПК С04В 28/04. Опубликовано: 27.02.2013.
6. ГОСТ 19222-84. Арболит и изделия из него. Общие технические условия.
7. СН 549-82. Инструкция по проектированию, изготовлению и применению конструкций и изделий из арболита.
8. Наназашвили И.Х. Строительные материалы из древесно-цементной композиции // М., Стройиздат, 1990. - 415 с.

Claims (1)

  1. Древесно-мраморно-цементная смесь, содержащая измельченную древесину в виде опилок хвойных пород, портландцемент, гашеную известь, жидкое стекло, хлорид кальция, а также полимерную и неорганическую добавки, отличающаяся тем, что в качестве полимерной добавки использованы полипропиленовые волокна длиной от 8 до 30 мм и диаметром от 0,08 до 0,3 мм, а в качестве неорганической добавки использован микромрамор в виде порошка с частицами крупностью не более 10 микрометров, в том числе до 0,02% частиц крупностью до 0,5 микрометров, включая наночастицы, при следующем соотношении компонентов, мас.%:
    портландцемент 38,0-39,0;
    известь строительная гашеная 4,0-5,0;
    опилки хвойных пород 43,6-45,6;
    микромрамор 4,0-5,0;
    жидкое стекло 6,0-7,5;
    хлорид кальция 2,3-4,3,
    полипропиленовые волокна 0,1-0,2,
    причем добавка воды к указанной смеси выполнена до получения водоцементного отношения, равного 0,8-1,2.
RU2014124572/03A 2014-06-17 2014-06-17 Древесно-мраморно-цементная смесь RU2570215C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014124572/03A RU2570215C1 (ru) 2014-06-17 2014-06-17 Древесно-мраморно-цементная смесь

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014124572/03A RU2570215C1 (ru) 2014-06-17 2014-06-17 Древесно-мраморно-цементная смесь

Publications (1)

Publication Number Publication Date
RU2570215C1 true RU2570215C1 (ru) 2015-12-10

Family

ID=54846496

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014124572/03A RU2570215C1 (ru) 2014-06-17 2014-06-17 Древесно-мраморно-цементная смесь

Country Status (1)

Country Link
RU (1) RU2570215C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2641548C2 (ru) * 2016-02-18 2018-01-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" Древесно-цементная смесь с модификатором
RU2796512C1 (ru) * 2022-10-03 2023-05-24 Общество С Ограниченной Ответственностью "Нпо Смартарболит" Сырьевая смесь для изготовления изделий из поризованного арболита и способ изготовления изделий из сырьевой смеси

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2220925C2 (ru) * 2002-02-26 2004-01-10 Тверской государственный технический университет Сырьевая смесь для изготовления теплоизоляционного опилкобетона
US20080099122A1 (en) * 2006-11-01 2008-05-01 E. Khashoggi Industries Llc Cementitious composites having wood-like properties and methods of manufacture
RU2009125962A (ru) * 2009-07-06 2011-01-20 Государственное образовательное учреждение высшего профессионального образования "Воронежская государственная лесотехническая акад Способ приготовления смеси для получения опилкобетона
US20120073474A1 (en) * 2009-12-31 2012-03-29 Constantz Brent R Methods and compositions using calcium carbonate
RU2476399C1 (ru) * 2011-11-11 2013-02-27 Юлия Алексеевна Щепочкина Арболитовая смесь
RU2491245C1 (ru) * 2012-07-03 2013-08-27 Юлия Алексеевна Щепочкина Сырьевая смесь для изготовления кирпича

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2220925C2 (ru) * 2002-02-26 2004-01-10 Тверской государственный технический университет Сырьевая смесь для изготовления теплоизоляционного опилкобетона
US20080099122A1 (en) * 2006-11-01 2008-05-01 E. Khashoggi Industries Llc Cementitious composites having wood-like properties and methods of manufacture
RU2009125962A (ru) * 2009-07-06 2011-01-20 Государственное образовательное учреждение высшего профессионального образования "Воронежская государственная лесотехническая акад Способ приготовления смеси для получения опилкобетона
US20120073474A1 (en) * 2009-12-31 2012-03-29 Constantz Brent R Methods and compositions using calcium carbonate
RU2476399C1 (ru) * 2011-11-11 2013-02-27 Юлия Алексеевна Щепочкина Арболитовая смесь
RU2491245C1 (ru) * 2012-07-03 2013-08-27 Юлия Алексеевна Щепочкина Сырьевая смесь для изготовления кирпича

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2641548C2 (ru) * 2016-02-18 2018-01-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" Древесно-цементная смесь с модификатором
RU2796512C1 (ru) * 2022-10-03 2023-05-24 Общество С Ограниченной Ответственностью "Нпо Смартарболит" Сырьевая смесь для изготовления изделий из поризованного арболита и способ изготовления изделий из сырьевой смеси

Similar Documents

Publication Publication Date Title
CN105859243A (zh) 一种硫氧镁水泥发泡砖及其制备方法
Raheem et al. Saw dust ash as partial replacement for cement in the production of sandcrete hollow blocks
US20210198146A1 (en) Whole-granulation steel slag pavement base course material for heavy-load pavement
CA2861405A1 (en) A building method to produce lightweight building blocks from cellulose fibre
Sinka et al. Enhancement of lime-hemp concrete properties using different manufacturing technologies
RU2544190C1 (ru) Способ приготовления керамзитобетонной смеси
JP6285835B2 (ja) シリケートポリマー成形体の製造方法及びシリケートポリマー成形体
US10669205B2 (en) Construction units in form of bricks, blocks or tiles made from recyclable materials and by-products, methods of making the construction units and their use
RU2621796C1 (ru) Сырьевая смесь, способ изготовления и изделие строительной аэрированной керамики
RU2570214C1 (ru) Древесно-талькохлорито-цементная смесь
EP3129201B1 (en) Process for the preparation of masonry composite materials
RU2569422C1 (ru) Древесно-цементная смесь
RU2605110C1 (ru) Древесно-цементная смесь для изготовления строительных блоков
RU2570215C1 (ru) Древесно-мраморно-цементная смесь
RU2617819C2 (ru) Гипсоволокнистая плита и способ ее изготовления
RU2378228C1 (ru) Ячеистый бетон автоклавного твердения
RU2641548C2 (ru) Древесно-цементная смесь с модификатором
RU2450990C1 (ru) Способ изготовления арболита
RU2641349C2 (ru) Полидисперсная древесно-цементная смесь с наномодификатором
Ali et al. Evaluation of the Compressive strength of Concrete for partial replacement of Over Burnt Brick Ballast Aggregate
RU2568445C1 (ru) Древесно-цементная смесь для изготовления теплоизоляционных и конструкционных строительных материалов
KR101662434B1 (ko) 균열 제어 및 휨 성능이 향상된 경량 기포 콘크리트 조성물 및 이를 이용한 경량 기포 콘크리트 제조방법
RU2536693C2 (ru) Сырьевая смесь для изготовления неавтоклавного газобетона и способ приготовления неавтоклавного газобетона
KR20070048268A (ko) 여러 재료로 된 벽돌을 제조하기 위한 조성물의 개선된제조 방법, 그 조성물, 및 그 결과 얻어진 벽돌
RU2539450C2 (ru) Бетонная смесь

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170618