RU2564055C2 - Комплекс контроля материалов - Google Patents

Комплекс контроля материалов Download PDF

Info

Publication number
RU2564055C2
RU2564055C2 RU2013158720/28A RU2013158720A RU2564055C2 RU 2564055 C2 RU2564055 C2 RU 2564055C2 RU 2013158720/28 A RU2013158720/28 A RU 2013158720/28A RU 2013158720 A RU2013158720 A RU 2013158720A RU 2564055 C2 RU2564055 C2 RU 2564055C2
Authority
RU
Russia
Prior art keywords
positioner
pendulum
trace
scribing
control system
Prior art date
Application number
RU2013158720/28A
Other languages
English (en)
Other versions
RU2013158720A (ru
Inventor
Борис Яковлевич Мокрицкий
Дмитрий Александрович Пустовалов
Павел Алексеевич Саблин
Александр Сергеевич Мешков
Ольга Васильевна Бездень
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУ ВПО "КнАГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУ ВПО "КнАГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУ ВПО "КнАГТУ")
Priority to RU2013158720/28A priority Critical patent/RU2564055C2/ru
Publication of RU2013158720A publication Critical patent/RU2013158720A/ru
Application granted granted Critical
Publication of RU2564055C2 publication Critical patent/RU2564055C2/ru

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Ticket-Dispensing Machines (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

Изобретение относится к средствам сравнительной оценки (контроля) физико-механических и эксплуатационных свойств материалов, в частности может быть использовано для инструментальных материалов. Комплекс содержит установку для осуществления маятникового скрайбирования посредством внедрения индентора, систему управления, взаимодействующую с указанной установкой, с устройством ввода базы исходных данных, с позиционером, а также содержит накопительные места и транспортную систему подачи и позиционирования образцов относительно указанной установки и позиционера. Установка маятникового скрайбирования снабжена видеосистемой наблюдения следа маятникового скрайбирования, позволяющей оцифровать след, а система управления выполнена с возможностью обработки и анализа оцифрованного изображения следа, с обеспечением возможности принятия последующего решения отдать позиционеру команду на перемещение образца в зависимости от результатов анализа либо в брак, либо для хранения на складе, либо для отгрузки получателю, либо для иных целей. Технический результат: расширение возможностей (функций) маятникового скрайбирования, что включает возможность автоматизировать процесс принятия управляющего решения и, тем самым, исключить влияние человеческого фактора, повысить производительность оценки качества, осуществлять сортировку и отбраковку изделий. 3 ил.

Description

Изобретение относится к средствам сравнительной оценки (контроля) физико-механических и эксплуатационных свойств материалов, в частности может быть использовано для инструментальных материалов.
Уровень развития техники известен из решения (далее оно для удобства обозначено Р1) [Автоматизированная система измерения твердости, категория: Металлургия, город: Набережные Челны, компания: ООО «Энерготехсервис», (он-лайн). Проект размещен: 25.04.2012. Найдено в Интернет: 170/about], в котором даны сведения о комплексе контроля материалов, включающем в себя установку для осуществления внедрения индентора, оснащенном системой управления, взаимодействующей с указанной установкой, с устройством ввода базы исходных данных, с позиционером, а также оснащенном накопительными местами и транспортной системой подачи и позиционирования образцов относительно указанной установки и позиционера. Недостаток решения указан далее.
В то же время из уровня техники известно решение [патент РФ №129244 на полезную модель «Устройство маятниковое для микромеханических испытаний материалов», G01N 3/00. Пустовалов Д.А., Мокрицкий Б.Я., Лаврухин И.В., Огилько С.А., Савинковский М.В. Заявка 2012118921/28 от 5.5.2012. Опубл.20.06.2013, Бюл. №17], в рамках которого раскрыто устройство маятниковое для микромеханических испытаний материалов, в котором установка для осуществления внедрения индентора представляет собой установку для осуществления маятникового скрайбирования. Данное решение нами рассматривается в силу того, что именно маятниковое скрайбирование нам наиболее интересно в связи с тем, что оно обеспечивает такие условия нагружения образцов, которые наиболее близки к условиям, реализуемым при эксплуатации инструментальных материалов. Содержание самого устройства не столь принципиально. Это могут быть и другие устройства маятникового скрайбирования, например, описанные в источнике [Патент РФ №129242 на полезную модель «Устройство маятниковое для микромеханических испытаний», G01N 3/00. Мокрицкий Б.Я., Пустовалов Д.А., Лаврухин И.В., Огилько С.А., Савинковский М.В. Заявка 2012118900/28 от 5.5.2012. Опубл.20.06.2013, Бюл. №17] или в источнике [патент РФ №2147737 на изобретение «Устройство для испытания материалов», G01N 3/42, опубл. 20.04.2000], либо в источнике [Пустовалов Д.А., Мокрицкий Б.Я., Огилько С.А., Лаврухин И.В., Белянин К.О. Маятниковый склерометр для оценки коррозионной стойкости материалов // Химическое и нефтегазовое машиностроение, 2012 г, №11, с. 32-34].
Важно то, что то или иное устройство (установка) для маятникового скрайбирования может быть использовано в составе указанного выше (P1) комплекса контроля материалов, включающего в себя установку для осуществления внедрения индентора. Недостатком любого из указанных устройств для маятникового устройства является то, что оно не снабжено системой анализа регистрируемых параметров маятникового скрайбирования, функция анализа передана субъекту (исследователю), в силу этого результаты анализа могут носить субъективный характер, а процесс ранжирования (выстраивания в ряд по изменению величины сравниваемого параметра) сравниваемых материалов не может быть автоматизирован.
Недостатком указанного комплекса контроля материалов, включающего в себя установку для осуществления внедрения индентора (решения Р1), является ограниченные технологические возможности. Это связано с тем, что комплекс не способен автоматизировать процесс принятия управляющего решения, не способен осуществить сортировку и отбраковку контролируемых образцов (изделий).
В силу сказанного можно заключить, что техническим результатом заявляемого решения является расширение возможностей (функций) маятникового скрайбирования, что включает возможность автоматизировать процесс принятия управляющего решения и, тем самым, исключить влияние человеческого фактора, повысить производительность оценки качества, осуществлять сортировку и отбраковку изделий.
Указанный технический результат достигается тем, что в комплекс встроена установка для маятникового скрайбирования, комплекс оснащен накопительными местами и транспортной системой подачи и позиционирования образцов относительно указанной установки и позиционера, причем установка для осуществления маятникового скрайбирования снабжена видеосистемой наблюдения следа маятникового скрайбирования, позволяющей оцифровать след, а система управления выполнена с возможностью обработки и анализа оцифрованного изображения следа, с обеспечением возможности принятия последующего решения отдать позиционеру команду на перемещение образца, в зависимости от результатов анализа, либо в брак, либо в готовую продукцию, либо для хранения на складе, либо для иных целей.
Таким образом, заявляемый объект (комплекс), как и прототип, включает в себя установку для осуществления маятникового скрайбирования посредством внедрения индентора, он оснащен системой управления, взаимодействующей с указанной установкой, с устройством ввода базы исходных данных, с позиционером, а также оснащен накопительными местами и транспортной системой подачи и позиционирования образцов относительно указанной установки и позиционера.
Однако заявляемый объект отличается тем, что установка маятникового скрайбирования снабжена видеосистемой контроля следа маятникового скрайбирования, позволяющей оцифровать след, видеосистема связана с устройством ввода базы данных и/или с системой управления, система управления выполнена с возможностью обработки и анализа оцифрованного изображения следа, с обеспечением возможности принятия последующего решения отдать позиционеру команду на перемещение образца, в зависимости от результатов анализа, либо в брак, либо в готовую продукцию, либо для хранения на складе, либо для иных целей.
На фиг. 1 представлена принципиальная компоновочная схема заявляемого решения. На фиг. 2 представлен пример картины (получена на микроскопе) следа маятникового скрайбирования инструментального материала с покрытием (обозначения: 1 - зона входа индентора; 2 - зона с большей глубиной внедрения индентора; 3 - зона с максимальной глубиной внедрения; 4 - зона с меньшей глубиной внедрения индентора; 5 - зона выхода индентора). На фиг. 3 представлен пример участков следов скрайбирования, полученный с помощью видеоизмерительной системы модели Sol 161 производства США.
Заявляемый комплекс содержит установку У для осуществления маятникового скрайбирования и другие устройства. Установка У имеет маятник, несущий на себе индентор (например, алмазный конус). В результате движения по дуге окружности индентор заглубляется в тело образца О и двигается в материале образца с переменной глубиной внедрения, что приводит к формированию в поверхностном слое образца О следа маятникового скрайбирования (царапания). При этом след по своей длине имеет разную глубину и ширину. В среднем сечении следа и глубина, и ширина максимальны. Установка взаимосвязана (на фиг. 1 это показано линией со стрелкой) с системой управления СУ комплексом контроля материалов. Система управления СУ выполнена связанной с позиционером П и устройством ввода базы данных БВД. Образцы О установлены и ориентированы на транспортном средстве ТС, например на транспортере магнитном. Транспортное средство позволяет транспортировать (на фиг. 1 это движение обозначено П1) образцы к установке У и позиционеру П. Позиционер имеет возможность поворота (обозначено В1) и движения П2, что позволяет рабочему органу, например захвату позиционера, занять позицию относительно накопительных мест M1, М2, М3, М4. Это может быть накопительная тара, емкости и т.д. Обеспечение ввода базы данных может быть реализовано разными способами. Например, для этого может быть использована видеосистема (нами использована видеоизмерительная система Sol 161 производства США). Она может быть смонтирована на установке У маятникового скрайбирования или после нее по длине транспортного средства ТС над образцами так, чтобы в зону ее наблюдения (контроля) попадал след, оставленный индентором при маятниковом скрайбировании. На фиг. 1 видеосистема ВС показана смонтированной именно на установке У и имеющей связь с базой ввода данных. Технологически удобно применять видеосистему ВС, позволяющую оцифровывать наблюдаемое (контролируемое) изображение, в частности оцифровывать параметры следа маятникового скрайбирования, например ширину, длину, площадь. Система управления СУ выполнена с возможностью обработки и анализа оцифрованного изображения следа. Результат такой обработки и анализа обеспечивает системе СУ возможность принятия последующего управляющего решения отдать позиционеру команду на перемещение образца, в зависимости от результатов анализа, в то или иное накопительное место M1, М2, М3, М4, например в брак, либо в готовую продукцию, либо для хранения на складе, либо для иных целей.
Работает комплекс следующим образом. Образцы О позиционируются (рабочим или вспомогательным устройством) на транспортном средстве ТС. Установка У настраивается (оператором) на определенные условия индентирования (глубина внедрения, масса маятника и т.д.). Сведения о материале образцов вводятся (оператором) в базу данных БВД. Для этих условий индентирования материала образца в базу данных (или в систему управления СУ) вводятся (а затем хранятся и пополняются) нормируемые значения того или иного параметра следа маятникового скрайбирования. Например, это может быть величина максимальной ширины bmax следа скрайбирования. Такие нормированные значения нужны для того, чтобы в последующем СУ могла сравнивать его и оцифрованное значение этого же параметра, выявленное видеосистемой, анализировать результат сравнения и по результату сравнения принимать то или иное управляющее решение. Это решение будет передано позиционеру как команда на отправление образца в то или иное накопительное место, например в место M1, где позиционер накапливает бракованные заготовки деталей.
При движении П1 транспортного средства образцы попадают в зону действия установки У и затем позиционера П. Пусть установка У способна осуществить маятниковое скрайбирование образца, когда он расположен на транспортном средстве. Если это не возможно, то позиционер П захватит образец с транспортного средства и переместит его на стол установки У. В том и другом случае система управления СУ отдаст установке команду на осуществление маятникового скрайбирования. Видеосистема ВС осуществит съемку следа маятникового скрайбирования, передаст его оцифрованное изображение в систему управления СУ, она осуществит сравнение полученной информации (например, величины ширины bmax следа маятникового скрайбирования) с той нормированной величиной контролируемого параметра, которая введена для сравнения в базу данных БВД (или в СУ). В зависимости от результатов анализа (сравнения заданного параметра с полученным при индентировании и затем при оцифровании) система управления отдаст позиционеру П команду на перемещение образца либо в брак (например, место M1), либо для хранения на складе (например, место М2), либо для отгрузки получателю (например, место М3), либо для иных целей (например, место М4).
В случае, если сравнения полученной информации по одному параметру (например, по ширине bmax следа) недостаточно, то может быть произведено сравнение по другому (или по нескольким) следующему параметру, например по площади следа.

Claims (1)

  1. Комплекс контроля материалов, включающий в себя установку для осуществления маятникового скрайбирования посредством внедрения индентора, систему управления, взаимодействующую с указанной установкой, с устройством ввода базы исходных данных, с позиционером, а также содержащий накопительные места и транспортную систему подачи и позиционирования образцов относительно указанной установки и позиционера, отличающийся тем, что установка маятникового скрайбирования снабжена видеосистемой наблюдения следа маятникового скрайбирования, позволяющей оцифровать след, а система управления выполнена с возможностью обработки и анализа оцифрованного изображения следа, с обеспечением возможности принятия последующего решения отдать позиционеру команду на перемещение образца в зависимости от результатов анализа либо в брак, либо для хранения на складе, либо для отгрузки получателю, либо для иных целей.
RU2013158720/28A 2013-12-27 2013-12-27 Комплекс контроля материалов RU2564055C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013158720/28A RU2564055C2 (ru) 2013-12-27 2013-12-27 Комплекс контроля материалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013158720/28A RU2564055C2 (ru) 2013-12-27 2013-12-27 Комплекс контроля материалов

Publications (2)

Publication Number Publication Date
RU2013158720A RU2013158720A (ru) 2015-07-20
RU2564055C2 true RU2564055C2 (ru) 2015-09-27

Family

ID=53611232

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013158720/28A RU2564055C2 (ru) 2013-12-27 2013-12-27 Комплекс контроля материалов

Country Status (1)

Country Link
RU (1) RU2564055C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2613570C1 (ru) * 2015-12-01 2017-03-17 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУ ВПО "КнАГТУ") Способ ассиметричного маятникового скрайбирования
RU2619448C1 (ru) * 2016-04-20 2017-05-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУ ВО "КнАГТУ") Маятниковый склерометр с лазерным устройством

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785198A (en) * 1971-06-14 1974-01-15 Lonza Ag Scratch resistance tester
RU129244U1 (ru) * 2012-05-05 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" Устройство маятниковое для микромеханических испытаний материалов
RU2499246C2 (ru) * 2011-04-05 2013-11-20 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Способ определения прочностных характеристик материала и устройство для его осуществления

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785198A (en) * 1971-06-14 1974-01-15 Lonza Ag Scratch resistance tester
RU2499246C2 (ru) * 2011-04-05 2013-11-20 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Способ определения прочностных характеристик материала и устройство для его осуществления
RU129244U1 (ru) * 2012-05-05 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" Устройство маятниковое для микромеханических испытаний материалов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Автоматизированная система измерения твердости, Категория: Металлургия, Город: Набережные Челны,Компания: ООО "Энерготехсервис", [он-лайн].Проект размещен: 25.04.2012, [найдено 2014-10-27]- Найдено в Интернет: . *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2613570C1 (ru) * 2015-12-01 2017-03-17 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУ ВПО "КнАГТУ") Способ ассиметричного маятникового скрайбирования
RU2619448C1 (ru) * 2016-04-20 2017-05-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУ ВО "КнАГТУ") Маятниковый склерометр с лазерным устройством

Also Published As

Publication number Publication date
RU2013158720A (ru) 2015-07-20

Similar Documents

Publication Publication Date Title
Hering et al. Characterization of damage in forward rod extruded parts
Balachandar et al. Condition monitoring of FSW tool using vibration analysis–A machine learning approach
RU2564055C2 (ru) Комплекс контроля материалов
Vasudevan et al. Fatigue damage analysis: Issues and challenges
BORISOVA et al. MODERN MEASUREMENT SYSTEMS IN THE SYSTEM OF ENVIRONMENTAL MONITORING.
Minakov et al. Remote monitoring systems for quality management metal pouring
Galatolo et al. Experiments and model predictions for fatigue crack propagation in riveted lap‐joints with multiple site damage
JP6176596B2 (ja) 表面特性検査選別装置、表面特性検査選別システム及び表面特性検査選別方法
Ediriweera et al. Effect of impact angle, exposure time, and particle size on impact erosion
AU2015381355A1 (en) Method and arrangement for analysis of a material flow
CN109636100A (zh) 物资质量监督管理方法
Arcari et al. Variable amplitude fatigue life in VHCF and probabilistic life predictions
CN107731705A (zh) 在缺陷检测中设定抽样率的方法以及产线的检测管控方法
Oravec et al. Technical cleanliness–a requirement of precision manufacturing
Boehm et al. Machine learning algorithms for automated NIF capsule mandrel selection
CN104353623A (zh) 一种精密仪器零件质检残次品分拣装置
Kovalevskyy et al. Acoustic monitoring with neural network diagnostics
JP2019179043A (ja) 解析支援システム
Narkevich et al. An empirical approach to quality assurance of materials, products and structures in industrial safety
JP6550417B2 (ja) 解析支援システム
CN104049624A (zh) 化工产品生产模式优化方法、装置和连续型化工系统
Pasi et al. Design and modeling to identify a defective workpiece in manufacturing process: an industry 4.0 perspective
Deng et al. Evaluation of particle degradation due to high-speed impacts in a pneumatic handling system
Oliveira Plans of control, measurement and monitoring with risk assessment application to rehabilitation works
Derriso et al. Industrial age NDE to information age SHM

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151228