RU2560510C1 - Способ работы тепловой электрической станции - Google Patents

Способ работы тепловой электрической станции Download PDF

Info

Publication number
RU2560510C1
RU2560510C1 RU2014109319/02A RU2014109319A RU2560510C1 RU 2560510 C1 RU2560510 C1 RU 2560510C1 RU 2014109319/02 A RU2014109319/02 A RU 2014109319/02A RU 2014109319 A RU2014109319 A RU 2014109319A RU 2560510 C1 RU2560510 C1 RU 2560510C1
Authority
RU
Russia
Prior art keywords
steam
heated
heat
steam turbine
condenser
Prior art date
Application number
RU2014109319/02A
Other languages
English (en)
Inventor
Айрат Маратович Гафуров
Наиль Маратович Гафуров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority to RU2014109319/02A priority Critical patent/RU2560510C1/ru
Application granted granted Critical
Publication of RU2560510C1 publication Critical patent/RU2560510C1/ru

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины. Кроме того, проводят утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины. Упомянутые утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина. В качестве охлаждающей жидкости используют низкокипящее рабочее тело. Сжимают его в конденсатном насосе и нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в конденсаторе паровой турбины, нагревают в маслоохладителе, нагревают и испаряют в нижнем сетевом подогревателе, нагревают в верхнем сетевом подогревателе паровой турбины, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре и конденсируют в теплообменнике-конденсаторе теплового двигателя. Способ обеспечивает повышение коэффициента полезного действия ТЭС за счет полного использования избыточной паровой энергии, вырабатываемой системами ТЭС, а также снижение тепловых выбросов в окружающую среду. 2 з.п. ф-лы, 1 ил., 1 пр.

Description

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины.
Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, последовательно нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а затем направляют потребителям, охлаждение отработавшего пара производят циркуляционной водой, которую используют в качестве источника низкопотенциальной теплоты для испарителя теплонасосной установки, при этом весь поток сетевой воды после нижнего сетевого подогревателя дополнительно подогревают в конденсаторе теплонасосной установки (патент RU №2269656, МПК F01K 17/02, 10.02.2006).
Прототипом является тепловая электрическая станция, содержащая подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом (патент RU №2268372, МПК F01K 17/02, 20.01.2006).
В известном способе сетевую воду, поступающую от потребителей по обратному трубопроводу сетевой воды, с помощью сетевого насоса подают в сетевые подогреватели, где нагревают паром отопительных отборов турбины. Отработавший в турбине пар охлаждают в конденсаторе, для чего подают в него по напорному трубопроводу и отводят по сливному трубопроводу циркуляционную воду. Нагретую в сетевых подогревателях сетевую воду перед подачей потребителям дополнительно нагревают в конденсаторе теплонасосной установки, в качестве низкопотенциального источника теплоты в испарителе теплонасосной установки используют циркуляционную воду из сливного трубопровода. В паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем.
Таким образом, в известном способе работы тепловой электрической станции пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют соответственно утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины при помощи охлаждающей жидкости.
Основным недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины, обусловленную наличием вторичного контура (теплонасосной установки), отсутствия утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, а также отсутствия утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины, для дополнительной выработки электроэнергии.
Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.
Задачей изобретения является разработка способа утилизации теплоты ТЭС, в котором устранены указанные недостатки аналога и прототипа.
Техническим результатом является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.
Технический результат достигается тем, что в способе утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающий отбор пара из паровой турбины, направление отработавшего пара из паровой турбины в паровое пространство конденсатора и его конденсирование на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, после чего направляют полученный конденсат с помощью конденсатного насоса в систему регенерации, а пар отопительных параметров из отборов паровой турбины направляют в паровое пространство нижнего и верхнего сетевых подогревателей и конденсируют на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют соответственно утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины посредством охлаждающей жидкости, согласно настоящему изобретению, дополнительно используют систему маслоснабжения подшипников паровой турбины, состоящей из маслоохладителя, маслобака и маслонасоса, и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, причем упомянутые утилизации осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, состоящего из турбодетандера с электрогенератором, теплообменника-рекуператора, теплообменника-конденсатора и конденсатного насоса, а в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе и нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в конденсаторе паровой турбины, нагревают в маслоохладителе системы маслоснабжения подшипников паровой турбины, нагревают и испаряют в нижнем сетевом подогревателе паровой турбины, нагревают в верхнем сетевом подогревателе паровой турбины, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре и конденсируют в теплообменнике-конденсаторе теплового двигателя.
В качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины, которые осуществляют путем последовательного нагрева соответственно в конденсаторе паровой турбины, маслоохладителе и в сетевых подогревателях, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором, теплообменником-рекуператором, и сетевые подогреватели.
На чертеже цифрами обозначены:
1 - паровая турбина,
2 - конденсатор паровой турбины,
3 - конденсатный насос конденсатора паровой турбины,
4 - основной электрогенератор,
5 - тепловой двигатель с замкнутым контуром циркуляции,
6 - турбодетандер,
7 - электрогенератор,
8 - теплообменник-конденсатор,
9 - конденсатный насос,
10 - верхний сетевой подогреватель,
11 - нижний сетевой подогреватель,
12 - система маслоснабжения подшипников паровой турбины,
13 - сливной трубопровод,
14 - маслобак,
15 - масло насос,
16 - маслоохладитель,
17 - напорный трубопровод,
18 - теплообменник-рекуператор.
Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, которые между собой соединены по нагреваемой среде, а также систему 12 маслоснабжения подшипников паровой турбины 1, содержащую последовательно соединенные по греющей среде сливной трубопровод 13, маслобак 14, маслонасос 15 и маслоохладитель 16, выход которого по нагреваемой среде соединен с напорным трубопроводом 17.
В тепловую электрическую станцию введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.
Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 18, теплообменник-конденсатор 8, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 18, который соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя 16, выход маслоохладителя 16 по нагреваемой среде соединен с входом нижнего сетевого подогревателя 11, а выход верхнего сетевого подогревателя 10 соединен по нагреваемой среде с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 18, выход теплообменника-рекуператора 18 соединен по греющей среде с теплообменником-конденсатором 8, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.
Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, осуществляют следующим образом.
Способ включает в себя отбор пара из паровой турбины 1, направление отработавшего пара из паровой турбины 1 в паровое пространство конденсатора 2 и его конденсирование на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, после чего направляют полученный конденсат с помощью конденсатного насоса 3 в систему регенерации, а пар отопительных параметров из отборов паровой турбины 1 направляют в паровое пространство нижнего 11 и верхнего 10 сетевых подогревателей и конденсируют на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют соответственно утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара 1 и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины 1 посредством охлаждающей жидкости.
Отличием предлагаемого способа является то, что дополнительно используют систему 12 маслоснабжения подшипников паровой турбины 1, состоящей из маслоохладителя 16, маслобака 14 и маслонасоса 15, и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы 12 маслоснабжения подшипников паровой турбины 1, причем упомянутые утилизации осуществляют посредством теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, состоящего из турбодетандера 6 с электрогенератором 7, теплообменника-рекуператора 18, теплообменника-конденсатора 8 и конденсатного насоса 9, а в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе 9 и нагревают в теплообменнике-рекуператоре 18 теплового двигателя 5, нагревают в конденсаторе 2 паровой турбины 1, нагревают в маслоохладителе 16 системы 12 маслоснабжения подшипников паровой турбины 1, нагревают и испаряют в нижнем 11 сетевом подогревателе паровой турбины 1, нагревают в верхнем 10 сетевом подогревателе паровой турбины 1, расширяют в турбодетандере 6 теплового двигателя, снижают его температуру в теплообменнике-рекуператоре 18 и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.
В качестве теплообменника-конденсатора 8 теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
Пример конкретного выполнения
Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.
Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.
Преобразование сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара и низкопотенциальной тепловой энергии системы 12 маслоснабжения подшипников паровой турбины 1, а также низкопотенциальной тепловой энергии пара отопительных отборов из паровой турбины 1 в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.
Таким образом, утилизацию сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) отработавшего в турбине 1 пара, утилизацию низкопотенциальной теплоты системы 12 маслоснабжения подшипников паровой турбины 1 и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины 1 осуществляют путем последовательного нагрева соответственно в конденсаторе 2 паровой турбины, маслоохладителе 16 и в сетевых подогревателях 11, 10, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который направляют на нагрев в начале в теплообменник-рекуператор 18, куда поступает перегретый газообразный пропан C3H8 из турбодетандера 6, далее в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар с температурой в интервале от 300 К до 313,15 К, а затем в маслоохладитель 16, куда поступает нагретое масло системы 12 маслоснабжения подшипников паровой турбины 1. В маслоохладителе 16 циркулирует масло, нагретое в подшипниках паровой турбины 1, с температурой в интервале от 318,15 К до 348,15 К.
В процессе теплообмена перегретого газообразного пропана C3H8 с сжиженным пропаном C3H8 в теплообменнике-рекуператоре 18, а также в процессе конденсации отработавшего в турбине 1 пара в конденсаторе 2 паровой турбины и теплообмена нагретого масла с сжиженным пропаном C3H8 в маслоохладителе 16, происходит нагрев сжиженного пропана C3H8 в пределах критической температуры в интервале от 300 К до 343,15 К при сверхкритическом давлении от 4,2512 МПа до 5,7 МПа, и далее его направляют на нагрев и испарение в нижний сетевой подогреватель 11, куда поступает пар отопительного отбора из паровой турбины 1 при температуре около 380 К.
Пар, поступающий из отопительного отбора паровой турбины 1 в паровое пространство нижнего сетевого подогревателя 11, конденсируется на поверхности подогреваемых трубок, внутри которых протекает сжиженный пропан C3H8.
В процессе конденсации пара отопительного отбора в нижнем сетевом подогревателе 11 паровой турбины 1 происходит нагрев сжиженного пропана C3H8 до критической температуры 369,89 К, при котором происходит его интенсивное испарение. После нижнего сетевого подогревателя 11 газообразный пропан C3H8 направляют на перегрев в верхний сетевой подогреватель 10, куда поступает пар отопительного отбора из паровой турбины 1 при температуре около 410 К.
Пар, поступающий из отопительного отбора паровой турбины 1 в паровое пространство верхнего сетевого подогревателя 10, конденсируется на поверхности подогреваемых трубок, внутри которых протекает газообразный пропан C3H8.
В процессе конденсации пара отопительного отбора в верхнем сетевом подогревателе 10 паровой турбины 1 происходит перегрев газообразного пропана C3H8 до сверхкритической температуры от 369,89 К до 400 К при сверхкритическом давлении от 4,2512 МПа до 5,7 МПа, который направляют в турбодетандер 6.
Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7.
На выходе из турбодетандера 6 газообразный пропан C3H8, имеющий температуру перегретого газа около 288 К, направляют в теплообменник-рекуператор 18 для снижения температуры.
В теплообменнике-рекуператоре 18 в процессе отвода теплоты на нагрев сжиженного пропана C3H8 снижается нагрузка на теплообменник-конденсатор 8, выполненный, например, в виде конденсатора воздушного охлаждения, и затраты мощности на привод вентиляторов воздушного охлаждения.
Далее, при снижении температуры газообразного пропана C3H8 происходит его сжижение в теплообменнике-конденсаторе 8, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.
После теплообменника-конденсатора 8 в сжиженном состоянии пропан C3H8 направляют для сжатия в конденсатный насос 9 теплового двигателя.
Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.
Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты отработавшего пара, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду.

Claims (3)

1. Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающий отбор пара из паровой турбины, направление отработавшего пара из паровой турбины в паровое пространство конденсатора и его конденсирование на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, после чего направляют полученный конденсат с помощью конденсатного насоса в систему регенерации, а пар отопительных параметров из отборов паровой турбины направляют в паровое пространство нижнего и верхнего сетевых подогревателей и конденсируют на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют соответственно утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины посредством охлаждающей жидкости, отличающийся тем, что дополнительно используют систему маслоснабжения подшипников паровой турбины, состоящую из маслоохладителя, маслобака и маслонасоса, и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, причем упомянутые утилизации осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, состоящего из турбодетандера с электрогенератором, теплообменника-рекуператора, теплообменника-конденсатора и конденсатного насоса, а в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе и нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в конденсаторе паровой турбины, нагревают в маслоохладителе системы маслоснабжения подшипников паровой турбины, нагревают и испаряют в нижнем сетевом подогревателе паровой турбины, нагревают в верхнем сетевом подогревателе паровой турбины, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре и конденсируют в теплообменнике-конденсаторе теплового двигателя.
2. Способ по п. 1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
3. Способ по п. 1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
RU2014109319/02A 2014-03-11 2014-03-11 Способ работы тепловой электрической станции RU2560510C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014109319/02A RU2560510C1 (ru) 2014-03-11 2014-03-11 Способ работы тепловой электрической станции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014109319/02A RU2560510C1 (ru) 2014-03-11 2014-03-11 Способ работы тепловой электрической станции

Publications (1)

Publication Number Publication Date
RU2560510C1 true RU2560510C1 (ru) 2015-08-20

Family

ID=53880682

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014109319/02A RU2560510C1 (ru) 2014-03-11 2014-03-11 Способ работы тепловой электрической станции

Country Status (1)

Country Link
RU (1) RU2560510C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1544992A1 (ru) * 1987-02-16 1990-02-23 Производственное Объединение По Наладке, Совершенствованию Технологии И Эксплуатации Электростанций И Сетей "Союзтехэнерго" Способ работы тепловой электростанции
RU2268372C2 (ru) * 2004-03-05 2006-01-20 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Тепловая электрическая станция
RU2278981C1 (ru) * 2005-02-15 2006-06-27 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ работы тепловой электрической станции
EP1965043A1 (en) * 2006-01-20 2008-09-03 Kabushiki Kaisha Toshiba Steam turbine cycle
US20090121495A1 (en) * 2007-06-06 2009-05-14 Mills David R Combined cycle power plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1544992A1 (ru) * 1987-02-16 1990-02-23 Производственное Объединение По Наладке, Совершенствованию Технологии И Эксплуатации Электростанций И Сетей "Союзтехэнерго" Способ работы тепловой электростанции
RU2268372C2 (ru) * 2004-03-05 2006-01-20 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Тепловая электрическая станция
RU2278981C1 (ru) * 2005-02-15 2006-06-27 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ работы тепловой электрической станции
EP1965043A1 (en) * 2006-01-20 2008-09-03 Kabushiki Kaisha Toshiba Steam turbine cycle
US20090121495A1 (en) * 2007-06-06 2009-05-14 Mills David R Combined cycle power plant

Similar Documents

Publication Publication Date Title
RU2570131C2 (ru) Способ работы тепловой электрической станции
RU2560503C1 (ru) Способ работы тепловой электрической станции
RU2560505C1 (ru) Способ работы тепловой электрической станции
RU2560502C1 (ru) Способ работы тепловой электрической станции
RU2560615C1 (ru) Способ работы тепловой электрической станции
RU2560510C1 (ru) Способ работы тепловой электрической станции
RU2559655C9 (ru) Способ работы тепловой электрической станции
RU2552481C1 (ru) Способ работы тепловой электрической станции
RU2564470C2 (ru) Способ работы тепловой электрической станции
RU2560499C1 (ru) Способ работы тепловой электрической станции
RU2560509C1 (ru) Способ работы тепловой электрической станции
RU2571275C2 (ru) Способ работы тепловой электрической станции
RU2560504C1 (ru) Способ работы тепловой электрической станции
RU2560497C1 (ru) Способ работы тепловой электрической станции
RU2560507C1 (ru) Способ работы тепловой электрической станции
RU2568348C2 (ru) Способ работы тепловой электрической станции
RU2564466C2 (ru) Способ работы тепловой электрической станции
RU2560498C1 (ru) Способ работы тепловой электрической станции
RU2575252C2 (ru) Способ работы тепловой электрической станции
RU2560500C1 (ru) Способ работы тепловой электрической станции
RU2575216C2 (ru) Способ работы тепловой электрической станции
RU2570943C2 (ru) Способ работы тепловой электрической станции
RU2560512C1 (ru) Способ работы тепловой электрической станции
RU2571272C2 (ru) Способ работы тепловой электрической станции
RU2562506C2 (ru) Способ работы тепловой электрической станции

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160312