RU2564999C1 - Способ извлечения органических веществ из водных сред экстракционным вымораживанием в поле центробежных сил - Google Patents

Способ извлечения органических веществ из водных сред экстракционным вымораживанием в поле центробежных сил Download PDF

Info

Publication number
RU2564999C1
RU2564999C1 RU2014114740/05A RU2014114740A RU2564999C1 RU 2564999 C1 RU2564999 C1 RU 2564999C1 RU 2014114740/05 A RU2014114740/05 A RU 2014114740/05A RU 2014114740 A RU2014114740 A RU 2014114740A RU 2564999 C1 RU2564999 C1 RU 2564999C1
Authority
RU
Russia
Prior art keywords
extract
aqueous
extraction
bottle
freezing
Prior art date
Application number
RU2014114740/05A
Other languages
English (en)
Inventor
Виктор Николаевич Бехтерев
Original Assignee
Виктор Николаевич Бехтерев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виктор Николаевич Бехтерев filed Critical Виктор Николаевич Бехтерев
Priority to RU2014114740/05A priority Critical patent/RU2564999C1/ru
Application granted granted Critical
Publication of RU2564999C1 publication Critical patent/RU2564999C1/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение может быть использовано для выделения органических веществ из водных сред, водосодержащих биологических жидкостей и водных экстрактов-вытяжек. Для осуществления способа проводят экстракцию органических веществ из водной среды в органический растворитель в сочетании с вымораживанием в условиях действия поля центробежных сил. Для получения экстракта целевых органических веществ в пробу предварительно добавляют подходящий органический растворитель, в том числе растворимый или ограниченно растворимый в воде, который выделяется в отдельную жидкую фазу в процессе замораживания водной части в условиях центрифугирования. Способ обеспечивает улучшение воспроизводимости результатов экстракции в отношении количества получаемого экстракта, снижение количества экстрагента в экстракционной системе и снижение содержания воды в получаемом экстракте. 10 пр.

Description

Изобретение относится к аналитической химии, гидрохимии, биохимии, экологии, криомедицине, фармакологии, судебной медицине, криминалистике и может быть использовано для выделения как природных, так и синтетических, техногенных органических веществ из водных сред, водосодержащих биологических жидкостей (моча, кровь и др.) и водных экстрактов-вытяжек различных объектов.
Известен способ выделения органических веществ, сочетающий экстракцию и вымораживание [1]. Растворенные органические соединения целевые органические вещества извлекают из воды, водосодержащих биологических жидкостей, водных вытяжек различных объектов путем предварительного добавления в объем пробы растворимого или ограниченно растворимого органического экстрагента (ацетонитрил, ацетон, диэтиловый эфир и т.п.) и последующего охлаждения приготовленного раствора до кристаллизации водной части. В результате в выделяющийся в отдельную жидкую фазу добавленный органический растворитель переходят извлекаемые органические вещества. Полученный жидкий органический экстракт с целевыми компонентами отделяют от замороженной части образца. Данный способ впоследствии получил название метод экстракционного вымораживания (Extractive freezing-out) [2-3]. В зависимости от условий проведения процесса целевые компоненты можно концентрировать и в твердой фазе льда [4].
Однако указанный способ [1] имеет ряд серьезных недостатков:
- несмотря на идентичность условий масса получаемых жидких экстрактов сильно варьирует (изменяется) даже в параллельных определениях-опытах [2-3];
- снижение температуры экстракционного вымораживания сопровождается резким снижением количества экстракта в результате втягивания его значительной части в образующиеся при кристаллизации трещины льда за счет капиллярных сил вплоть до полного отсутствия [4, 5];
- степень концентрирования извлекаемых компонентов обычно не превышает 3÷4 крат, поскольку не удается снизить долю добавляемого экстрагента менее 25% [3] по причине существенных потерь экстракта в виде жидких микровключений в кристаллической фазе, а также вследствие втягивания его значительной части в образующиеся при кристаллизации трещины льда за счет капиллярных сил [4].
Задачей предлагаемого способа было улучшение воспроизводимости результатов экстракции в отношении количества получаемого экстракта, снижение количества экстрагента в экстракционной системе и содержания воды в получаемом экстракте, улучшение экономических показателей.
Это достигается тем, что целевые органические вещества извлекают из водосодержащей среды с помощью экстракционного вымораживания (ЭВ) в условиях действия поля центробежных сил. А именно после предварительного добавления в пробу водного раствора, водосодержащей биологической жидкости, водной вытяжки различных объектов органического экстрагента, в т.ч. растворимого или ограниченно растворимого (ацетонитрил, ацетон, диэтиловый эфир, этилацетат и т.п.) кристаллизацию водной части осуществляют охлаждением смеси в условиях центрифугирования, т.е. под воздействием поля центробежных сил. За счет действия центробежных сил, в условиях сжатия, разности плотностей контактирующих фаз, в т.ч. воды, экстрагента, растворенных газов, твердой фазы (ее гранулометрического состава), гидродинамических факторов, вязкости жидких, газообразных составляющих и т.д., а также вибрации, при замораживании удается достичь более гомогенной структуры кристаллической водной фазы. Следствием этого является значительное возрастание массы (объема) экстракта, получаемого в результате предлагаемого нового способа экстракции, по сравнению с процедурой ЭВ в отсутствии центрифугирования, а также резкое повышение воспроизводимости результатов извлечения (масса получаемого экстракт, содержание в нем целевого компонента). Снижение температуры проведения ЭВ выгодно с точки зрения уменьшения содержания воды в получаемом экстракте за счет снижении ее растворимости органическом растворителе, используемом в качестве экстрагента. Во-первых, это уменьшает объем получаемого экстракта и повышает коэффициент (степень) концентрирования в нем целевых компонентов, во-вторых, является важным условием сохранения работоспособности и физико-химических характеристик разделительной колонки при газохроматографическом исследовании пробы. Кроме того, в химическом анализе также часто встречаются ситуации, когда присутствие воды в экстрактах нежелательно. Вместе с тем, из-за неоднородности кристаллической фазы льда может наступить момент, когда практически весь экстракт втягивается в ее трещины. Предлагаемый способ решает эти проблемы, что подтверждается приведенными ниже экспериментами.
Приведенные ниже примеры демонстрируют возможность использования различных растворителей для извлечения органических веществ разных классов, а также варьирования условий экстракционного вымораживания в поле центробежных сил, в т.ч. температуры, силы поля центробежных сил через изменение скорости вращения ротора центрифуги. Указанные параметры важны для оптимизации процесса экстракции, повышения ее эффективности и селективности в отношении извлечения целевых компонентов из сложных биологических матриц.
Пример 1.
Во флаконы (8 шт. ) с завинчивающимися пробками емкостью 11 мл поместили по 3,0 мл водного раствора органических кислот. Индивидуальное содержание в воде Свод. каждой из них указано в табл. 1. Добавили по 1,5 мл ацетонитрила марки «Сорт 2». Тщательно перемешав, четыре пробы поместили в ротор охлаждаемой центрифуги, температура - 25±1°С. Произвели центрифугирование при 8000 обор./мин в течение 90 мин. Оставшиеся четыре подвергли процедуре ЭВ по способу [1] в тех же самых температурных условиях. После того как водная часть пробы замерзла, декантацией отделили органический прозрачный слой жидкого экстракта ацетонитрила. Его масса в среднем составила 0,12±0,005 г. В пробах, параллельно подвергнутых ЭВ по способу [1], экстракта в виде отдельной жидкой фазы образовалось в количестве менее 5-10 мкл, что не позволило его отделить от твердой фазы льда и проанализировать. Методом газовой хроматографии с пламенно-ионизационным детектированием определили содержание кислот в экстрактах, полученных предлагаемым способом экстракционного вымораживания с одновременным центрифугированием. Результаты опыта представлены в табл. 1.
Figure 00000001
Figure 00000002
Пример 2.
Образцы воды массой 8,5 мл, подкисленные фосфорной кислотой до рН3 и содержащие сорбиновую кислоту в концентрации 1,9 мкг/мл, поместили в стеклянные флаконы с завинчивающимися пробками емкостью 11 мл. Добавили 1,5 мл ацетонитрила марки «Сорт 2». Герметично закрыв завинчивающимися пробками флаконы (8 шт. ), содержимое перемешали до растворения. Часть флаконов в количестве 4 шт. поместили в морозильную камеру при температуре - 25±1°С, остальные (4 шт. ) - в ротор охлаждаемой центрифуги, термостатируемой при - 25±1°С, и подвергли центрифугированию до кристаллизации водной части образца. Во флаконах, охлаждаемых без центрифугирования, т.е. по способу [1], после кристаллизации водной части образца с поверхности льда собрать экстракт не удалось. Он полностью впитался в твердую фазу. В то же время во флаконах, находившихся в охлаждаемой центрифуге, на поверхности льда образовался слой жидкой фазы органического растворителя (экстракт), который отделили декантацией в отдельную пробирку. Результаты опыта по определению массы экстракта и содержания в нем органической кислоты представлены в табл. 2.
Figure 00000003
Представленные в табл. 2 данные свидетельствуют о высокой воспроизводимости результатов опыта в отношении величины массы получаемого экстракта предлагаемым способом: доверительный интервал для среднего значения равен 0,23±0,014 (n=4, Р=0,95). Это значительно превосходит показатели известного метода ЭВ [1, 5] при осуществлении процесса в аналогичном температурном интервале.
Пример 3.
Во флакон №1 с завинчивающейся пробкой емкостью 11 мл поместили 8,5 мл утренней мочи пациента Б. и 1,5 мл ацетонитрила марки «Сорт 2». Во флакон №2 с завинчивающейся пробкой емкостью 11 мл поместили 8,5 мл утренней мочи пациента Б., добавили 50 мкл раствора салициловой кислоты в воде концентрации 1350 мкг/мл и 1,5 мл ацетонитрила марки «Сорт 2». Пробы, тщательно перемешав, поместили в ротор охлаждаемой центрифуги, температура - 25±1°С. Произвели центрифугирование при 8000 об/мин в течение 120 мин. После кристаллизации водной части исследуемых образцов с поверхности льда декантацией собрали жидкую органическую фазу (экстракт). Масса экстракта составила: из флакона №1 - 0,218 г, флакона №2 - 0,224 г. В результате исследования методом высокоэффективной жидкостной хроматографии с диодно-матричным детектированием установлено содержание салициловой кислоты в полученном экстракте из флакона №2 - 25,2 мкг/мл. В экстракте из флакона №1 салициловая кислота не обнаружена.
Пример 4.
Во флаконы №1-4 (4 шт. ) с завинчивающимися пробками емкостью 11 мл поместили по 9 мл морской воды плавательного бассейна. Добавили 10 мкл серной кислоты (50%) и 1 мл ацетонитрила марки «Сорт 2». В аналогичные флаконы №5-8 (4 шт.) с завинчивающимися пробками емкостью 11 мл поместили по 9 мл морской воды бассейна с добавкой органических кислот С28 в каждый по 4 мкл из стандартного раствора кислот в ацетонитриле с содержанием С2 - 656, С3 - 660, С4 - 844, С5 - 856, С6 - 1000, С7 - 1040 и С8 - 954 мкг/мл. Добавили 10 мкл серной кислоты (50%) и 1 мл ацетонитрила марки «Сорт 2». Тщательно перемешав, все пробы поместили в ротор охлаждаемой центрифуги, температура - 25±1°С. Произвели центрифугирование при 8000 об/мин в течение 120 мин. После того как водная часть пробы замерзла, декантацией отделили органический прозрачный слой жидкого экстракта ацетонитрила. Его масса в среднем составила 0,06±0,003 г. Методом газовой хроматографии с пламенно-ионизационным детектированием определили содержание кислот в экстрактах. Результаты опыта представлены в табл. 3.
Figure 00000004
Как следует из полученных результатов (табл. 3), коэффициент концентрирования целевого компонента предлагаемым способом может достигать практически 17 крат (например, в случае капроновой кислоты), что почти в четыре раза превосходит возможности способа [1] в подобном температурном интервале экстракционного вымораживания [5].
Пример 5.
В опыте изучено влияние скорости вращения ротора центрифуги или величины центробежного ускорения, поскольку это взаимосвязанные величины, на массу получаемого экстракта. Во флаконы с завинчивающимися пробками емкостью 11 мл наливали по 9 мл дистиллированной воды и 1 мл ацетонитрила. После этого флаконы с содержимым помещали в предварительно охлажденный до температуры - 32±2°С ротор центрифуги. Контроль температуры вели с помощью цифрового термометра «Testo 174Т» (фирма Testo AG, Germany), находящегося внутри морозильной камеры. Затем проводили центрифугирование в течение 45 мин. Заданную скорость вращения ротора контролировали с помощью тахометра «UT372» (фирма UNIT, Hong Kong). Полученная экспериментальная зависимость представлена рис. 1.
Figure 00000005
При ЭВ без центрифугирования, т.е. в условиях W=0, экстракт (ацетонирил) полностью поглощался образующимся льдом, имеющим в этом случае поликристаллическую (с трещинами) структуру. Начиная со скорости вращения ротора 3000-4000 об/мин и выше большая часть замерзшей водной фазы образца имеет вид прозрачного монокристаллического льда. Лишь в центральной его части остается небольшая поликристаллическая область с некоторым количеством вмерзших шарообразных пузырьков воздуха и, возможно, ацетонитрильного экстракта. Представленная на рис. 1 зависимость показывает, что при прочих равных условиях с увеличением скорости вращения ротора, т.е. с ростом центробежной силы, количество получаемого ацетонитрильного экстракта увеличивается на участках от 0 до 3000 и от 7000 до 8000 об/мин, в диапазоне от 3000 до 7000 об/мин его масса стабильна (0,1-0,12 г).
Пример 6.
Во флаконы (4 шт.) с завинчивающейся пробкой емкостью 11 мл поместили по 5 мл раствора фенола в дистиллированной воде с концентрацией 2,44 мкг/мл и 1 мл 95% этилового спирта. Приготовленные образцы, тщательно перемешав, поместили в ротор охлаждаемой центрифуги, температура - 27°С. Произвели центрифугирование при 4000 обор./мин в течение 45 мин. После кристаллизации водной части исследуемых образцов с поверхности льда декантацией собрали жидкую органическую фазу (экстракт). Масса экстракта составила: из флакона №1 - 0,398 г, флакона №2 - 0,249 г, флакона №3 - 0,262 г и флакона №4 - 0,288 г. В результате исследования методом газовой хроматографии с пламенно-ионизационным детектированием установлено содержание фенола в полученных экстрактах из флакона №1 - 5,07 мкг/мл, флакона №2 - 5,48 мкг/мл, флакона №3 - 5,18 мкг/мл и из флакона №4 - 5,30 мкг/мл.
В аналогичных температурных условиях указанные выше смеси этанола и водного раствора фенола без центрифугирования замерзали без образования отдельной жидкой фазы спиртового экстракта.
Пример 7.
Во флаконы (4 шт.) с завинчивающейся пробкой емкостью 11 мл поместили 4 мл раствора фенола в дистиллированной воде с концентрацией 2,29 мкг/мл и 1,75 мл свежеперегнанного ацетилацетона. Приготовленные образцы, тщательно перемешав, поместили в ротор охлажденной до температуры - 17°С центрифуги. Произвели центрифугирование при 4000 об/мин в течение 40 мин. После кристаллизации водной части исследуемых образцов с поверхности льда декантацией собрали жидкую органическую фазу (экстракт). Масса экстракта составила: из флакона №1 - 0,852 г, флакона №2 - 0,784 г, флакона №3 - 0,755 г и флакона №4 - 0,796 г. В результате исследования методом газовой хроматографии с пламенно-ионизационным детектированием установлено содержание фенола в полученных экстрактах из флакона №1 - 0,20 мкг/мл, флакона №2 - 0,21 мкг/мл, флакона №3 - 0,20 мкг/мл и из флакона №4 - 0,18 мкг/мл.
Пример 8.
Образцы молока объемом по 8 мл, приготовленного из порошка сухого молока «Test Material 0590 Pesticide Residues Milk Powder» фирмы FAPAS с аттестованным значением содержания пестицидов путем растворения 0,80±0,002 г в 8 мл воды, поместили во флаконы (4 шт.) с завинчивающейся пробкой емкостью 11 мл. В два из них (№1-2) добавили по 1 мл ацетонитрила в каждый, в оставшиеся два (№3-4) по 1 мл раствора α-гексахлорциклогексана (изомер пестицида линдана) в ацетонитриле с концентрацией 0,0678 мкг/мл. Приготовленные образцы, тщательно перемешав, поместили в ротор охлаждаемой центрифуги, температура - 25°С. Произвели центрифугирование при 4000 об/мин в течение 45 мин. После кристаллизации водной части исследуемых образцов с поверхности льда, в объеме которого остались все дисперсные частицы молока, декантацией собрали прозрачную жидкую органическую фазу ацетонитрильного экстракта. Масса экстракта составила: из флакона №1 - 0,046 г, флакона №2 - 0,044 г, флакона №3 - 0,059 г и флакона №4 - 0,047 г. В результате газохроматографического исследования с электронозахватным детектированием расчетом по методу добавки с усреднением по двум параллельным пробам установлено содержание α-гексахлорциклогексана в сухом молоке 63 мкг/кг. Аттестованное значение содержания этого химического соединения в данном образце сухого молока согласно паспорту - 89,9 мкг/кг.
Пример 9.
Во флаконы (4 шт.) с завинчивающейся пробкой емкостью 11 мл поместили навески мелко нарезанной массы листьев персика массой 1,0±0,02 г, обработанного накануне за 1 сутки водным раствором салициловой кислоты. В два из них (№1-2) добавили по 2 мл дистиллированной воды и 2 мл ацетонитрила в каждый, в оставшиеся два (№3-4) по 2 мл дистиллированной воды и 2 мл раствора салициловой кислоты в ацетонитриле с концентрацией 6,215 мкг/мл. Флаконы поместили на вибро-встряхиватель «Heidolph» для экстракции в течение 30 мин (скоростной режим 1). Затем флаконы с содержимым поместили в ротор охлажденной до температуры - 27°С центрифуги. Произвели центрифугирование при 4000 об/мин в течение 45 мин. После кристаллизации водной части исследуемых образцов с поверхности льда, в объеме которого содержалась вся масса дисперсных растительных частиц, декантацией собрали прозрачную жидкую органическую фазу ацетонитрильного экстракта. Массы экстрактов составили: из флакона №1 - 0,556 г, флакона №2 - 0,548 г, флакона №3 - 0,559 г флакона №4 - 0,529 г. В результате исследования с помощью высоко эффективной жидкостной хроматографии с диодно-матричным детектированием расчетом по методу добавки с усреднением по двум параллельным пробам установлено содержание салициловой кислоты в листьях персика 19,34 мкг/г.
Пример 10.
Во флаконы (4 шт.) с завинчивающейся пробкой емкостью 11 мл поместили по 9 мл дистиллированной воды, в каждый из которых затем внесли микрошприцем МШ-10 по 2,5 мкл раствора нафталина в ацетонитриле в концентрации 766 мкг/мл и тщательно перемешали. В каждый из них затем также пипеткой-автодозатором BIOHIT добавили 1 мл этилацетата. Приготовленные таким образом смеси, тщательно перемешав, поместили в ротор охлажденной до температуры - 26°С центрифуги. Произвели центрифугирование при 4000 об/мин в течение 45 мин. После кристаллизации водной части исследуемых образцов с поверхности льда декантацией собрали жидкую органическую фазу этилацетата (экстракт). Его масса экстракта составила: из флакона №1 - 0,093 г, флакона №2 - 0,078 г, флакона №3 - 0,082 г и флакона №4 - 0,087 г. В результате исследования методом газовой хроматографии с пламенно-ионизационным детектированием установлено содержание нафталина в полученных экстрактах из флакона №1 - 12,5 мкг/мл, флакона №2 - 15,0 мкг/мл, флакона №3 - 14,4 мкг/мл и из флакона №4 - 12,9 мкг/мл.
Предлагаемый способ позволяет:
- существенно повысить степень концентрирования целевых компонентов в получаемом экстракте в сравнении с ранее известным способом [1];
- значительно снизить количество используемого экстрагента в экстракционной системе во время процедуры экстракционного вымораживания;
- добиться высокой стабильности массы (количества) получаемого экстракта в параллельных опытах;
- проводить одностадийную экстракцию целевых компонентов из биологических объектов;
- уменьшить материальные (необходимо меньшее количество экстрагента) и трудовые затраты, поскольку с ростом степени концентрирования целевых компонентов в получаемом экстракте нет необходимости проводить повторное ЭВ.
Библиография
1. Патент РФ на изобретение №2303476 // Способ извлечения органических веществ из водных сред экстракцией в сочетании с вымораживанием // Бехтерев В.Н. // Б.И. №21, 2007.
2. Бехтерев В.Н. Выделение фенолов из воды экстракционным вымораживанием // Журнал аналитической химии. 2008. Т. 63. №10. С. 1045-1049.
3. Bekhterev V.N. Extractive freezing-out in the analysis of organic compounds in the aqueous mediums // Mendeleev Communications. 2007. V. 17. P. 241-243.
4. Бехтерев В.Н. Закономерности поведения растворенных органических веществ в условиях экстракционного вымораживания // Журнал аналитической химии. 2011. Т. 66. №6. С. 608-613.
5. Бехтерев В.Н. // Автореф. дисс … докт. хим. наук. - М., 2011. - 41 с.

Claims (1)

  1. Способ извлечения органических веществ из водных сред, включающий вымораживание водной части и экстракцию растворенных соединений в добавленный растворимый в воде органический растворитель, выделяющийся в отдельную жидкую фазу в процессе замораживания, когда водная часть заморожена, отличающийся тем, что процесс осуществляют в поле центробежных сил.
RU2014114740/05A 2014-04-14 2014-04-14 Способ извлечения органических веществ из водных сред экстракционным вымораживанием в поле центробежных сил RU2564999C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014114740/05A RU2564999C1 (ru) 2014-04-14 2014-04-14 Способ извлечения органических веществ из водных сред экстракционным вымораживанием в поле центробежных сил

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014114740/05A RU2564999C1 (ru) 2014-04-14 2014-04-14 Способ извлечения органических веществ из водных сред экстракционным вымораживанием в поле центробежных сил

Publications (1)

Publication Number Publication Date
RU2564999C1 true RU2564999C1 (ru) 2015-10-10

Family

ID=54289759

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014114740/05A RU2564999C1 (ru) 2014-04-14 2014-04-14 Способ извлечения органических веществ из водных сред экстракционным вымораживанием в поле центробежных сил

Country Status (1)

Country Link
RU (1) RU2564999C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU185933U1 (ru) * 2017-06-29 2018-12-25 Виктор Николаевич Бехтерев Устройство для экстракционного вымораживания органических веществ из жидких сред в условиях действия центробежных сил
CN110117034A (zh) * 2018-02-06 2019-08-13 广州中国科学院沈阳自动化研究所分所 一种离心萃取高浓度含酚废水及其资源化的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135437A (ja) * 1985-12-06 1987-06-18 Asahi Chem Ind Co Ltd 有機液体の冷却脱水方法及び装置
US5394706A (en) * 1993-05-20 1995-03-07 Waterworks International, Inc. Freeze crystallization for the removal of water from a solution of dissolved solids
US6367285B1 (en) * 1997-06-13 2002-04-09 Fujisawa Pharmaceutical Co., Ltd. Freeze-concentrating apparatus for aqueous solutions, ice pillar producing apparatus, and freeze-concentrating method for aqueous solutions
RU2186033C1 (ru) * 2001-04-11 2002-07-27 Уральский государственный технический университет Способ улучшения качества питьевой воды замораживанием и оттаиванием
RU2303476C2 (ru) * 2005-04-27 2007-07-27 Виктор Николаевич Бехтерев Способ извлечения органических веществ из водных сред экстракцией в сочетании с вымораживанием
RU2364864C1 (ru) * 2008-04-21 2009-08-20 Виктор Николаевич Бехтерев Способ определения одноосновных карбоновых кислот c2-с6 в воде
RU2516759C2 (ru) * 2012-08-30 2014-05-20 Общество с ограниченной ответственностью "Урал Сигма" Способ промышленной переработки белоксодержащих органических отходов

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135437A (ja) * 1985-12-06 1987-06-18 Asahi Chem Ind Co Ltd 有機液体の冷却脱水方法及び装置
US5394706A (en) * 1993-05-20 1995-03-07 Waterworks International, Inc. Freeze crystallization for the removal of water from a solution of dissolved solids
US6367285B1 (en) * 1997-06-13 2002-04-09 Fujisawa Pharmaceutical Co., Ltd. Freeze-concentrating apparatus for aqueous solutions, ice pillar producing apparatus, and freeze-concentrating method for aqueous solutions
RU2186033C1 (ru) * 2001-04-11 2002-07-27 Уральский государственный технический университет Способ улучшения качества питьевой воды замораживанием и оттаиванием
RU2303476C2 (ru) * 2005-04-27 2007-07-27 Виктор Николаевич Бехтерев Способ извлечения органических веществ из водных сред экстракцией в сочетании с вымораживанием
RU2364864C1 (ru) * 2008-04-21 2009-08-20 Виктор Николаевич Бехтерев Способ определения одноосновных карбоновых кислот c2-с6 в воде
RU2516759C2 (ru) * 2012-08-30 2014-05-20 Общество с ограниченной ответственностью "Урал Сигма" Способ промышленной переработки белоксодержащих органических отходов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЛЕЙТЕ В., Определение органических загрязнений питьевых, природных и сточных вод, Москва, Химия, 1975, с.37. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU185933U1 (ru) * 2017-06-29 2018-12-25 Виктор Николаевич Бехтерев Устройство для экстракционного вымораживания органических веществ из жидких сред в условиях действия центробежных сил
CN110117034A (zh) * 2018-02-06 2019-08-13 广州中国科学院沈阳自动化研究所分所 一种离心萃取高浓度含酚废水及其资源化的方法

Similar Documents

Publication Publication Date Title
Saraji et al. Recent developments in dispersive liquid–liquid microextraction
Viñas et al. Dispersive liquid–liquid microextraction in food analysis. A critical review
Farajzadeh et al. Extraction and preconcentration technique for triazole pesticides from cow milk using dispersive liquid–liquid microextraction followed by GC‐FID and GC‐MS determinations
Xiao-Huan et al. Developments of dispersive liquid-liquid microextraction technique
Tan et al. Deep eutectic solvent-based liquid-phase microextraction for detection of plant growth regulators in edible vegetable oils
Poole Milestones in the development of liquid-phase extraction techniques
RU2564999C1 (ru) Способ извлечения органических веществ из водных сред экстракционным вымораживанием в поле центробежных сил
Xiong et al. Determination of chlorpyrifos in environmental water samples by dispersive liquid–liquid microextraction with solidification of a floating organic drop followed by gas chromatography with flame photometry detection
WO2005100982A2 (en) Methods for stabilizing 5-azacytidine in plasma
Amelin et al. Combination of the QuEChERS method with dispersive liquid-liquid microextraction and derivatization in the determination of mycotoxins in grain and mixed feed by gas-liquid chromatography with an electron-capture detector
Sereshti et al. Vortex-assisted extraction in tandem with dispersive liquid–liquid microextraction followed by GC-MS for determination of Achillea wilhelmsii essential oil
WO2017058040A1 (ru) Cпособ извлечения органических веществ из водных сред экстракционным вымораживанием в поле центробежных сил
CN109781914B (zh) 一种基于净化剂状态切换的农药残留检测的QuEChERS方法
Bordagaray et al. A review on microextraction techniques for selected triazole fungicides determination in water and food samples
US20160279536A1 (en) Liquid-liquid extraction process and apparatus
RU2303476C2 (ru) Способ извлечения органических веществ из водных сред экстракцией в сочетании с вымораживанием
Liu et al. Solidification of floating organic drop microextraction combined with gas chromatography-flame photometric detection for the analysis of organophosphorus pesticides in water samples
RU2612719C2 (ru) Установка для получения водного конденсата из воздуха и способ концентрирования примесей из воздуха, осуществляемый на этой установке
CN110632216A (zh) 提取样品中矿物油的方法及检测方法
Bekhterev Extractive Freezing-out of Caffeine from Aqueous Solutions in a Centrifugal Force Field
Babaee et al. Determination of volatile compounds in rose-water and fruit juices using indirectly suspended droplet microextraction of water-miscible organic solvents by the salting-out effect
Bekhterev Freeze-out extraction of monocarboxylic acids from water into acetonitrile under the action of centrifugal forces
Zichová et al. Influence of relevant parameters on the extraction efficiency and the stability of the microdrop in the single drop microextraction
Bekhterev Recovery of phenols from water by extraction freezing
Zaijun et al. A novel temperature-controlled ionic liquid dispersive liquid phase microextraction for determination of dicofol and DDT in environmental water samples prior to gas chromatography mass spectrometry