RU2568529C2 - Компенсация крутящего момента для вертолета - Google Patents

Компенсация крутящего момента для вертолета Download PDF

Info

Publication number
RU2568529C2
RU2568529C2 RU2013108260/11A RU2013108260A RU2568529C2 RU 2568529 C2 RU2568529 C2 RU 2568529C2 RU 2013108260/11 A RU2013108260/11 A RU 2013108260/11A RU 2013108260 A RU2013108260 A RU 2013108260A RU 2568529 C2 RU2568529 C2 RU 2568529C2
Authority
RU
Russia
Prior art keywords
console
helicopter
torque
fan
axis
Prior art date
Application number
RU2013108260/11A
Other languages
English (en)
Other versions
RU2013108260A (ru
Inventor
Оливер ХАЙД
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2013108260A publication Critical patent/RU2013108260A/ru
Application granted granted Critical
Publication of RU2568529C2 publication Critical patent/RU2568529C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8218Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft wherein the rotor or the jet axis is inclined with respect to the longitudinal horizontal or vertical plane of the helicopter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8245Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft using air jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8254Shrouded tail rotors, e.g. "Fenestron" fans

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)

Abstract

Изобретение относится к области авиации, в частности к средствам компенсации создаваемого несущим винтом вертолета крутящего момента. Устройство для компенсации крутящего момента предусмотрено для вертолета (100), главный винт (110) которого вращается при работе вокруг оси (RH) вращения и за счет этого создает крутящий момент, который действует на фюзеляж (120) вертолета (100). Устройство содержит диаметральный вентилятор (200) с корпусом (210) и установленным в корпусе (210) ротором (220), при этом диаметральный вентилятор расположен на консоли (130) вертолета (100) так, что он при работе имеет действие тяги (F), которая компенсирует крутящий момент главного винта. При работе вентилятора направление тяги ориентировано перпендикулярно оси (RH) вращения несущего винта (110) и продольной оси консоли (130). Способ компенсации крутящего момента вертолета (100) включает установку на хвостовой консоли (130) диаметрального вентилятора (200), тяга которого компенсирует крутящий момент несущего винта (110). Достигается снижение веса вертолета и расхода энергии на компенсацию крутящего момента. 3 н. и 12 з.п. ф-лы, 2 ил.

Description

Изобретение относится к компенсации создаваемого главным винтом вертолета крутящего момента.
Для компенсации крутящего момента в вертолетах обычно применяются осевые нагнетатели в виде хвостовых винтов с целью компенсации создаваемого главным винтом крутящего момента. При этом с помощью расположенного в хвостовой консоли вертолета хвостового винта создается горизонтальная, т.е. направленная максимально перпендикулярно вертикальной оси тяга, с целью противодействия вращению фюзеляжа вокруг вертикальной оси.
Такие хвостовые винты расположены преимущественно свободно на консоли и поэтому представляют опасность для, например, персонала на земле. Для решения этой проблемы и других недостатков свободного расположения хвостовых винтов в DE 102008015073 А1 представлен капсулированный хвостовой винт, так называемый фенестрон (Fenestron), с помощью которого снижается как угроза безопасности, так и уменьшается образование шумов и вибраций, поскольку вершины лопастей не вращаются открыто.
Однако недостатком является то, что капсуляция приводит к более высокому весу и более высоким конструктивным затратам. Кроме того, такие хвостовые винты имеют сравнительно небольшую величину, что приводит к тому, что для компенсации крутящего момента необходим больший расход энергии.
Поэтому задачей данного изобретения является создание альтернативной возможности для компенсации крутящего момента в вертолете.
Эта задача решена с помощью независимых пунктов формулы изобретения данного изобретения. Предпочтительные варианты выполнения следуют из зависимых пунктов формулы изобретения.
В решении, согласно изобретению, в отличие от обычного осевого нагнетателя в качестве создателя тяги используется нагнетатель поперечного потока, выполненный как диаметральный вентилятор, с целью обеспечения компенсации крутящего момента. При этом ось вращения диаметрального вентилятора целесообразно ориентирована параллельно продольной оси фюзеляжа, соответственно, продольной оси консоли вертолета.
Устройство, согласно изобретению, для компенсации крутящего момента для вертолета, который имеет главный винт, который вращается при работе вокруг оси вращения и за счет этого создает крутящий момент, содержит диаметральный вентилятор с корпусом и установленным в корпусе винтом, при этом диаметральный вентилятор расположен на консоли вертолета, в частности хвостовой консоли, так, что он при работе имеет действие тяги, которая компенсирует крутящий момент главного винта.
Диаметральный вентилятор расположен на консоли так, что он при работе создает тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную оси вращения главного винта. В идеальном случае все направление тяги, т.е. не только одна его составляющая, ориентировано перпендикулярно оси вращения главного винта.
Кроме того, диаметральный вентилятор расположен на консоли так, что он при работе создает тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную продольной оси консоли. В идеальном случае все направление тяги, т.е. не только одна его составляющая, ориентировано перпендикулярно продольной оси консоли.
За счет такого расположения диаметрального вентилятора обеспечивается, что создаваемый тягой диаметрального вентилятора крутящий момент наиболее эффективно противодействует создаваемому главным винтом крутящему моменту.
Диаметральный вентилятор может быть интегрирован в консоль. Например, винт может иметь форму валика, а консоль цилиндрическую форму, так что обеспечивается возможность интегрирования винта полностью в консоли. Таким образом, в противоположность открытому или капсулированному хвостовому винту возможна лучшая интеграция создателя тяги в форму фюзеляжа.
При этом соответствующий участок консоли может образовывать корпус диаметрального вентилятора. Другими словами, подходящий участок консоли может быть выполнен так, что он обеспечивает функцию собственно корпуса диаметрального вентилятора. По существу это означает, что в консоли могут быть предусмотрены приспособления для опоры винта, а также входное и выходное отверстия для создаваемого нагнетателем воздушного потока, соответственно, тяги. Таким образом, нагнетатель не нуждается в собственном, соответственно, отдельном корпусе, так что может быть сэкономлен материал и вес.
Для этого консоль имеет полое пространство, которое ограничено стенкой, которая образует корпус диаметрального вентилятора.
В качестве альтернативного решения, диаметральный вентилятор может быть также закреплен снаружи на консоли.
Вертолет, согласно изобретению, отличается тем, что он имеет указанное выше устройство, согласно изобретению.
В способе, согласно изобретению, компенсации крутящего момента в вертолете, с помощью которого компенсируют создаваемый вращающимся главным винтом вертолета крутящий момент, на консоли вертолета, в частности хвостовой консоли, устанавливают диаметральный вентилятор, который при работе имеет действие тяги, которая компенсирует крутящий момент главного винта.
Диаметральный вентилятор создает при работе тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную оси вращения главного винта. В идеальном случае все направление тяги, т.е. не только одна его составляющая, ориентировано перпендикулярно оси вращения главного винта.
Кроме того, диаметральный вентилятор создает при работе тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную продольной оси консоли. В этом случает также в идеальном случае все направление тяги, т.е. не только одна его составляющая, ориентировано перпендикулярно продольной оси консоли.
За счет применения диаметрального вентилятора, согласно изобретению, обеспечивается дополнительно к указанным выше преимуществам лучшие характеристики потока при косой обдувке, которая возникает, например, при полете вперед (смотри DE 4121995 С2). Кроме того, за счет обусловленного системой периодически прерывистого взаимодействия потока с главным винтом достигается значительное уменьшение шума.
Другие преимущества, признаки и подробности изобретения следуют из приведенного ниже описания примера выполнения со ссылками на прилагаемые чертежи, на которых изображено:
фиг. 1 - вертолет с установленным на хвостовой консоли диаметральным вентилятором;
фиг. 2 - вертолет с интегрированным в хвостовой консоли диаметральным вентилятором.
На фиг. 1 показан вертолет 100, который, согласно изобретению, снабжен диаметральным вентилятором 200. Вертолет 100 имеет главный винт 110 для создания подъемной силы и/или тяги для полета. При работе, т.е. при вращении главного винта 110, он вращается вокруг оси RH вращения и создает тем самым, как известно, крутящий момент. Этот крутящий момент без соответствующей компенсации приводил бы также к вращению фюзеляжа 120 вертолета 100 вокруг оси RH вращения.
Согласно изобретению, компенсация крутящего момента вызывается не предусмотренным на хвостовой консоли 130 вертолета 100 хвостовым винтом, а с помощью диаметрального вентилятора 200. Он отличается, например, от хвостового винта в виде пропеллера или т.п. тем, что создаваемый нагнетателем воздушный поток L проходит поперек, в частности перпендикулярно, оси RQ вращения нагнетателя 200. В соответствии с этим, создаваемая воздушным потоком L тяга ориентирована поперек оси RQ вращения нагнетателя 200. В противоположность этому, пропеллер создает воздушный поток, параллельный его оси вращения, соответственно, осевую тягу.
Диаметральный вентилятор 200 состоит по существу из корпуса 210 и установленного в корпусе с возможностью вращения валикообразного винта 220 с несколькими лопастями 230. Корпус установлен, как показано на фиг. 1, сзади на консоли 130 вертолета 100.
Корпус 210 имеет на двух лежащих противоположно сторонах соответствующее, например, шлицевое отверстие 240, 250. В рабочем состоянии привод 260 приводит во вращение винт 220 вокруг оси RQ вращения. При этом воздух всасывается через первое отверстие 240 и выталкивается снова через второе отверстие 250, так что в конечном итоге создается воздушный поток L, и на нагнетатель 200 и тем самым на консоль 130 действует тяга, соответственно сила F, направление которой противоположно воздушному потоку.
В соответствии с этим, такой предусмотренный на хвостовой консоли 130 вертолета 100 диаметральный вентилятор 200 приводит к тому, что к консоли 130 может прикладываться сила F в обозначенном стрелкой направлении, которая создает соответствующий крутящий момент, воздействующий на фюзеляж 120 вертолета 100, с помощью которого можно компенсировать создаваемый вращающимся главным винтом 110 крутящий момент.
В идеальном случае диаметральный вентилятор 200 выполнен и расположен на хвостовой консоли 130 так, что его ось RQ вращения ориентирована перпендикулярно оси RH вращения главного винта 110, соответственно, направление создаваемого воздушного потока L ориентировано перпендикулярно оси RH вращения главного винта 110 и перпендикулярно продольной оси консоли 130.
Существенным для возможно более эффективной работы является то, что направление создаваемой диаметральным вентилятором 200 силы F имеет возможно большую составляющую в направлении, которое ориентировано перпендикулярно как продольной оси консоли 130, так и перпендикулярно оси RH вращения главного винта 110, поскольку в этом случае становится максимальным крутящий момент для компенсации крутящего момента главного винта.
Поскольку не является необычным выполнение консоли 130 вертолета 100 по существу полым цилиндрическим, то диаметральный вентилятор 200 может быть также интегрирован, как показано на фиг. 2, в консоли 130, соответственно, в соответствующем полом пространстве 131 в консоли 130. В случае когда полое пространство 131 имеет походящее внутреннее поперечное сечение, которое согласовано с окружностью винта 220 диаметрального вентилятора 200, то этот участок 132 консоли 130 может образовывать корпус 21 диаметрального вентилятора 200. Таким образом, нагнетатель 200 не нуждается в собственном, соответственно, отдельном корпусе 210, так что можно экономить материал и вес.
Таким образом, хвостовая консоль 130 вертолета 100 в идеальном случае выполнена так, что она имеет полое пространство 131 с внутренним поперечным сечением и длиной, которые согласованы с размерами винта 220 диаметрального вентилятора 200 и обеспечивают возможность размещения винта 220 диаметрального вентилятора 200. Соответствующий участок 132 консоли 130, соответственно, ограничивающие полое пространство 131 стенки, содержащие две торцевые стенки 211, 212 и боковую поверхность 213, образуют в этом случае корпус 210 диаметрального вентилятора 200. На фиг. 2 винт 220 вместе с лопастями 230 изображен штриховыми линиями, поскольку эти компоненты, естественно, не видны из-за торцевой стенки 212. То же относится, соответственно, к торцевой стенке 211.
Минимальный внутренний диаметр полого пространства 131 выбран, например, так, что лопасти 230 винта 230 как раз не соприкасаются с внутренней стенкой полого пространства 131. При этом необходимо, естественно, учитывать определенные допуски из-за температурных эффектов.
Привод 260 винта 220 диаметрального вентилятора 200 может быть электродвигателем или т.п. Возможно также применение привода 140 главного винта 110 для работы диаметрального вентилятора 200, при этом в этом случае в зависимости от выполнения необходимы дополнительные отклоняющие и/или повышающие, соответственно, понижающие передачи (не изображены).
Отверстия 240, 250 не должны, естественно, лежать точно противоположно друг другу, а также не должны быть птицеобразными. Точное выполнение и размеры корпуса 210 можно определять, например, с помощью моделирования.
Диаметральный вентилятор 200 может быть также расположен снаружи хвостовой консоли 130, например выше или ниже хвостовой консоли 130. При этом более предпочтительным было бы расположение под хвостовой консолью 130, поскольку в этом случае становится минимальным взаимодействие с главным винтом 110.

Claims (15)

1. Устройство для компенсации крутящего момента для вертолета (100), который имеет главный винт (110), который вращается при работе вокруг оси (RH) вращения и за счет этого создает крутящий момент, отличающееся тем, что устройство содержит диаметральный вентилятор с корпусом (210) и установленным в корпусе (210) ротором (220), при этом диаметральный вентилятор (200) расположен на консоли (130) вертолета (100), в частности хвостовой консоли, так, что он при работе имеет действие тяги, которая компенсирует крутящий момент главного винта (110).
2. Устройство по п.1, отличающееся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что он при работе создает тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную оси (RH) вращения главного винта (110).
3. Устройство по п.2, отличающееся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что при работе направление тяги ориентировано перпендикулярно оси (RH) вращения главного винта (110).
4. Устройство по п.2, отличающееся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что он при работе создает тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную продольной оси консоли (130).
5. Устройство по п.4, отличающееся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что направление тяги ориентировано перпендикулярно продольной оси консоли (130).
6. Устройство по любому из пп.1-5, отличающееся тем, что диаметральный вентилятор (200) интегрирован в консоль (130).
7. Устройство по п.6, отличающееся тем, что участок (132) консоли (130) образует корпус (210) диаметрального вентилятора (200).
8. Устройство по п.6, отличающееся тем, что консоль (130) имеет полое пространство (131), которое ограничено стенками (211, 212, 213), которые образуют корпус (21) диаметрального вентилятора (200).
9. Устройство по любому из пп. 2 или 4, отличающееся тем, что диаметральный вентилятор (200) закреплен снаружи на консоли (130).
10. Вертолет (100), содержащий устройство по любому из пп.1-9.
11. Способ компенсации крутящего момента в вертолете (100), с помощью которого компенсируют создаваемый при вращающемся главном винте (110) вертолета (100) крутящий момент, при этом на консоли (130) вертолета (100), в частности хвостовой консоли, устанавливают диаметральный вентилятор (200), который при работе имеет действие тяги, которая компенсирует крутящий момент главного винта (110).
12. Способ по п. 11, отличающийся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что он при работе создает тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную оси (RH) вращения главного винта (110).
13. Способ по п.12, отличающийся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что он при работе создает тягу в направлении, которое ориентировано перпендикулярно оси (RH) вращения главного винта (110).
14. Способ по любому из пп.11-13, отличающийся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что он при работе создает тягу в направлении, которое имеет по меньшей мере одну составляющую, перпендикулярную продольной оси консоли (130).
15. Способ по п.14, отличающийся тем, что диаметральный вентилятор (200) расположен на консоли (130) так, что он при работе создает тягу в направлении, которое ориентировано перпендикулярно продольной оси консоли (130).
RU2013108260/11A 2010-07-26 2011-04-05 Компенсация крутящего момента для вертолета RU2568529C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010032217.2 2010-07-26
DE102010032217A DE102010032217A1 (de) 2010-07-26 2010-07-26 Drehmomentenausgleich für einen Helikopter
PCT/EP2011/055259 WO2012013365A1 (de) 2010-07-26 2011-04-05 Drehmomentenausgleich für einen helikopter

Publications (2)

Publication Number Publication Date
RU2013108260A RU2013108260A (ru) 2014-09-10
RU2568529C2 true RU2568529C2 (ru) 2015-11-20

Family

ID=44343841

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013108260/11A RU2568529C2 (ru) 2010-07-26 2011-04-05 Компенсация крутящего момента для вертолета

Country Status (6)

Country Link
US (1) US9452832B2 (ru)
EP (1) EP2598399A1 (ru)
CN (1) CN103052564B (ru)
DE (1) DE102010032217A1 (ru)
RU (1) RU2568529C2 (ru)
WO (1) WO2012013365A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU172022U1 (ru) * 2017-02-08 2017-06-26 Закрытое акционерное общество "Авиастроительная корпорация "Русич" Устройство установки хвостового винта на одновинтовом вертолете

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511177B1 (en) * 2011-04-11 2013-06-05 Eurocopter Deutschland GmbH Helicopter with cycloidal rotor system
EP2808253B1 (en) * 2013-05-30 2016-12-07 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Helicopter with cross flow fan
EP3056423B1 (en) * 2015-02-16 2017-12-13 AIRBUS HELICOPTERS DEUTSCHLAND GmbH An aircraft with a fuselage that defines at least an interior region and a drive system accommodating region
US10118695B2 (en) * 2016-03-18 2018-11-06 Pratt & Whitney Canada Corp. Directional control system and method of providing directional control
US10279900B2 (en) * 2016-08-10 2019-05-07 Bell Helicopter Textron Inc. Rotorcraft variable thrust cross-flow fan systems
US10377480B2 (en) 2016-08-10 2019-08-13 Bell Helicopter Textron Inc. Apparatus and method for directing thrust from tilting cross-flow fan wings on an aircraft
US10106253B2 (en) * 2016-08-31 2018-10-23 Bell Helicopter Textron Inc. Tilting ducted fan aircraft generating a pitch control moment
US10421541B2 (en) 2016-08-10 2019-09-24 Bell Helicopter Textron Inc. Aircraft with tilting cross-flow fan wings
US10479495B2 (en) 2016-08-10 2019-11-19 Bell Helicopter Textron Inc. Aircraft tail with cross-flow fan systems
US10059428B2 (en) 2016-08-10 2018-08-28 Bell Helicopter Textron Inc. Inflight connection of aircraft
US10287012B2 (en) 2016-08-19 2019-05-14 Bell Helicopter Textron Inc. Aircraft having radially extendable tailboom assembly
US10293931B2 (en) 2016-08-31 2019-05-21 Bell Helicopter Textron Inc. Aircraft generating a triaxial dynamic thrust matrix
US10384776B2 (en) 2017-02-22 2019-08-20 Bell Helicopter Textron Inc. Tiltrotor aircraft having vertical lift and hover augmentation
US10633086B2 (en) * 2017-03-23 2020-04-28 Bell Helicopter Textron Inc. Rotorcraft anti-torque and directional control using a centrifugal blower
DE202017104316U1 (de) * 2017-07-19 2018-10-24 SBM Development GmbH Heckrotoranordnung
US10814967B2 (en) 2017-08-28 2020-10-27 Textron Innovations Inc. Cargo transportation system having perimeter propulsion
CN113022847A (zh) * 2021-03-11 2021-06-25 北京航空航天大学 一种矢量涵道尾桨高速直升机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660785A (en) * 1985-12-16 1987-04-28 Munski Michael S Helicopter antitorque auxiliary propulsion system
RU1621346C (ru) * 1989-02-28 1995-09-20 Анатолий Трофимович Белобаба Вертолет
WO2000007683A1 (de) * 1998-08-05 2000-02-17 Uli Streich Modellhubschrauber

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2473329A (en) * 1944-12-15 1949-06-14 Borg Warner Tail rotor for helicopters
US4200252A (en) * 1977-12-21 1980-04-29 Summa Corporation Helicopter antitorque system using circulation control
US4702437A (en) * 1985-02-07 1987-10-27 Stearns Jr Hoyt A Electric air-driven helicopter
US4948068A (en) * 1988-05-12 1990-08-14 Mcdonnell Douglas Corporation Circulation control slots in helicopter yaw control system
US5174523A (en) * 1989-01-09 1992-12-29 Westland Helicopters Limited Compound helicopter with engine shaft power output control
DE4121995A1 (de) 1991-07-03 1992-01-09 Kastens Karl Tangentialgeblaese fuer turbotriebwerke
FR2679199B1 (fr) * 1991-07-16 1997-01-31 Aerospatiale Systeme anticouple pour helicoptere.
US5205512A (en) * 1991-08-19 1993-04-27 The Boeing Company Fluid control apparatus
US5676335A (en) * 1995-03-08 1997-10-14 Mcdonnell Douglas Helicopter Company Airflow control system for a helicopter
US5908185A (en) * 1995-10-12 1999-06-01 Pawling Corporation Handrail and bumper combination
US6007021A (en) * 1997-11-18 1999-12-28 Tsepenyuk; Mikhail Flying apparatus for a vertical take off and landing
US5934608A (en) * 1998-01-16 1999-08-10 Mcdonnell Douglas Helicopter Company Efficient bi-directional air flow deflector
WO2001007683A1 (en) 1999-07-22 2001-02-01 Infrastructure Repair Technologies, Inc. Method of treating corrosion in reinforced concrete structures by providing a uniform surface potential
CZ289229B6 (cs) * 1999-10-12 2001-12-12 Jan Ing. Csc. Námisňák Vznáąivé těleso
US6352220B1 (en) * 2000-06-02 2002-03-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Helicopter tail boom with venting for alleviation and control of tail boom aerodynamic loads and method thereof
PT1575828E (pt) * 2002-12-18 2008-12-09 Iat 21 Innovative Aeronautics Veículo aéreo
US6755374B1 (en) * 2003-01-27 2004-06-29 Franklin D. Carson Anti-Torque and yaw-control system for a rotary-wing aircraft
CA2580110C (en) 2004-09-28 2010-06-15 Bell Helicopter Textron Inc. Propulsive anti-torque system for rotorcraft
FR2897040B1 (fr) * 2006-02-06 2008-04-11 Christian Claude Sellet Dispositif de controle en lacet pour helicopteres.
US7481290B2 (en) * 2006-12-22 2009-01-27 Pendzich Jerome S Vertical lift vehicle
DE102008015073B4 (de) 2008-03-19 2014-02-13 Eurocopter Deutschland Gmbh Hubschrauber mit Mitteln zur aerodynamischen Unterstützung des Drehmomentausgleichs
CA2817281C (en) * 2010-11-12 2016-01-19 Bell Helicopter Textron Inc. Propulsive anti-torque nozzle system with external rotating sleeve for a rotorcraft
WO2012064344A1 (en) * 2010-11-12 2012-05-18 Bell Helicopter Textron Inc. Anti-torque nozzle system with internal sleeve valve for a rotorcraft
DE102010055676A1 (de) * 2010-12-22 2012-06-28 Eads Deutschland Gmbh Hybridrotor
EP2511177B1 (en) * 2011-04-11 2013-06-05 Eurocopter Deutschland GmbH Helicopter with cycloidal rotor system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660785A (en) * 1985-12-16 1987-04-28 Munski Michael S Helicopter antitorque auxiliary propulsion system
RU1621346C (ru) * 1989-02-28 1995-09-20 Анатолий Трофимович Белобаба Вертолет
WO2000007683A1 (de) * 1998-08-05 2000-02-17 Uli Streich Modellhubschrauber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU172022U1 (ru) * 2017-02-08 2017-06-26 Закрытое акционерное общество "Авиастроительная корпорация "Русич" Устройство установки хвостового винта на одновинтовом вертолете

Also Published As

Publication number Publication date
EP2598399A1 (de) 2013-06-05
CN103052564A (zh) 2013-04-17
DE102010032217A1 (de) 2012-01-26
US9452832B2 (en) 2016-09-27
RU2013108260A (ru) 2014-09-10
CN103052564B (zh) 2016-05-11
US20130119186A1 (en) 2013-05-16
WO2012013365A1 (de) 2012-02-02

Similar Documents

Publication Publication Date Title
RU2568529C2 (ru) Компенсация крутящего момента для вертолета
US6735954B2 (en) Offset drive for gas turbine engine
US6769874B2 (en) Permanent magnet alternator for a gas turbine engine
EP3066007B1 (en) Counter-rotating rotor system with stationary standpipe
RU2020118899A (ru) Вертолет с системой противовращения
US20200231275A1 (en) Dual rotor system
BRPI1101128A2 (pt) Montagem para um motor de turbina a gás
WO2006093641A3 (en) Double ducter hovering air-vehicle
RU2733299C1 (ru) Летательный аппарат, способный к зависанию
US10053212B2 (en) Transmission for coaxial multi-rotor system
US20190393763A1 (en) Electric fan
US11939077B2 (en) Fan clutch for convertible engine
BR112020021828A2 (pt) unidade de propulsão para uma aeronave
WO2019202515A1 (en) Acoustic noise suppressing ducted fan propulsor mounting arrangement and treatments
EP2873613B1 (en) Counter-rotating rotor system with static mast
RU2733306C1 (ru) Винт для летательного аппарата, способного к зависанию
EP2873612A1 (en) Counter-rotating rotor system with fairing
CN219192587U (zh) 一种无人直升机推进装置
CN208299621U (zh) 一种带有散热装置的电机
CN105484804A (zh) 喷气式发动机
KR20160139603A (ko) 회전 쿨링장치
RU2478522C2 (ru) Соосный коаксиальный пропеллер (варианты)
CN108347134A (zh) 一种带有散热装置的电机
JP2009045977A (ja) テールロータ

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170406