RU2561876C2 - Способ гашения радиальных колебаний вала, который вращается, с помощью вставных деталей на гидростатическом подвесе опорного подшипника скольжения - Google Patents

Способ гашения радиальных колебаний вала, который вращается, с помощью вставных деталей на гидростатическом подвесе опорного подшипника скольжения Download PDF

Info

Publication number
RU2561876C2
RU2561876C2 RU2012131394/11A RU2012131394A RU2561876C2 RU 2561876 C2 RU2561876 C2 RU 2561876C2 RU 2012131394/11 A RU2012131394/11 A RU 2012131394/11A RU 2012131394 A RU2012131394 A RU 2012131394A RU 2561876 C2 RU2561876 C2 RU 2561876C2
Authority
RU
Russia
Prior art keywords
shaft
parts
oil
insert
insert parts
Prior art date
Application number
RU2012131394/11A
Other languages
English (en)
Other versions
RU2012131394A (ru
Inventor
Василий Сигизмундович Марцинковский
Original Assignee
Василий Сигизмундович Марцинковский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Василий Сигизмундович Марцинковский filed Critical Василий Сигизмундович Марцинковский
Publication of RU2012131394A publication Critical patent/RU2012131394A/ru
Application granted granted Critical
Publication of RU2561876C2 publication Critical patent/RU2561876C2/ru

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

Изобретение принадлежит к области машиностроения и может быть использовано в устройствах, которые содержат вал, который вращается, и хотя бы один опорный подшипник скольжения, который может быть как нереверсивным, так и реверсивным. Такими устройствами могут быть газовые или паровые турбины, компрессоры, центробежные насосы и др. Способ включает подачу масла к вставным деталям и в емкости, которые находятся в корпусе, обеспечение вращения вала, блокировку движения каждой из вставных деталей, в любом направлении вращения, передвижение каждой из вставных деталей к поверхности вала, которая взаимодействует с поверхностью каждой из вставных деталей, во время вращения вала, обеспечение перетекания масла как в прямом, так и в обратном направлении из емкостей или в емкости, которые находятся в корпусе. Максимальное расстояние передвижения каждой из вставных деталей в направлении к поверхности вала обеспечивают не больше 0,002 D и не меньше 0,0008 D. Динамическую вязкость масла обеспечивают в пределах от 4 мкПа·с до 50 мкПа·с при скорости вращения вала не меньше 500 об/мин и не больше 60000 об/мин. Шероховатость контактирующих поверхностей вала и каждой из вставных деталей соответственно должна находиться в пределах от Ra0,8 до Ra0,2. Для каждой из емкостей, что находятся в корпусе, под каждой из вставных деталей, и/или в каждой вставной детали, и которых должно быть не меньше двух, обеспечивают соотношение S/So в пределах от 60 до 120, где S - площадь поверхности масла в отдельной емкости при максимальном объеме масла, который может вместить отдельная емкость, a So - площадь отверстия у вставной детали или общая площадь отверстий у вставной детали. Технический результат: увеличение ресурса работы подшипника и механической нагрузки на подшипник, не приводя при этом к усложнению конструкции подшипника, по сравнению с конструкциями других опорных подшипников скольжения. 2 з.п. ф-лы, 2 ил.

Description

Изобретение принадлежит к области машиностроения и может быть использовано в устройствах, которые содержат вал, который вращается, и хотя бы один опорный (радиальный) подшипник скольжения, который может быть как нереверсивным, так и реверсивным. Такими устройствами могут быть газовые или паровые турбины, компрессоры, центробежные насосы и др.
Известен способ работы подшипника скольжения с самоустанавливающимися сегментами, который включает подачу масла к сегментам подшипника скольжения, блокирование движения сегментов во вращающемся направлении, перемещение части каждого сегмента к поверхности вращающегося вала, которая взаимодействует с поверхностью сегментов и дальнейшее удаление масла из подшипника скольжения [1].
Недостатком этого способа является то, что он не обеспечивает подшипнику скольжения высокий ресурс работы, поскольку амортизация радиальных колебаний вращающегося вала здесь является недостаточной. Здесь никак не обеспечивают увеличения давления масла на поверхности сегмента, которая контактирует с поверхностью вращающегося вала, при радиальном колебании вращающегося вала. В результате происходит трение поверхности вала о поверхность сегмента, что и уменьшает ресурс работы сегмента. К тому же здесь нельзя увеличить нагрузку на подшипник скольжения с самоустанавливающимися сегментами, поскольку это дополнительно уменьшит ресурс его работы.
Наиболее близким является способ работы опорного (радиального) подшипника скольжения, который включает подачу масла к вставным деталям опорного (радиального) подшипника скольжения и в емкости, которые находятся в корпусе опорного (радиального) подшипника скольжения, под каждой из вставных деталей и/или в каждой вставной детали, из той стороны вставной детали, которая взаимодействует с корпусом опорного (радиального) подшипника скольжения, обеспечение вращения вала, блокирование движения каждой из вставных деталей, в любом вращательном направлении, перемещение каждой из вставных деталей к поверхности вала, которая взаимодействует с поверхностью каждой из вставных деталей, во время вращения вала, используя при этом уменьшенное давление масла между каждой из вставных деталей и поверхностью вала, который вращается, относительно давления масла между каждой из вставных деталей и корпусом опорного (радиального) подшипника скольжения, и при этом, при колебаниях вала, который вращается, в процессе его вращения, способ включает обеспечение перетока масла как в прямом, так и в обратном направлении из емкостей или в емкости, которые находятся в корпусе опорного (радиального) подшипника скольжения, под каждой из вставных деталей, и/или в каждой вставной детали, на поверхность каждой из вставных деталей, или с поверхности каждой из вставных деталей, которая взаимодействует с поверхностью вала, через отверстия в каждой из вставных деталей [2].
Недостатком этого способа является то, что он не обеспечивает опорному (радиальному) подшипнику скольжения высокий ресурс работы, поскольку гашение радиальных колебаний вала, который вращается, здесь является недостаточным, потому что при этом не обеспечивают необходимое давление масла между поверхностью каждой из вставных деталей и поверхностью вала при радиальном колебании вала. В результате происходит трения поверхности вала об поверхность каждой из вставных деталей, что и уменьшает ресурс работы каждой из вставных деталей. Это также не позволяет увеличивать нагрузку на опорный (радиальный) подшипник скольжения.
В основу изобретения поставлена задача, путем усовершенствования способа гашения радиальных колебаний вала, который вращается, с помощью вставных деталей на гидростатическом подвесе опорного (радиального) подшипника скольжения, увеличить ресурс работы опорного (радиального) подшипника скольжения и увеличить механическую нагрузку на опорный (радиальный) подшипник скольжения.
1. Поставленная задача решается тем, что в способе гашения радиальных колебаний вала, который вращается, с помощью вставных деталей на гидростатическом подвесе опорного (радиального) подшипника скольжения, который включает подачу масла к вставным деталям опорного (радиального) подшипника скольжения и в емкости, которые находятся в корпусе опорного (радиального) подшипника скольжения, под каждой из вставных деталей, и/или в каждой вставной детали, из той стороны вставной детали, которая взаимодействует с корпусом опорного (радиального) подшипника скольжения, обеспечение вращения вала, блокирование движения каждой из вставных деталей, в любом вращательном направлении, перемещение каждой из вставных деталей к поверхности вала, которая взаимодействует с поверхностью каждой из вставных деталей, во время вращения вала, используя при этом уменьшенное давление масла между каждой из вставных деталей и поверхностью вала, который вращается, относительно давления масла между каждой из вставных деталей и корпусом опорного (радиального) подшипника скольжения, и при этом при колебаниях вала, который вращается, в процессе его вращения, способ включает обеспечение перетока масла как в прямом, так и в обратном направлении из емкостей или в емкости, которые находятся в корпусе опорного (радиального) подшипника скольжения, под каждой из вставных деталей, и/или в каждой вставной детали, на поверхность каждой из вставных деталей, или из поверхности каждой из вставных деталей, которая взаимодействует с поверхностью вала, через отверстия в каждой из вставных деталей, новым является то, что максимальное расстояние перемещения каждой из вставных деталей, в направлении к поверхности вала, обеспечивают не больше 0.002D и не меньше 0.0008D, где D - диаметр вала, который вращается, в том месте, где вал взаимодействует со вставными деталями опорного (радиального) подшипника скольжения, при этом динамическую вязкость масла обеспечивают в пределах от 4 микро Па·с до 50 мкПа·с, при скорости вращения вала не менее 500 об/мин, но не более 60000 об/мин и при этом шероховатость поверхности вала, которая контактирует с поверхностью вставных деталей опорного (радиального) подшипника скольжения, устанавливают в пределах от Ra0,8 до Ra0,2 и шероховатость поверхности каждой их вставных деталей, которая контактирует с поверхностью вала, который вращается, устанавливают в пределах от Ra0,8 до Ra0,2, а также для каждой из емкостей, которые находятся в корпусе опорного (радиального) подшипника скольжения, под каждой из вставных деталей, и/или в каждой вставной детали, и которых должно быть не меньше двух, под каждой из вставных деталей, и/или в каждой вставной детали, обеспечивают соотношение S/So в пределах от 60 до 120, где S - площадь поверхности масла в отдельной емкости, которая находится под вставной деталью, или у вставной детали, при максимальном объеме масла, который может вместить отдельная емкость, которая находится под вставной деталью, или у вставной детали, a So - площадь отверстия у вставной детали, или общая площадь отверстий у вставной детали, которые обеспечивают переток масла с поверхности вставной детали, которая контактирует с поверхностью вала, или на поверхность вставной детали, которая контактирует с поверхностью вала.
2. Новым по п.1 является то, что осуществляют удаление масла с поверхности вала, который вращается, с помощью скребков и дальнейшее удаление масла из опорного (радиального) подшипника скольжения и при этом обеспечивают поворот каждого скребка так, чтобы расстояние между поверхностью вала, который вращается, и скребком было минимальным, используя при этом кинетическую энергию масла на поверхности, или близко к поверхности вала, который вращается.
3. Новым по п.1 является то, что при гашении радиальных колебаний вала, который вращается, с помощью вставных деталей на гидростатическом подвесе опорного (радиального) подшипника скольжения, используют вставные детали толщиной не меньше одного миллиметра и не больше трех миллиметров.
На фиг.1 схематически изображено осуществление способа гашения радиальных колебаний вала, который вращается, с помощью вставных деталей на гидростатическом подвесе опорного (радиального) подшипника скольжения. Сплошной стрелкой указано направление вращения вала. Двойными стрелками указаны направления перемещения вставных деталей на гидростатическом подвесе при радиальных колебаниях вала, который вращается. Пунктирными стрелками указаны возможные направления наклона скребка при изменении направления вращения вала.
На фиг.2 схематически изображена часть опорного (радиального) подшипника скольжения и вал, который вращается. Буквой D обозначен диаметр вала, который вращается. Буквой L обозначено максимальное расстояние перемещения каждой из вставных деталей, в направлении к поверхности вала, который вращается. Буквой S обозначена максимальная площадь поверхности масла в отдельной емкости, которая находится под вставной деталью. Буквой d обозначен диаметр отверстия во вставной детали. Буквой р обозначена толщина вставной детали.
Способ осуществляют следующим образом. Сначала подают масло во вставные детали 1,2,3 опорного (радиального) подшипника скольжения и в емкости 4, что находятся в корпусе 5 опорного (радиального) подшипника скольжения под каждой из вставных деталей 1, 2, 3 с установленным давлением (фиг.1). Емкости 4 могут также находиться лишь во вставных деталях 1, 2, 3 из той стороны вставной детали 1, или 2, или 3, которая взаимодействует с корпусом 5 опорного (радиального) подшипника скольжения, или в корпусе 5 опорного (радиального) подшипника скольжения, и во вставных деталях 1,2,3 из той стороны вставной детали 1, или 2, или 3, которая взаимодействует с корпусом 5 опорного (радиального) подшипника скольжения (на фиг. не указано). Подачу масла осуществляют с помощью маслонасоса любой конструкции, через отверстия в опорном (радиальном) подшипнике скольжения. (На фиг.1 не указано.) Установленное давление масла обеспечивает маслонасос. Вал 6, в начальном положении, опирается на нижнюю вставную деталь 1. Верхние вставные детали 2 и 3 в начальном положении находятся на поверхности вала 7. Потом приводят во вращающееся движение вал 6. Направление вращающегося движения вала 6 на фиг.1 указано сплошной стрелкой. При своем вращении вал 6 увеличивает давление масла между своей поверхностью 7 и вставными деталями 1,2,3. Благодаря увеличенному давлению масла относительно установленного давления масла, которое обеспечивает маслонасос, вал 6 поднимается над поверхностью нижней вставной детали 1, а верхние вставные детали 2 и 3 отходят от поверхности вала 7. Эпюры распределения давления масла указаны в источнике информации [2], в частности, на фиг.4 и 5. С помощью винтов 8 обеспечивают блокирование движения каждой из вставных деталей 1, 2, 3 в любом вращающемся направлении. Приводя во вращающееся движение вал 6, осуществляют перемещение каждой из вставных деталей 1,2,3 к поверхности вала 7, которая взаимодействует с поверхностью каждой из вставных деталей 1,2,3. Вставные детали 1, 2, 3 установлены в опорном (радиальном) подшипнике скольжения с возможностью их перемещения к поверхности вала 7. (Направления перемещения вставных деталей 1, 2, 3 на фиг.1 указано двойными стрелками.)
Перемещения вставных деталей 1, 2, 3 осуществляют, создавая уменьшенное давление масла между каждой из вставных деталей 1, 2, 3 и поверхностью вала 7, относительно давления масла между каждой из вставных деталей 1, 2, 3 и корпусом 5 опорного (радиального) подшипника скольжения. Поверхность вала 7, в процессе вращения вала 6, взаимодействует с маслом и благодаря силам трения, которые возникают между маслом и поверхностью вала 7, приводит во вращающееся движение масло, которое находится на поверхности вала 7 или близко к поверхности вала 7. Это приводит к уменьшению давления масла между каждой из вставных деталей 1, 2, 3 и поверхностью вала 7, относительно давления масла между каждой из вставных деталей 1, 2, 3 и корпусом 5 опорного (радиального) подшипника скольжения. Положение вставных деталей 1, 2, 3, при вращении вала 6, указано на фиг.1, При перемещении вставных деталей 1, 2, 3 к поверхности вала 7 масло выдавливается с пространства между каждой из вставных деталей 1, 2, 3 и поверхностью вала 7 и перетекает через отверстия 9 в каждой из вставных деталей 1, 2, 3 в пространство между каждой из вставных деталей 1, 2, 3 и корпусом 5 опорного (радиального) подшипника скольжения, то есть из поверхности каждой из вставных деталей 1, 2, 3, которые контактируют с поверхностью вала 7.
При радиальных колебаниях вала 6, в процессе его вращения, указанный способ обеспечивает переток масла как в прямом, так и в обратном направлении из емкостей 4 или в емкости 4, что находятся в корпусе 5 опорного (радиального) подшипника скольжения, под каждой из вставных деталей 1, 2, 3, на поверхность каждой из вставных деталей 1, 2, 3 или из поверхности каждой из вставных деталей 1, 2, 3, которая взаимодействует с поверхностью вала 7, через отверстия 9, в каждой из вставных деталей 1, или 2, или 3.
При перемещении каждой из вставных деталей 1, 2, 3 в направлении к корпусу 5 опорного (радиального) подшипника скольжения, которое вызвано радиальным колебанием вала 6, происходит увеличение давления масла между каждой из вставных деталей 1, 2, 3 и корпусом 5 опорного (радиального) подшипника скольжения в несколько раз относительно давления масла, которое создает вал 6 своей поверхностью 7, между каждой из вставных деталей 1, 2, 3, при своем вращении. Вследствие этого происходит переток масла из емкостей 4 в пространство между одной из вставных деталей 1, 2, 3 и корпусом 5 опорного (радиального) подшипника скольжения, через отверстия 9 к валу 6, который вращается, то есть на поверхность одной из вставных деталей 1, 2, 3, которые контактируют с поверхностью вала 7. Между валом 6 и одной из вставных деталей 1, или 2, или 3 увеличивают давление масла, используя энергию радиального колебания вала 6, в несколько раз. Таким образом, осуществляют гашение радиального колебания вала 6 и уменьшают механическую нагрузку на одну из вставных деталей 1, или 2, или 3. То есть сила взаимодействия вала 6 с одной из вставных деталей 1, 2, 3, здесь уменьшается за счет увеличения давления масла между поверхностью вала 7 и одной из вставных деталей 1, или 2, или 3. Это, во-первых, увеличивает ресурс работы вставных деталей 1, 2, 3 и, как следствие, увеличивает ресурс работы всего опорного (радиального) подшипника скольжения. А во-вторых, позволяет увеличить механическую нагрузку на вставные детали 1,2,3 и, как следствие, на весь опорный (радиальный) подшипник скольжения в целом.
Максимальное расстояние перемещения каждой из вставных деталей 1, 2, 3 - L, в направлении к поверхности вала 7, обеспечивают не больше 0.002D и не меньше 0.0008D, где D - диаметр вала 6, что вращается, в том месте, где вал 6 взаимодействует со вставными деталями 1, 2, 3 опорного (радиального) подшипника скольжения (фиг.2). Расстояние перемещения меньшее 0,0008D не обеспечит увеличения ресурса работы опорного (радиального) подшипника скольжения и не увеличит нагрузки на опорный (радиальный) подшипник скольжения, поскольку при этом не состоится надлежащего гашения радиальных колебаний вала 6. Расстояние перемещения вставных деталей 1, 2, 3, в этом случае, не обеспечит достаточное давление масла между каждой из вставных деталей 1,2,3 и валом 6 при радиальном колебании вала 6. Расстояние перемещения больше 0,002D также не обеспечит увеличения ресурса работы опорного (радиального) подшипника скольжения и не увеличит нагрузки на опорный (радиальный) подшипник скольжения, поскольку при этом не произойдет нужного гашения радиальных колебаний вала 6, из-за большого расстояния перемещения каждой из вставных деталей 1,2,3 и вала 6 при его радиальном колебании. Энергия колебания вала 6, при этом, будет больше допустимого значения, что увеличит механическую нагрузку на каждую из вставных деталей 1,2,3.
Шероховатость поверхности вала 7, которая контактирует с поверхностью вставных деталей 1, 2, 3 опорного (радиального) подшипника скольжения, должна лежать в пределах от Ra0,8 до Ra0,2. Шероховатость поверхности вала 7 меньше Ra0,2 не целесообразна, поскольку при этом неоправданно увеличивается себестоимость изготовления вала 6, а шероховатость поверхности вала 7 больше Ra0,8 также не целесообразна, поскольку это приведет к значительному уменьшению ресурса работы вала 6 и вставных деталей 1,2,3 из-за стирания вставных деталей 1, 2, 3.
Аналогично, шероховатость поверхности каждой из вставных деталей 1, 2, 3 должна лежать в пределах от Ra0,8 к Ra0,2. Этот диапазон шероховатости поверхности каждой вставной детали 1, 2, 3, которая контактирует с поверхностью вала 7, выбран из тех же причин, которые выбраны и для поверхности вала 7.
При скорости вращения вала 6 не меньше 500 об/мин и не больше 60000 об/мин и расстояния перемещения каждой из вставных деталей 1,2,3 -L от 0,002D до 0,0008D, а также при указанной шероховатости поверхности вала 7 обеспечивают динамическую вязкость масла в пределах от 4 мкПа·с до 50 мкПа·с. При вязкости масла меньше чем 4 мкПа·с не будет обеспечена достаточная скорость движения масла на поверхности вала 7 или близко к поверхности вала 7, что, в свою очередь, не обеспечит перемещение вставных деталей 1, 2, 3 к поверхности вала 7. При вязкости масла больше чем 50 мкПа·с также не будет обеспечена достаточная скорость движения масла на поверхности вала 7 или близко к поверхности вала 7, что в свою очередь не обеспечит радиального перемещения вставных деталей 1,2,3 к поверхности вала 7.
Для каждой из емкостей 4, что находятся в корпусе 5 опорного (радиального) подшипника скольжения, под каждой из вставных деталей 1,2,3, и/или в каждой вставной детали 1, 2, 3 и которых должно быть не меньше двух, под каждой из вставных деталей 1, 2, 3, и/или в каждой вставной детали 1,2,3, обеспечивают соотношение S/So в пределах от 60 до 120, где S - площадь поверхности масла в отдельной емкости 4, что находится под вставной деталью 1, или 2, или 3, или во вставной детали 1, или 2, или 3, при максимальном объеме масла, который способна вместить отдельная емкость 4, что находится под вставной деталью 1, или 2, или 3, или во вставной детали 1, или 2, или 3 (фиг.2).
A So - площадь отверстия 9 во вставной детали 1, или 2, или 3, или общая площадь отверстий 9 в каждой из вставных деталей 1,2,3, что обеспечивают переток масла из поверхности каждой из вставных деталей 1,2,3, что контактирует с поверхностью вала 7, или на поверхность каждой из вставных деталей 1,2,3, что контактирует с поверхностью вала 7. Значение So высчитывают из формулы:
So=πd2/4,
где d - диаметр отверстия 9 во вставной детали 1, или 2,или 3.
При другом соотношении S/So давление масла на поверхности каждой из вставных деталей 1, 2, 3, что контактирует с поверхностью вала 7, будет недостаточным для гашения радиального колебания вала 6.
Чтобы дополнительно увеличить ресурс работы опорного (радиального) подшипника скольжения, обеспечивают удаление масла с поверхности вала 7, который вращается, с помощью скребков 10 и дальнейшее удаление масла из опорного (радиального) подшипника скольжения. Удаление масла на фиг. не указано.
При этом обеспечивают поворот каждого скребка 10 так, чтобы расстояние между поверхностью вала 7, который вращается, и скребком 10 было минимальным, используя при этом кинетическую энергию масла на поверхности вала 7, или близко к поверхности вала 7, вала 6. То есть скребок 10 поворачивает поток масла, который в движение приводит вал 6, при своем вращении. На фиг. 1 сплошной стрелкой указано направление вращения вала 6 и положение при этом скребков 10, которое они занимают. Нижней своей частью скребок 10 опирается на корпус 5 опорного (радиального) подшипника скольжения.
При изменении направления вращения вала 6 скребки 10 поворачивают в противоположном направлении также с помощью потока масла. Направления поворота скребков 10 на фиг. 1 указано пунктирными стрелками. Скребки 10, указанные на фиг. 1, имеют конструкцию, приспособленную для использования их как в реверсивном, так и в нереверсивном опорном (радиальном) подшипнике скольжения. Аналогичную конструкцию скребков 10 можно использовать и в нереверсивном опорном (радиальном) подшипнике скольжения.
Скребки 10 удаляют с поверхности вала 7 перегретое масло, а также удаляют электростатический заряд с поверхности вала 7 и удаляют само масло, которое содержит электростатический заряд. Перегретое масло отрицательно влияет на ресурс работы вставных деталей 1,2,3. Высокие температуры масла приводят к окислению масла, что ухудшает его качество. Значительное различие температур между перегретым маслом и холодным маслом, которое подают в опорный (радиальный) подшипник скольжения, приводит к разрушению вставных деталей 1, 2, 3, через быстрый перепад температур на поверхности вставных деталей 1, 2, 3, которые контактируют с поверхностью вала 7, при вращении вала 6. Электростатический заряд обеспечивает электрохимическую эрозию поверхности вставных деталей 1, 2, 3. Использование скребков 10 дополнительно увеличивает ресурс работы вставных деталей 1, 2, 3 и, как следствие, увеличивает ресурс работы всего опорного (радиального) подшипника скольжения.
Чтобы дополнительно увеличить ресурс работы опорного (радиального) подшипника скольжения при гашении радиальных колебаний вала, который вращается 6, с помощью вставных деталей на гидростатическом подвесе опорного (радиального) подшипника скольжения используют вставные детали 1, 2, 3 толщиной р не меньше одного миллиметра и не больше трех миллиметров.
Такая толщина вставных деталей 1, 2, 3 обеспечивает меньший вес вставных деталей 1, 2, 3 по сравнению со вставными деталями большой толщины. Такая толщина делает их менее инерционными при перемещении на расстояние L. То есть менее инерционные вставные детали 1, 2, 3 будут способны менять свое положение, в опорном (радиальном) подшипнике скольжения, при радиальных колебаниях вала 6, с большей скоростью, чем толстые, более инерционные вставные детали. Благодаря этому гашение радиальных колебаний вала, который вращается, будет более эффективным, и это дополнительно увеличит ресурс работы опорного (радиального) подшипника скольжения.
Использовать вставные детали 1,2,3 толщиной р, которая меньше одного миллиметра, не целесообразно, поскольку при этом необходимо будет значительно уменьшить механические нагрузки на вставные детали 1, 2, 3 или, при неизменной механической нагрузке на вставные детали 1,2,3, значительно уменьшится ресурс работы вставных деталей 1,2,3 и, как следствие, уменьшится ресурс работы всего опорного (радиального) подшипника скольжения.
Использовать вставные детали 1, 2, 3 толщиной р, которая больше трех миллиметров, также не целесообразно из приведенных выше причин. Вставные детали 1, 2, 3, в этом случае, станут более инерционными, и это уменьшит ресурс работы опорного (радиального) подшипника скольжения.
Таким образом, заявляемый способ может быть использован как в нереверсивных, так и в реверсивных опорных (радиальных) подшипниках скольжения. Использование указанного способа гашения радиальных колебаний вала, который вращается, с помощью вставных деталей на гидростатическом подвесе опорного (радиального) подшипника скольжения, позволит увеличить ресурс работы опорного (радиального) подшипника скольжения и увеличить механическую нагрузку на опорный (радиальный) подшипник скольжения, не приводя при этом к усложнению конструкции опорного (радиального) подшипника скольжения по сравнению с конструкциями других опорных (радиальных) подшипников скольжения.
ПРИМЕР КОНКРЕТНОГО ВЫПОЛНЕНИЯ
Способ опробован при работе реверсивного опорного (радиального) подшипника скольжения в промышленных условиях Одесского припортового завода, установленного на турбине ТК синтез-газа 103JT. Опорный (радиальный) подшипник скольжения содержал скребки для удаления масла. Ресурс работы реверсивного опорного (радиального) подшипника скольжения увеличился в 1,5-2 раза при нормальной вибрации вала. К тому же удалось увеличить механическую нагрузку на реверсивный опорный (радиальный) подшипник скольжения на 25-30 процентов. Опорный (радиальный) подшипник скольжения, который содержит вставные детали толщиной 1,5 мм, испытан в лабораторных условиях ООО «ТРИЗ» ЛТД. Ресурс работы этого подшипника дополнительно увеличился на 10-12 процентов.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Декларационный патент Украины на полезную модель №21881, F16C 17/03, опубликованный 10.04.2007 г.
2. Декларационный патент Украины на полезную модель №20524, F16C 32/00, опубликованный 15.01.2007 г.

Claims (3)

1. Способ гашения радиальных колебаний вала, который вращается, с помощью вставных деталей на гидростатическом подвесе опорного подшипника скольжения, который включает подачу масла к вставным деталям опорного подшипника скольжения и в емкости, которые находятся в корпусе опорного подшипника скольжения, под каждой из вставных деталей, и/или в каждой вставной детали, из той стороны вставной детали, которая взаимодействует с корпусом опорного подшипника скольжения, обеспечение вращения вала, блокирование движения каждой из вставных деталей, в любом вращательном направлении, перемещение каждой из вставных деталей к поверхности вала, которая взаимодействует с поверхностью каждой из вставных деталей, во время вращения вала, используя при этом уменьшенное давление масла между каждой из вставных деталей и поверхностью вала, который вращается, относительно давления масла между каждой из вставных деталей и корпусом опорного подшипника скольжения, и при этом при колебаниях вала, который вращается, в процессе его вращения, способ включает обеспечение перетока масла как в прямом, так и в обратном направлении из емкостей или в емкости, которые находятся в корпусе опорного подшипника скольжения, под каждой из вставных деталей, и/или в каждой вставной детали, на поверхность каждой из вставных деталей, или из поверхности каждой из вставных деталей, которая взаимодействует с поверхностью вала, через отверстия в каждой из вставных деталей, отличающийся тем, что максимальное расстояние перемещения каждой из вставных деталей, в направлении к поверхности вала, обеспечивают не больше 0,002 D и не меньше 0,0008 D, где D - диаметр вала, который вращается, в том месте, где вал взаимодействует со вставными деталями опорного подшипника скольжения, при этом динамическую вязкость масла обеспечивают в пределах от 4 мкПа·с до 50 мкПа·с, при скорости вращения вала не менее 500 об/мин, но не более 60000 об/мин, и при этом шероховатость поверхности вала, которая контактирует с поверхностью вставных деталей опорного подшипника скольжения, устанавливают в пределах от Ra0,8 до Ra0,2 и шероховатость поверхности каждой их вставных деталей, которая контактирует с поверхностью вала, который вращается, устанавливают в пределах от Ra0,8 до Ra0,2, а также для каждой из емкостей, которые находятся в корпусе опорного подшипника скольжения, под каждой из вставных деталей, и/или в каждой вставной детали, и которых должно быть не меньше двух, под каждой из вставных деталей, и/или в каждой вставной детали, обеспечивают соотношение S/So в пределах от 60 до 120, где S - площадь поверхности масла в отдельной емкости, которая находится под вставной деталью, или у вставной детали, при максимальном объеме масла, который может вместить отдельная емкость, которая находится под вставной деталью, или у вставной детали, a So - площадь отверстия у вставной детали, или общая площадь отверстий у вставной детали, которые обеспечивают переток масла с поверхности вставной детали, которая контактирует с поверхностью вала, или на поверхность вставной детали, которая контактирует с поверхностью вала.
2. Способ по п. 1, отличающийся тем, что осуществляют удаление масла с поверхности вала, который вращается, с помощью скребков и дальнейшее удаление масла из опорного подшипника скольжения и при этом обеспечивают поворот каждого скребка так, чтобы расстояние между поверхностью вала, который вращается, и скребком было минимальным, используя при этом кинетическую энергию масла на поверхности или близко к поверхности вала, который вращается.
3. Способ по п. 1, отличающийся тем, что при гашении радиальных колебаний вала, который вращается, с помощью вставных деталей на гидростатическом подвесе опорного подшипника скольжения используют вставные детали толщиной не меньше одного миллиметра и не больше трех миллиметров.
RU2012131394/11A 2011-07-25 2012-07-20 Способ гашения радиальных колебаний вала, который вращается, с помощью вставных деталей на гидростатическом подвесе опорного подшипника скольжения RU2561876C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAA201109317U UA68186U (ru) 2011-07-25 2011-07-25 Способ гашения радиальных колебаний вращающегося вала с помощью вставных деталей на гидростатическом подвесе опорного (радиального) подшипника скольжения
UAA201109317 2011-07-25

Publications (2)

Publication Number Publication Date
RU2012131394A RU2012131394A (ru) 2014-01-27
RU2561876C2 true RU2561876C2 (ru) 2015-09-10

Family

ID=49957013

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012131394/11A RU2561876C2 (ru) 2011-07-25 2012-07-20 Способ гашения радиальных колебаний вала, который вращается, с помощью вставных деталей на гидростатическом подвесе опорного подшипника скольжения

Country Status (2)

Country Link
RU (1) RU2561876C2 (ru)
UA (1) UA68186U (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4497587A (en) * 1983-06-20 1985-02-05 General Electric Company Three-pad journal bearing
RU2193123C2 (ru) * 2000-04-24 2002-11-20 Товарыство реализации инжэнэрных задач "ТРИЗ-ЛТД" (товарыство з обмэжэною видповидальнистю) Опорный подшипниковый узел
UA20524U (en) * 2006-09-15 2007-01-15 Vasylii Sihizmu Martsynkovskyi Reversing slider bearing
RU2361126C1 (ru) * 2007-11-22 2009-07-10 Открытое акционерное общество "Силовые машины-ЗТЛ, ЛМЗ, Электросила, Энергомашэкспорт" (ОАО "Силовые машины") Вкладыш опорного сегментного подшипника скольжения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4497587A (en) * 1983-06-20 1985-02-05 General Electric Company Three-pad journal bearing
RU2193123C2 (ru) * 2000-04-24 2002-11-20 Товарыство реализации инжэнэрных задач "ТРИЗ-ЛТД" (товарыство з обмэжэною видповидальнистю) Опорный подшипниковый узел
UA20524U (en) * 2006-09-15 2007-01-15 Vasylii Sihizmu Martsynkovskyi Reversing slider bearing
RU2361126C1 (ru) * 2007-11-22 2009-07-10 Открытое акционерное общество "Силовые машины-ЗТЛ, ЛМЗ, Электросила, Энергомашэкспорт" (ОАО "Силовые машины") Вкладыш опорного сегментного подшипника скольжения

Also Published As

Publication number Publication date
UA68186U (ru) 2012-03-26
RU2012131394A (ru) 2014-01-27

Similar Documents

Publication Publication Date Title
EP1891332B2 (en) Vacuum pump
JP5069103B2 (ja) 流体膜軸受の不安定性制御方法
RU2449178C1 (ru) Энергетическая машина для текучей среды
CN101087969B (zh) 用于密封第一构件与第二构件之间的间隙的装置
KR101303071B1 (ko) 냉각효율이 향상되는 공기 포일 베어링
EP2614266A1 (en) Hybrid journal bearing
JP2008519662A (ja) エアフォイルベアリングを備える歯科用ハンドピース
RU2561880C2 (ru) Способ гашения осевых колебаний ротора, который вращается, с помощью вставных деталей на гидростатическом подвесе упорного подшипника скольжения
RU2561876C2 (ru) Способ гашения радиальных колебаний вала, который вращается, с помощью вставных деталей на гидростатическом подвесе опорного подшипника скольжения
KR100723040B1 (ko) 고속 회전체용 베어링 조립체
JP5021576B2 (ja) パッド型軸受装置及び横軸水車
Polyakov et al. The method of long-life calculation for a friction couple “rotor–hybrid bearing”
Żywica et al. Investigation of unconventional bearing systems for microturbines
Martsynkovskyy et al. Thrust bearing with fluid pivot
Nichols et al. Subsynchronous Vibration Patterns Under Reduced Oil Supply Flow Rates
Zeidan Fluid Film Bearings Fundamentals
KR100643692B1 (ko) 에어 포일 베어링
Olszewski et al. Experimental investigation of prototype water-lubricated compliant foil bearings
Yurko et al. Influence of changing the end floating seal dynamic characteristics on the centrifugal compressor vibration state
Ertas et al. Stabilizing A 46 MW multi-stage utility steam turbine using integral squeeze film bearing support dampers
Liu et al. Effects of bearing stiffness anisotropy on hydrostatic micro gas journal bearing dynamic behavior
Suryawanshi et al. Performance analysis of hydrodynamic journal bearing with the effect of whirl instability
Coleman High capacity aerodynamic air bearing (HCAB) for laser scanning applications
Gruwell et al. Vibration And Eccentricity Measurements Combined With Rotordynamic Analyses On A Six Bearing Turbine Generator.
Vohr Mechanics of bearing systems