RU2560094C2 - Способ определения скорости распространения и направления прихода ионосферного возмущения - Google Patents

Способ определения скорости распространения и направления прихода ионосферного возмущения Download PDF

Info

Publication number
RU2560094C2
RU2560094C2 RU2013153470/07A RU2013153470A RU2560094C2 RU 2560094 C2 RU2560094 C2 RU 2560094C2 RU 2013153470/07 A RU2013153470/07 A RU 2013153470/07A RU 2013153470 A RU2013153470 A RU 2013153470A RU 2560094 C2 RU2560094 C2 RU 2560094C2
Authority
RU
Russia
Prior art keywords
ionospheric
arrival
glonass
ionosphere
electronic content
Prior art date
Application number
RU2013153470/07A
Other languages
English (en)
Other versions
RU2013153470A (ru
Inventor
Виктор Иванович Дикарев
Виктор Константинович Завируха
Сергей Викторович Тасенко
Павел Викторович Шатов
Виктор Владимирович Алпатов
Илья Александрович Скороходов
Original Assignee
Федеральное государственное бюджетное учреждение "Институт прикладной геофизики имени академика Е.К.Федорова" (ФГБУ "ИПГ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Институт прикладной геофизики имени академика Е.К.Федорова" (ФГБУ "ИПГ") filed Critical Федеральное государственное бюджетное учреждение "Институт прикладной геофизики имени академика Е.К.Федорова" (ФГБУ "ИПГ")
Priority to RU2013153470/07A priority Critical patent/RU2560094C2/ru
Publication of RU2013153470A publication Critical patent/RU2013153470A/ru
Application granted granted Critical
Publication of RU2560094C2 publication Critical patent/RU2560094C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Изобретение относится к области радиофизики и может быть использовано для контроля за солнечной, геомагнитной и сейсмической активностью, за предвестниками землетрясения, извержения вулканов, цунами, процессами грозовой активности, динамикой мощных штормовых циклонов, а также для обнаружения ядерных и иных крупных взрывов и пожаров, больших аварийных выбросов на атомных электростанциях, запусков космических аппаратов и ракет, излучений мощных радиопередающих комплексов радиолокационного и связного назначения, средств специального воздействия на ионосферу с целью управления ее параметрами. Технический результат состоит в повышении чувствительности обнаружения и точности определения скорости распространения и направления прихода ионосферного возмущения решеткой приемных станций спутниковых радионавигационных систем ГЛОНАСС/GPS путем восстановления пространственного распределения полного электронного содержания ионосферы по данным радиопросвечивания атмосферы сигналами ГЛОНАСС/GPS. Для этого способ реализуется спутниковыми радионавигационными системами ГЛОНАСС/GPS и протяженной решеткой двухчастотных приемников, обеспечивающих прием и обработку сигналов. 3 ил.

Description

Предлагаемый способ относится к области радиофизики, и может быть использован для контроля за солнечной, геомагнитной и сейсмической активностью, за предвестниками землетрясения, извержения вулканов, цунами, процессами грозовой активности, динамикой мощных штормовых циклонов, а также для обнаружения ядерных и иных крупных взрывов и пожаров, больших аварийных выбросов на атомных электростанциях, запусков космических аппаратов и ракет, излучений мощных радиопередающих комплексов радиолокационного и связного назначения, средств специального воздействия на ионосферу с целью управления ее параметрами и т.п.
Известны способы определения направления прихода и скорости перемещения ионосферных возмущений естественного и техногенного характера (авт. свид. СССР №№1.451.688, 1.709.263; патенты РФ №№2.085.965, 2.189.051, 2.189.052, 2.193.495, 2.267.139, 2.379.709; патенты США №№4.761.650, 6.061.013; патент EP №0.622.639; патент WO №0.045.192; Afraimovich E.L., Kosogorov E.A., Perevalova N.P. The use ofGPS arrays in defecting shoch-acoustic waves generated during rocket launchings. J. Atmos. Solar - Terr. Phys., V63, 1941-1957, 2001 и другие).
Из известных способов наиболее близким к предлагаемому способу является «Способ определения скорости распространения и направления прихода ионосферного возмущения» (патент РФ №2.379.709, GO1 S 13/95, 2008), который и выбран в качестве прототипа.
Указанный способ обеспечивает повышение чувствительности обнаружения и точности определения скорости распространения и направления прихода ионосферного возмущения, регистрируемого протяженной решеткой приемных станций спутниковых радионавигационных систем ГЛОНАСС/GPS. Временные ряды полного электронного содержания, полученные по измерениям двухчастотных приемников спутниковых радионавигационных систем ГЛОНАСС/GPS, образующих протяженную приемную решетку, фильтруют с целью выделения вариаций, соответствующих отклику ионосферы на воздействие источника. Проверяются гипотезы о значениях направления прихода и скорости распространения плоского фронта ионосферного возмущения путем формирования диаграммы направленности приемной решетки и ее сканирования в заданном секторе обзора пространства ''направление прихода - скорость распространения ионосферного возмущения '' за счет синтеза выходного сигнала приемной решетки при синфазном суммировании рядов вариаций полного электронного содержания отдельных элементов решетки с временными сдвигами, рассчитанными исходя из проверяемых значений ''направление прихода - скорость распространения ионосферного возмущения '' и расстояний, пройденных фронтом ионосферного возмущения между элементами приемной решетки в проверяемом направлении внутри сферического слоя ионосферы Земли. Решение о правильности проверяемой гипотезы и обнаружении ионосферного возмущения принимается при превышении суммарным сигналом заданного порогового уровня. Соответствующие значения направления прихода и фазовой скорости распространения ионосферного возмущения считаются оценочными значениями.
Однако указанный способ не учитывает групповые поправки, связанные с многолучевостью распространения сигнала и вертикальными ионосферными и тропосферными задержками, а также использует для определения полного электронного содержания ионосферы только двухчастотные измерения псевдодальности между навигационным спутником и наземным приемником и не использует фазовые измерения.
Все это не позволяет восстановить пространственное распределение полного электронного содержания ионосферы по данным радиопросвечивания атмосферы сигналами ГЛОНАСС/GPS и приводит к снижению точности определения скорости распространения и направления прихода ионосферного возмущения.
Технической задачей изобретения является повышение чувствительности обнаружения и точность определения скорости распространения и направления прихода ионосферного возмущения, регистрируемого протяженной решеткой приемных станций спутниковых радионавигационных систем ГЛОНАСС/GPS путем восстановления пространственного распределения полного электронного содержания ионосферы по данным радиопросвечивания атмосферы сигналами ГЛОНАСС/GPS.
Поставленная задача решается тем, что способ определения скорости распространения и направления прихода ионосферного возмущения, основанный, в соответствии с ближайшим аналогом, на анализе данных о полном электронном содержании в ионосфере Земли, которые получают в результате обработки сигналов, принятых двухчастотными приемниками спутниковой радионавигационной системы ГЛОНАСС/GPS, с последующим формированием временных рядов полного электронного содержания и их фильтрацией в диапазоне периодов колебаний, соответствующих отклику ионосферы на воздействие источника ионосферного возмущения, при этом используют протяженную приемную решетку и последовательно проверяют гипотезу о значениях направления прихода и скорости распространения плоского фронта ионосферного возмущения путем формирования диаграммы направленности приемной решетки и ее сканирования в заданном секторе обзора пространства ''направление прихода - скорость распространения ионосферного возмущения '' за счет синтеза выходного сигнала приемной решетки при синфазном суммировании рядов вариаций полного электронного содержания отдельных элементов решетки с временными сдвигами, рассчитанными исходя из проверяемых значений направления прихода и скорости распространения ионосферного возмущения и расстояний, пройденных фронтом ионосферного возмущения между элементами приемной решетки в проверяемом направлении внутри сферического слоя ионосферы Земли, решение о правильности проверяемой гипотезы и обнаружении ионосферного возмущения принимается при превышении суммарным сигналом заданного порогового уровня, соответствующие значения направления прихода и фазовой скорости распространения ионосферного возмущения считаются оценочными значениями, отличается от ближайшего аналога тем, что для определения полного электронного содержания ионосферы осуществляют кодовые измерения псевдодальности и фазовые измерения совместно, учитывают групповые поправки, связанные с многолучевостью распространения сигнала и с вертикальными ионосферными и тропосферными задержками и используют дифференциальный режим спутниковых радионавигационных систем ГЛОНАСС/GPS.
Геометрия определения координат удаленного точечного источника ионосферного возмущения представлена на фиг.1. Схема радиопросвечивания атмосферы показана на фиг.2. Вариации полного электронного содержания Δ Y i ( t )
Figure 00000001
для отдельных элементов протяженной приемной решетки, а также суммарный сигнал Δ Y Σ ( α , V )
Figure 00000002
, полученной на выходе решетки, показана на фиг.3.
Для реализации предлагаемого способа используется спутниковая радионавигационная система ГЛОНАСС/GPS, которая состоит из трех частей: космической, наземной и пользовательского оборудования.
Космическая часть - это 24 спутника, вращающихся по 6 орбитам. Наклон орбит к земному экватору - 55 град., угол между плоскостями орбит - 60 град. Высота орбит 20180 км, период обращения 12 ч. Мощность спутникового передатчика 50 Вт. Спутники GPS способны, передвигаясь, заполнять бреши в системе если один из них вышел из строя. Важным элементом спутника являются атомные часы, рубидиевые и цезиевые, по четыре на каждом. Спутники идентифицируются номером PRN (Pseudo Random Number), который отображается на приемнике GPS.
За спутниками тщательно следят с помощью наземного сегмента управления - станции управления и слежения. В задачи последнего входит техническое обслуживание, орбитальной системы, определение системного времени, предвычисление элементов орбит спутника (эфемерид), моделирование поведения часов спутника, передача навигационных данных спутника и их загрузка в память спутников.
В качестве пользовательского оборудования используются двухчастотные приемники спутниковой радионавигационной системы ГЛОНАСС/GPS.
Все частоты в системе кратны основной частоте часов спутника, 10.23 МГц. Спутник передает на двух частотах f 1 = 1575.42
Figure 00000003
и f 2 = 1227.6
Figure 00000004
МГц специальный навигационный сигнал в виде бинарного фазоманипулированного сигнала. В сигнале зашифровываются два вида кода. Один из них код С/А - доступен широкому кругу потребителей. Он позволяет получать лишь приблизительную оценку местоположения, поэтому называется “грубым” кодом. Передача кода С/А осуществляется на частоте f 1
Figure 00000005
и использованием фазовой манипуляции псевдочастотной последовательностью длиной 1023 символа. Защита от ошибок обеспечивается с помощью кода Гоулда. Период повторения С/А - кода - 1 мс, тактовая частота 1.023 МГц.
Другой код - Р обеспечивает более точное вычисление координат, но пользоваться им способны не все, доступ к нему ограничивается провайдером услуг GPS. Этот код передается на частоте f 2
Figure 00000006
с применением сверхдлинной псевдослучайной последовательности с периодом повторения 267 дней. Тактовая частота - 10.23 МГц.
Радиопросвечивание атмосферы с помощью сигналов спутниковых радионавигационных систем и семи наземных станций является легкодоступным и не требующим больших затрат способом мониторинга ее параметров в реальном времени.
Просвечивание атмосферы двухчастотными радиосигналами ГЛОНАСС/GPS основано на существовании явления дисперсии радиоволн микроволнового диапазона в атмосфере Земли.
Полное микрофизическое содержание вдоль луча визирования от фазового центра антенны приемника на антенну передатчика пропорционально разности набегов фазы на двух частотах. Учитывая, что фазовая скорость равна по знаку и противоположна по величине групповой скорости, микрофизическое содержание пропорционально разности псевдодальности, определяемой из навигационных сигналов на двух частотах. Однако для фазовых измерений микрофизическое содержание может быть определено лишь с точностью до постоянной (в пределах одного сеанса) константы. Стоит отметить также, что измерения сдвига фазы на несколько порядков точнее кодовых измерений псевдодальности, поэтому для определения абсолютного микрофизического содержания целесообразно использовать кодовые и фазовые измерения совместно.
Многолучевость появляется в результате вторичных отражений сигнала спутника от крупных препятствий, расположенных в непосредственной близости от приемника. При этом возникает явление интерференции и измерить расстояние достаточно трудно, а наилучшим способом борьбы с нею считается рациональное размещение приемника относительно препятствий. В результате воздействия этого фактора ошибки определения псевдодальности могут увеличиться на 2 м.
Ионосфера - это ионизированный атмосферный слой в диапазоне высот 50-500 км, который содержит свободные электроны. Наличие этих электронов вызывает задержку распространения сигнала спутника, которая прямо пропорциональна концентрации электронов и обратно пропорциональна квадрату частоты радиосигнала.
Для вычисления ионосферной поправки используется измерение псевдодальности на Р - коде на двух частотах:
Δ D и о н = D p 2 D p 1 1 γ
Figure 00000007
, (1)
где γ=(ƒ12)2=(1575.42/1227.6)2,
f 1
Figure 00000008
и f 2
Figure 00000009
- частоты сигналов GPS.
Dp1, Dp2 - измерение псевдодальности на Р - коде на частотах f 1
Figure 00000010
и f 2
Figure 00000009
соответственно.
Ионосферная поправка псевдодальности устраняет систематическую ошибку порядка 5 метров в определении вектора положения покоящегося наблюдателя.
Тропосфера - самый нижний слой атмосферы (до высоты 8-13 км). Она также обуславливает задержку распространения радиосигнала от спутника. Задержка сигнала в тропосфере также вызвана эффектами рефракции. В отличие от ионосферной задержки тропосферная задержка не зависит от частоты сигнала, она зависит от метеопараметров (давления, температуры, влажности), а также от высоты спутника над горизонтом. Для вычисления тропосферной поправки измерения псевдодальности используют измерения температуры, давления воздуха и парциального давления водяного пара. Эти измерения доступны в сети Internet для каждой базовой GPS станции.
Соотношение для вычисления тропосферной поправки псевдодальности наземного наблюдателя имеет вид:
Δ D т р о п = N o 10 2 ln ( 93 / N o ) cos θ
Figure 00000011
, N o = 77.6 T [ P + 4810 B T ]
Figure 00000012
[м]; (2)
где T - температура в Ко;
Р - давление воздуха [мб];
В - парциальное давлении водяного пара [мб];
Θ- зенитный угол направления на НКА.
Тропосферные задержки вызывают ошибки измерения псевдодальности в 1 м.
Наиболее эффективным средством исключения ошибок является дифференциальный способ наблюдений. Его суть состоит в выполнении измерений двумя приемниками: один устанавливается в определяемой точке, а другой в точке с известными координатами - базовой (контрольной) станции. В дифференциальном режиме измеряют не абсолютные координаты первого приемника, а его положение относительно базового (вектор базы). Использование дифференциального режима позволяет довести точность кодовых измерений до десятков сантиметров, а фазовых - до единиц миллиметров.
Определение значения полного электронного содержания (ПЭС) ионосферы осуществляется по двухчастотным измерениям дальности между навигационным спутником и наземным приемником.
Y = 1 40.308 f 1 f 2 f 2 1 f 2 2 ( L 1 λ 1 L 2 λ 2 ) cos θ
Figure 00000013
, (3)
где f 1 = 1575.42
Figure 00000014
МГц, f 2 = 1227.6
Figure 00000015
МГц, λ 1 λ 2
Figure 00000016
- частоты и длины волн навигационных сигналов:
L 1 λ 1 , L 2 λ 2
Figure 00000017
- фазовый путь трансионосферных радиосигналов (L1,L2 - число полных оборотов фазы);
Θ - зенитный угол луча “приемник - навигационный спутник”.
Совокупность лучей “приемник - навигационный спутник” в заданном регионе образует приемную решетку, каждый i-й элемент которой в момент времени t характеризуется изменением значения ПЭС Yi(t) и положением соответствующей ионосферной точки Xi(t) Y i(t) и Z i(t). Временные ряды ПЭС отражают как регулярные изменения ПЭС в точке регистрации, так и вариации ПЭС, вызванные ионосферными возмущениями различного характера.
Для выделения характерных ионосферных возмущений ряды ПЭС подвергаются процедуре специальной фильтрации в диапазоне периодов, соответствующих масштабу возмущения.
Обнаружение и определение пространственно - временных параметров ионосферного возмущения осуществляется путем последовательной проверки гипотез о значениях направления прихода и скорости распространения ионосферного возмущения.
Для каждой пары проверяемых значений (α, v) формируется диаграмма направленности приемной решетки и соответствующим образом ориентируется в фазовом пространстве [α, v] за счет синфазного суммирования отдельных рядов Δ Yi(t)
Figure 00000018
приемной решетки к некоторому нейтральному ряду Δ Y 0 (t)
Figure 00000019
, выбранному в качестве опорного, с временными сдвигами τ i
Figure 00000020
и формировании выходного сигнала приемной решетки:
Δ Y Σ ( α , V ) = Δ Y 0 ( t ) + i = 1 P Δ Y i ( t τ )
Figure 00000021
, (4)
где р - количество элементов приемной решетки.
Временной сдвиг τ i
Figure 00000022
определяется как разность времени tj j-ого отсчета i-го суммарного ряда ПЭС и времени to регистрации ионосферного возмущения центральным элементом приемной решетки τ i = t j t o
Figure 00000023
и выбирается исходя из минимизации выражения, описывающего динамику распространения возмущения:
τ i Δ p i V = min
Figure 00000024
, (5)
где Δ p i
Figure 00000025
- расстояние, пройденное фронтом волны между i-м и центральным элементом приемной решетки.
Для протяженных приемных решеток расстояние Δ p i
Figure 00000025
рассчитывается с учетом кривизны Земли. С этой целью в заданном направлении α прихода волны ионосферного возмущения на высоте hmax задается удаленный точечный источник (обозначен точкой Е на фиг.1), который будет являться полюсом ортодромической системы координат, экватор которой (сильная жирная линия на фиг.1) проходит через центральный элемент приемной решетки (точка А на фиг. 1). Тогда фронт волны, распространяющийся от удаленного точечного источника и приходящий через i-й элемент приемной решетки (точка В на фиг. 1), будет представлять собой широтный круг (жирная прерывистая линия), параллельный экватору полученной ортодромической системы. Такая модель соответствует плоской волне ионосферного возмущения, распространяющейся на сфере Земли.
Геоцентрические координаты (Xe,Ye,Ze) удаленного источника ионосферного возмущения определяюся с использованием правил сферической тригонометрии. При этом рассматриваются сферический треугольник, вершиной А которого является центральный элемент приемной решетки с известными координатами (Xо,Yо,Zо). Вершиной С этого треугольника является северный полюс геоцентрической системы координат (О,О, R+hmax), где R - радиус Земли. Необходимо определить координаты третьей вершины Е, которая и будет являться удаленным источником. Чтобы удаленный источник Е являлся полюсом ортодромической системы координат, угловой размер стороны АЕ сферического треугольника задается равным π / 2
Figure 00000026
. В полученном сферическом треугольнике известны две стороны АС и АЕ, а также угол между ними<LCAE=α, что является типовой задачей решения сферического треугольника. С использованием теоремы косинусов сторон сферического треугольника определяется третья сторона и координаты (Xe,Ye,Ze) удаленного источника Е.
Расстояние, пройденное фронтом волны между i-м и центральным элементом приемной решетки, определяется как разность расстояний АЕ и ВЕ (фиг.1) и записывается в виде:
Δ ρ = ( R + h max ) { arccos [ X i X e + Y i Y e + Z i Z e ( R + h max ) 2 ] arccos [ X 0 X e + Y 0 Y e + Z 0 Z e ( R + h max ) 2 ] }
Figure 00000027
, (6)
где (Xi,Yi,Zi) координаты i-ого элемента приемной решетки в момент времени tj.
Решение о правильности проверяемой гипотезы принимается при превышении суммарным сигналом заданного порогового уровня. При этом считается, что обнаружено ионосферное возмущение, а соответствующие значения α и V, для которых суммарный сигнал приемной решетки превысил пороговое значение, считаются оценками направления прихода и фазовой скорости распространения обнаруженного ионосферного возмущения.
Таким образом, предлагаемый способ по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение чувствительности обнаружения и более точное определение скорости распространения и направления прихода ионосферного возмущения, регистрируемого протяженной решеткой приемных станций спутниковых радионавигационных систем ГЛОНАСС/GPS. Это достигается за счет совместных кодовых измерений псевдодальности и фазовых измерений, учета групповых поправок, связанных с многолучевостью распространения сигнала и с вертикальными ионосферными и тропосферными задержками, и использования дифференциального режима, что, в свою очередь, приводит к восстановлению пространственного распределения полного электронного содержания ионосферы по данным радиопросвечивания атмосферы сигналами ГЛОНАСС/GPS.

Claims (1)

  1. Способ определения скорости распространения и направления прихода ионосферного возмущения, основанный на анализе данных о полном электронном содержании в ионосфере Земли, которые получают в результате обработки сигналов, принятых двухчастотными приемниками спутниковой радионавигационной системы ГЛОНАСС/GPS, с последующим формированием временных рядов полного электронного содержания и их фильтрацией в диапазоне периодов колебаний, соответствующих отклику ионосферы на воздействие источника ионосферного возмущения, при этом используют протяженную приемную антенну и последовательно проверяют гипотезу о значениях направления прихода и скорости распространения плоского фронта ионосферного возмущения путем формирования диаграммы направленности приемной решетки и ее сканирования в заданном секторе обзора пространства "направление прихода - скорость распространения ионосферного возмущения" за счет синтеза выходного сигнала приемной решетки при синфазном суммировании рядов вариаций полного электронного содержания отдельных элементов решетки с временными сдвигами, рассчитанными исходя из проверяемых значений направления ионосферного возмущения и расстояний, пройденных фронтом ионосферного возмущения между элементами приемной решетки в проверяемом направлении внутри сферического слоя ионосферы Земли, решение о правильности проверяемой гипотезы и обнаружении ионосферного возмущения принимается при превышении суммарным сигналом заданного порогового уровня, соответствующие значения направления прихода и фазовой скорости распространения ионосферного возмущения считаются оценочными значениями, отличающийся тем, что для определения полного электронного содержания ионосферы осуществляют совместно кодовые измерения путем кодирования двухчастотных сигналов, передаваемых спутниковой радионавигационной системой ГЛОНАСС/GPS и принимаемых их двухчастотными приемниками спутниковой радионавигационной системы ГЛОНАСС/GPS, и фазовые измерения, учитывают групповые поправки, связанные с многолучевостью распространения сигнала и с вертикальными ионосферными и тропосферными задержками и используют дифференциальный режим спутниковых радионавигационных систем ГЛОНАСС/GPS посредством двух приемников, один из которых имеет известные координаты.
RU2013153470/07A 2013-12-03 2013-12-03 Способ определения скорости распространения и направления прихода ионосферного возмущения RU2560094C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013153470/07A RU2560094C2 (ru) 2013-12-03 2013-12-03 Способ определения скорости распространения и направления прихода ионосферного возмущения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013153470/07A RU2560094C2 (ru) 2013-12-03 2013-12-03 Способ определения скорости распространения и направления прихода ионосферного возмущения

Publications (2)

Publication Number Publication Date
RU2013153470A RU2013153470A (ru) 2015-06-10
RU2560094C2 true RU2560094C2 (ru) 2015-08-20

Family

ID=53285183

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013153470/07A RU2560094C2 (ru) 2013-12-03 2013-12-03 Способ определения скорости распространения и направления прихода ионосферного возмущения

Country Status (1)

Country Link
RU (1) RU2560094C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2624634C1 (ru) * 2016-03-29 2017-07-05 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ определения скорости распространения и направления прихода ионосферного возмущения
RU2624911C1 (ru) * 2016-06-28 2017-07-10 Федеральное государственное бюджетное учреждение науки Институт солнечно-земной физики Сибирского отделения Российской академии наук (ИСЗФ СО РАН) Способ обнаружения возмущений ионосферы, вызванных запусками космических аппаратов
RU2655164C2 (ru) * 2016-07-04 2018-05-24 Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф.Можайского" Министерства обороны Российской Федерации Система для определения скорости распространения и направления прихода ионосферного возмущения
RU2676235C1 (ru) * 2017-11-03 2018-12-26 Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") Способ краткосрочного прогноза землетрясений по данным вертикального зондирования ионосферы с ионозонда

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534212A (zh) * 2021-07-26 2021-10-22 中国电子科技集团公司第五十四研究所 基于gnss的公里级区域大气相位不一致性高精度测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2003136C1 (ru) * 1991-07-11 1993-11-15 Институт земного магнетизма, ионосферы и распространени радиоволн РАН Способ прогнозировани параметров солнечного ветра на уровне орбиты Земли
RU2189051C2 (ru) * 2000-07-11 2002-09-10 Иркутский военный авиационный инженерный институт Способ обнаружения ионосферного возмущения и определения местоположения его источника
RU2189052C2 (ru) * 2000-07-11 2002-09-10 Иркутский военный авиационный инженерный институт Способ обнаружения, измерения фазовой скорости и направления прихода ионосферного возмущения
RU2379709C1 (ru) * 2008-06-25 2010-01-20 Государственное образовательное учреждение высшего профессионального образования "Иркутское высшее военное авиационное инженерное училище (военный институт)" Министерства обороны Российской Федерации Способ определения скорости распространения и направления прихода ионосферного возмущения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2003136C1 (ru) * 1991-07-11 1993-11-15 Институт земного магнетизма, ионосферы и распространени радиоволн РАН Способ прогнозировани параметров солнечного ветра на уровне орбиты Земли
RU2189051C2 (ru) * 2000-07-11 2002-09-10 Иркутский военный авиационный инженерный институт Способ обнаружения ионосферного возмущения и определения местоположения его источника
RU2189052C2 (ru) * 2000-07-11 2002-09-10 Иркутский военный авиационный инженерный институт Способ обнаружения, измерения фазовой скорости и направления прихода ионосферного возмущения
RU2379709C1 (ru) * 2008-06-25 2010-01-20 Государственное образовательное учреждение высшего профессионального образования "Иркутское высшее военное авиационное инженерное училище (военный институт)" Министерства обороны Российской Федерации Способ определения скорости распространения и направления прихода ионосферного возмущения

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2624634C1 (ru) * 2016-03-29 2017-07-05 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ определения скорости распространения и направления прихода ионосферного возмущения
RU2624911C1 (ru) * 2016-06-28 2017-07-10 Федеральное государственное бюджетное учреждение науки Институт солнечно-земной физики Сибирского отделения Российской академии наук (ИСЗФ СО РАН) Способ обнаружения возмущений ионосферы, вызванных запусками космических аппаратов
RU2655164C2 (ru) * 2016-07-04 2018-05-24 Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф.Можайского" Министерства обороны Российской Федерации Система для определения скорости распространения и направления прихода ионосферного возмущения
RU2676235C1 (ru) * 2017-11-03 2018-12-26 Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") Способ краткосрочного прогноза землетрясений по данным вертикального зондирования ионосферы с ионозонда

Also Published As

Publication number Publication date
RU2013153470A (ru) 2015-06-10

Similar Documents

Publication Publication Date Title
Komjathy Global ionospheric total electron content mapping using the Global Positioning System
Jin et al. GNSS remote sensing
Jin et al. Observing and understanding the Earth system variations from space geodesy
RU2615172C2 (ru) Адаптивный способ для оценки электронного содержания ионосферы
RU2560094C2 (ru) Способ определения скорости распространения и направления прихода ионосферного возмущения
RU2379709C1 (ru) Способ определения скорости распространения и направления прихода ионосферного возмущения
Cardellach et al. Sensitivity of PAZ LEO polarimetric GNSS radio-occultation experiment to precipitation events
Gülal et al. Research on the stability analysis of GNSS reference stations network by time series analysis
RU2560525C1 (ru) Способ определения положения эпицентральной зоны источника и скорости распространения перемещающихся ионосферных возмущений
Ma et al. Estimation of GPS instrumental biases from small scale network
CN114488228B (zh) 一种适用于动态载体平台的gnss多路径误差削弱方法
Mitch et al. Local ionosphere model estimation from dual-frequency global navigation satellite system observables
CN110286354A (zh) 多目标检测和区分的方法、装置和计算机可读存储介质
Su et al. Distributed sensing of ionospheric irregularities with a GNSS receiver array
Afraimovich et al. The use of GPS arrays in detecting shock-acoustic waves generated during rocket launchings
Reuter et al. Ionosphere gradient detection for Cat III GBAS
Muradyan et al. GPS/INS navigation precision and its effect on airborne radio occultation retrieval accuracy
Al-Franek Ionospheric imaging for Canadian polar regions
Kunitsyn et al. Earthquake prediction research using radio tomography of the ionosphere
Braun et al. Development of a water vapor tomography system using low cost L1 GPS receivers
RU2656617C1 (ru) Способ зондирования плазменного слоя геомагнитного хвоста и ионосферы земли
Norman et al. Simulating the impact of refractive transverse gradients resulting from a severe troposphere weather event on GPS signal propagation
RU2624634C1 (ru) Способ определения скорости распространения и направления прихода ионосферного возмущения
Kumar et al. The global positioning system: Popular accuracy measures
Pi et al. Impact of ionospheric scintillation on spaceborne SAR observations studied using GNSS

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151204

NF4A Reinstatement of patent

Effective date: 20180601