RU2567446C1 - Способ измерения количества диэлектрической жидкости в металлической емкости - Google Patents

Способ измерения количества диэлектрической жидкости в металлической емкости Download PDF

Info

Publication number
RU2567446C1
RU2567446C1 RU2014138486/28A RU2014138486A RU2567446C1 RU 2567446 C1 RU2567446 C1 RU 2567446C1 RU 2014138486/28 A RU2014138486/28 A RU 2014138486/28A RU 2014138486 A RU2014138486 A RU 2014138486A RU 2567446 C1 RU2567446 C1 RU 2567446C1
Authority
RU
Russia
Prior art keywords
volume
cavity
oscillations
excited
cycle
Prior art date
Application number
RU2014138486/28A
Other languages
English (en)
Inventor
Александр Сергеевич Совлуков
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова РАН filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова РАН
Priority to RU2014138486/28A priority Critical patent/RU2567446C1/ru
Application granted granted Critical
Publication of RU2567446C1 publication Critical patent/RU2567446C1/ru

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее электрофизических параметров. Предлагается способ измерения количества диэлектрического вещества в металлической емкости, при котором в первом цикле измерений возбуждают электромагнитные колебания последовательно в фиксированном диапазоне частот [f1, f2] в емкости и подсчитывают число N возбуждаемых типов колебаний. Дополнительно, во втором цикле измерений, возбуждают электромагнитные колебания последовательно в фиксированном диапазоне частот [f1, f2] в емкости и подсчитывают число N возбуждаемых типов колебаний, согласно изобретению дополнительно, во втором цикле измерений, возбуждают электромагнитные колебания последовательно в фиксированном диапазоне частот [f3, f4] в полости емкости с объемом, уменьшенным на фиксированную величину ΔV в области, занимаемой жидкостью, по сравнению с объемом V0 полости при первом цикле измерений, и подсчитывают число N1 возбуждаемых колебаний, осуществляют совместное функциональное преобразование N и N1 согласно соотношению
Figure 00000012
,
где
Figure 00000013
В качестве уменьшаемого объема ΔV возможно использовать объем полости металлического волновода, являющегося запредельным волноводом для волн диапазона частот [f3, f4], открытого на одном торце и закрытого на другом, образующем часть стенки металлической емкости, торце. Технический результат заключается в повышении точности измерения. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее электрофизических параметров.
Известен способ измерения количества вещества, содержащегося в какой-либо емкости, в котором возбуждают электромагнитные колебания в металлической емкости, рассматриваемой как объемный резонатор, и измеряют собственную (резонансную) частоту электромагнитных колебаний, возбуждаемых в этом резонаторе, служащую информативным параметром (Викторов В.А. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С. 59-64). Такой способ позволяет определить объем какой-либо полости-резонатора, уровень вещества в ней. Однако при изменении геометрии баков, произвольном характере распределения в ней контролируемого вещества этот способ не применим, так как имеет место большая погрешность измерения, обусловленная неопределенностью расположения вещества в емкости, произвольностью формы емкости. Этот способ не применим и при изменении измеряемого параметра (количества) в широких пределах, к появлению (возбуждению) в емкости иных, кроме основного "рабочего", типов электромагнитных колебаний.
Известно также техническое решение (RU 2511646 С1, 10.04.2014), которое содержит описание способа определения количества диэлектрической жидкости в металлической емкости. Возбуждают электромагнитные колебания на фиксированной частоте, для которой длина волны в свободном пространстве по крайней мере на порядок меньше характерного размера полости, циклически изменяют конфигурацию полости и измеряют среднее за цикл измерения значение выводимой из полости мощности электромагнитного излучения. При этом операцию изменения конфигурации полости возможно осуществлять посредством циклического перемещения отражающего тела в пределах диаграммы направленности вводимого электромагнитного излучения. Этот способ обеспечивает проведение измерений количества независимо от величины диэлектрической проницаемости контролируемой жидкости. Недостатком этого способа является необходимость принятия специальных мер для обеспечения равномерного распределения энергии электромагнитного поля по объему емкости, что усложняет процесс измерения и конструкции реализующих этот способ устройств.
Известно также техническое решение (US 3540275, 17.11.1970), по технической сущности наиболее близкое к предлагаемому устройству и принятое в качестве прототипа. Здесь описан способ измерения количества при рассмотрении полости как объемного резонатора и возбуждении в ней последовательно электромагнитных колебаний в фиксированном диапазоне частот. Подсчитывая число возбуждаемых типов колебаний (резонансов), определяют количество жидкости в полости резонатора или объем пустой полости произвольной формы. Устройство для реализации этого способа содержит датчик в виде объемного резонатора, к которому подсоединены генератор электромагнитных колебаний, модулированных по частоте, и последовательно соединенные детектор и регистратор числа типов электромагнитных колебаний (резонансов), возбуждаемых в емкости. Недостатком этих способа и устройства является невысокая точность измерения, обусловленная зависимостью результатов определения количества от диэлектрической проницаемости ε контролируемой жидкости.
Техническим результатом настоящего изобретения является повышение точности измерения.
Технический результат достигается тем, что в способе измерения количества диэлектрической жидкости в металлической емкости, при котором в первом цикле измерений возбуждают электромагнитные колебания последовательно в фиксированном диапазоне частот [f1, f2] в полости емкости и подсчитывают число N возбуждаемых типов колебаний, согласно изобретению дополнительно, во втором цикле измерений, возбуждают электромагнитные колебания последовательно в фиксированном диапазоне частот [f3, f4] в полости емкости с объемом V0, уменьшенным на фиксированную величину ΔV в области, занимаемой жидкостью, по сравнению с объемом V0 полости при первом цикле измерений, и подсчитывают число N1 возбуждаемых типов колебаний, осуществляют совместное функциональное преобразование N и N1 согласно соотношению
Figure 00000001
, где
Figure 00000002
;
Figure 00000003
. В качестве уменьшаемого объема ΔV возможно использовать объем полости металлического волновода, являющегося запредельным волноводом для волн диапазона частот [f3, f4], открытого на одном торце и закрытого на другом, образующем часть стенки металлической емкости, торце.
Предлагаемый способ поясняется чертежами на фиг. 1 и фиг. 2.
На фиг. 1 изображена металлическая полость с дополнительной частью объема, расположенной внутри основного объема в области, занимаемой жидкостью.
На фиг. 2 изображена функциональная схема устройства для реализации способа.
Здесь показаны металлическая емкость 1, контролируемое вещество 2, дополнительная часть объема полости 3, генераторы частотно-модулированных колебаний 4 и 5, сумматор мощности 6, детектор 7, вычислительное устройство 8, регистратор 9.
Сущность способа измерения состоит в следующем.
В металлической емкости, рассматриваемой в качестве объемного резонатора, возбуждают электромагнитные колебания в диапазоне частот [f1, f2], в пределах которого в емкости существует множество N типов электромагнитных колебаний. Каждый из них характеризуется резонансным откликом полости - резонансным импульсом - резким возрастанием амплитуды А возбуждаемых колебаний при совпадении частоты f генератора с собственной (резонансной) частотой fk данного k-го типа колебаний (k=1, 2, …, N). Определяя число N типов колебаний, возбуждаемых в резонаторе в диапазоне частот [f1, f2], можно судить об V0 емкости произвольной конфигурации (US 3540275, 17.11.1970):
Figure 00000004
где с - скорость света, ε0 - относительная диэлектрическая проницаемость вещества, заполняющего полость емкости, в частности воздуха.
Если емкость содержит диэлектрическое вещество объемом V, то (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С. 217-224)
Figure 00000005
где в данном случае ε - относительная диэлектрическая проницаемость вещества объемом V, частично и произвольным образом заполняющего полость емкости. При этом результат измерения не зависит (с допустимой погрешностью) от расположения вещества в объеме емкости.
Для достижения поставленной цели - обеспечения независимости результатов измерения количества (объема) V диэлектрического вещества от величины диэлектрической проницаемости ε контролируемой жидкости - производят дополнительный, второй цикл измерения числа возбуждаемых резонансных импульсов N1 при удалении из объема V0 некоторого фиксированного объема ΔV, занимаемого электромагнитным полем стоячей волны в полости-резонаторе. При этом важно, чтобы этот объем ΔV находился в области, занимаемой жидкостью, так что при втором цикле измерений такой объем ΔV, занимаемый электромагнитным полем, удаляется как из объема V0, так и из объема V.
При этом формула (2) принимает следующий вид:
Figure 00000006
Здесь f3 и f4 - граничные значения частот диапазона частот [f3, f4], в пределах которого осуществляют изменение частоты f генератора во втором цикле измерений и подсчет числа соответствующих возбуждаемых резонансных импульсов Ν1.
Рассматривая (2) и (3) как систему уравнений относительно измеряемой величины V и величины ε, от влияния которой при измерении V следует избавиться, решим эту систему уравнений относительно V.
Формулы (2) и (3) можно записать, соответственно, в следующем виде:
Figure 00000007
В эти формулах введены обозначения:
Figure 00000008
Решая систему уравнений (4) и (5) относительно V c исключением ε, получим
Figure 00000009
Таким образом, измеряя N и N1 и осуществляя преобразование (6) в вычислительном блоке устройства, реализующего данный способ, можно определить текущее значение количества (объема) V независимо от значения ε и его возможных изменений.
Операцию удаления фиксированного объема ΔV, занимаемого электромагнитным полем, из объемов V0 и V, необходимую при проведении второго цикла измерений, можно осуществить с помощью по меньшей мере одного волновода между начальной и увеличенной или уменьшенной полостью, являющегося запредельным волноводом для волн диапазона частот [f3, f4].
Дополнительное измерение плотности ρ жидкости с применением того или иного плотномера позволяет определить массу М жидкости в емкости: М=ρV.
На фиг. 1 изображена металлическая полость 1 объемом V0, содержащая контролируемую диэлектрическую жидкость 2, количество (объем) V которой подлежит определению. Полость 1 имеет внутри некоторую часть 3 объемом ΔV, составляющую часть объема V0 и находящуюся в области емкости 1, занимаемой диэлектрической жидкостью 2. В области 3 полости объемом ΔV в первом цикле измерений присутствует электромагнитное поле стоячей волны (т.е. это поле присутствует в пределах всего объема V0) при девиации частоты в пределах [f1, f2] и отсутствует во втором цикле измерений при девиации частоты в пределах [f3, f4]. При изменении частоты f в пределах [f1, f2] объем ΔV не является запредельным волноводом для данных частот. Критическая частота fкp возбуждения этого волновода меньше нижней частоты f1: fкp<f1. При изменении же частоты f в пределах другого частотного диапазона [f3, f4] объем ΔV является запредельным волноводом для всех частот этого диапазона. Критическая частота fкр превышает максимальную частоту f4 диапазона [f3, f4]: fкр>f4. Электромагнитное поле стоячей волны присутствует только в пределах объема V0-ΔV.
Отметим, что для реализации данного способа возможно во втором цикле измерений уменьшение начального объема V0 полости на величину ΔV осуществлять механически, перемещая часть стенки полости. Но можно такую реализацию производить электрическим методом (фиг. 2).
Часть 3 полости емкости может быть выполнена в виде отрезка металлической трубы (волновода), открытой на одном и закрытом на другом торцах (образуя часть стенки металлической емкости 1). Длина и поперечные размеры такого волновода выбирают так, чтобы он работал в режиме распространения волн в диапазоне частот [f1, f2] и был бы запредельным волноводом для частот диапазона [f3, f4] (Семенов Н.А. Техническая электродинамика. М.: Связь. 1973. С. 224-226). В отличие от аналогичной части емкости в техническом решении (RU 2511646 С1, 10.04.2014), где она содержит волновод между начальной и уменьшенной полостью, являющийся запредельным волноводом для волн с фиксированной длины на втором цикле измерений, здесь часть 3 сама является запредельным волноводом для волн частотного диапазона [f3, f4] на втором цикле измерений, а не выполняет функции некоторого переходного элемента между двумя объемами емкости 1.
На фиг. 2 приведена схема устройства для реализации предлагаемого способа.
Здесь в металлической емкости 1, содержащей контролируемую диэлектрическую жидкость 2, произвольным образом распределенную внутри этой емкости, возбуждают электромагнитные колебания попеременно с помощью генераторов частотно-модулированных колебаний 4 и 5 связи в диапазонах частот [f1, f2] и [f3, f4], соответственно, с помощью только одной линии. Для этого в схему устройства вводится сумматор мощности 6, ко входам которого подсоединены данные генераторы, а выход которого подсоединен к емкости-резонатору 1. Снимаемые колебания поступают на детектор 7, на выходе которого образуются резонансные импульсы, и далее в вычислительный блок 8 и затем в регистратор 9. В вычислительном блоке 8 производят вычислительные операции с принимаемыми сигналами согласно соотношению (6) для определения количества (объема) жидкости V независимо от диэлектрической проницаемости ε жидкости.
Таким образом, данный способ позволяет производить высокоточные измерения количества диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от величины диэлектрической проницаемости жидкости.

Claims (2)

1. Способ измерения количества диэлектрической жидкости в металлической емкости, при котором в первом цикле измерений возбуждают электромагнитные колебания последовательно в фиксированном диапазоне частот [f1, f2] в полости емкости и подсчитывают число N возбуждаемых типов колебаний, отличающийся тем, что дополнительно, во втором цикле измерений, возбуждают электромагнитные колебания последовательно в фиксированном диапазоне частот [f3, f4] в полости емкости с объемом V0, уменьшенным на фиксированную величину ΔV в области, занимаемой жидкостью, по сравнению с объемом V0 полости при первом цикле измерений, и подсчитывают число N1 возбуждаемых типов колебаний, осуществляют совместное функциональное преобразование N и N1 согласно соотношению
Figure 00000010
,
где
Figure 00000011
2. Способ по п. 1, отличающийся тем, что в качестве уменьшаемого объема ΔV используют объем полости металлического волновода, являющегося запредельным волноводом для волн диапазона частот [f3, f4], открытого на одном торце и закрытого на другом, образующем часть стенки металлической емкости, торце.
RU2014138486/28A 2014-09-24 2014-09-24 Способ измерения количества диэлектрической жидкости в металлической емкости RU2567446C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014138486/28A RU2567446C1 (ru) 2014-09-24 2014-09-24 Способ измерения количества диэлектрической жидкости в металлической емкости

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014138486/28A RU2567446C1 (ru) 2014-09-24 2014-09-24 Способ измерения количества диэлектрической жидкости в металлической емкости

Publications (1)

Publication Number Publication Date
RU2567446C1 true RU2567446C1 (ru) 2015-11-10

Family

ID=54537029

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014138486/28A RU2567446C1 (ru) 2014-09-24 2014-09-24 Способ измерения количества диэлектрической жидкости в металлической емкости

Country Status (1)

Country Link
RU (1) RU2567446C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2645435C1 (ru) * 2016-11-24 2018-02-21 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения количества вещества в металлической емкости
RU2672038C1 (ru) * 2017-12-06 2018-11-08 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения количества каждой компоненты двухкомпонентной жидкости в металлической емкости

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1770765A1 (ru) * 1990-12-10 1992-10-23 Inst Problem Upravlenia Avtoma Способ измерения количества вещества в металлической емкости
RU2511646C1 (ru) * 2012-10-15 2014-04-10 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова РАН Способ определения количества диэлектрической жидкости в металлической емкости

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1770765A1 (ru) * 1990-12-10 1992-10-23 Inst Problem Upravlenia Avtoma Способ измерения количества вещества в металлической емкости
RU2511646C1 (ru) * 2012-10-15 2014-04-10 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова РАН Способ определения количества диэлектрической жидкости в металлической емкости

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
В.А. Викторов, В.Б. Лункин, А.С. Совлуков "Высокочастотный метод измерения неэлектрических величин", М.: Наука. 1978. Стр. 222-224US 7406865 B2, 05.08.2008WO 2014051483 A1, 03.04.2014 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2645435C1 (ru) * 2016-11-24 2018-02-21 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения количества вещества в металлической емкости
RU2672038C1 (ru) * 2017-12-06 2018-11-08 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения количества каждой компоненты двухкомпонентной жидкости в металлической емкости

Similar Documents

Publication Publication Date Title
RU2473889C1 (ru) Способ измерения физической величины
RU2567446C1 (ru) Способ измерения количества диэлектрической жидкости в металлической емкости
RU2511646C1 (ru) Способ определения количества диэлектрической жидкости в металлической емкости
RU2578749C1 (ru) Способ определения положения границы раздела двух веществ в емкости
RU2426099C1 (ru) Устройство для определения концентрации смеси веществ
RU2620780C1 (ru) Способ определения положения границ раздела между компонентами трехкомпонентной среды в емкости
RU2534747C1 (ru) Устройство для измерения физических свойств жидкости в емкости
RU2645813C1 (ru) Способ определения количества диэлектрической жидкости в металлической емкости
RU2672038C1 (ru) Способ измерения количества каждой компоненты двухкомпонентной жидкости в металлической емкости
RU2531033C2 (ru) Устройство для измерения количества вещества в металлической емкости
RU2671936C1 (ru) Способ измерения уровня вещества в емкости
RU2427851C1 (ru) Способ измерения физической величины
RU2473055C1 (ru) Способ измерения уровня жидкости в емкости
WO2016043629A1 (ru) Способ и устройство измерения физических параметров материала
RU2647186C1 (ru) Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости
RU2775867C1 (ru) Способ измерения уровня диэлектрической жидкости в резервуаре
RU2427805C1 (ru) Устройство для измерения массы сжиженного газа в замкнутом резервуаре
RU2491517C1 (ru) Способ измерения уровня жидкости при изменении положения резервуара и устройство для его осуществления
RU2757472C1 (ru) Способ определения уровня жидкости в емкости
RU2550763C1 (ru) Способ измерения уровня жидкости в емкости
RU2393435C1 (ru) Способ индикации наличия жидкости в резервуаре и устройство для его осуществления
RU2645435C1 (ru) Способ измерения количества вещества в металлической емкости
RU2456556C1 (ru) Измеритель частоты резонаторного датчика технологических параметров
RU2645836C1 (ru) Способ определения уровня жидкости в емкости
RU2354980C2 (ru) Способ определения диэлектрической постоянной диэлектрического продукта

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190925