RU2189051C2 - Способ обнаружения ионосферного возмущения и определения местоположения его источника - Google Patents

Способ обнаружения ионосферного возмущения и определения местоположения его источника Download PDF

Info

Publication number
RU2189051C2
RU2189051C2 RU2000118491/09A RU2000118491A RU2189051C2 RU 2189051 C2 RU2189051 C2 RU 2189051C2 RU 2000118491/09 A RU2000118491/09 A RU 2000118491/09A RU 2000118491 A RU2000118491 A RU 2000118491A RU 2189051 C2 RU2189051 C2 RU 2189051C2
Authority
RU
Russia
Prior art keywords
source
disturbance
receivers
total
signals
Prior art date
Application number
RU2000118491/09A
Other languages
English (en)
Other versions
RU2000118491A (ru
Inventor
Э.Л. Афраймович
В.В. Чернухов
В.В. Кирюшкин
Original Assignee
Иркутский военный авиационный инженерный институт
Институт солнечно-земной физики СО РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Иркутский военный авиационный инженерный институт, Институт солнечно-земной физики СО РАН filed Critical Иркутский военный авиационный инженерный институт
Priority to RU2000118491/09A priority Critical patent/RU2189051C2/ru
Publication of RU2000118491A publication Critical patent/RU2000118491A/ru
Application granted granted Critical
Publication of RU2189051C2 publication Critical patent/RU2189051C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Использование: в системах дистанционного контроля ядерных и иных взрывов, предупреждения о запусках ракет, наблюдения за сейсмической активностью. Сущность изобретения: временные ряды полного электронного содержания, полученные с помощью пространственной решетки двухчастотных приемников сигналов спутниковых радионавигационных систем ГЛОНАСС/GPS с размером апертуры, соответствующей зоне Френеля источника возмущений, фильтруют с целью выделения вариаций полного электронного содержания, соответствующих отклику ионосферы на воздействие источника, полученные после фильтрации сигналы сдвигают по времени на величину Δτi и когерентно суммируют, добиваясь максимальной амплитуды суммарного сигнала; решение об обнаружении возмущения принимают при превышении суммарным сигналом порогового уровня, а местоположение источника возмущения находят из решения системы уравнений, описывающих в избранной системе координат семейство сферических волновых фронтов, отстоящих друг от друга на расстояние, определяемое относительными временными сдвигами Δτi сигналов отдельных приемников. Достигаемым техническим результатом является повышение чувствительности обнаружения и точности определения местоположения источника возмущения. 2 ил.

Description

Изобретение относится к радиотехнике и может быть использовано в системах дистанционного контроля ядерных и иных взрывов, предупреждения о запусках ракет, наблюдения за сейсмической активностью.
Известны способы наблюдения ионосферных возмущений, порождаемых антропогенными и естественными источниками, основанные на регистрации задержек сигналов спутниковых радионавигационных систем ГЛОНАСС/GPS. С помощью нескольких приемников ГЛОНАСС/GPS осуществляют двухдиапазонные измерения задержек навигационных сигналов ГЛОНАСС/GPS, по измеренным задержкам определяют значение полного электронного содержания на трассе "приемник - навигационный искусственный спутник Земли". Производят фильтрацию рядов полного электронного содержания для отдельных приемников в выбранном диапазоне периодов колебаний и при наличии сигнала, превышающего заданный уровень, регистрируют возмущение, вызванное мощными наземными взрывами [1], запусками космического аппарата [2] . Данные способы отличаются низкой чувствительностью и невозможностью определения координат источника возмущений.
Наиболее близким к решению поставленной задачи является способ определения направления прихода и скорости перемещения ионосферных возмущений различной природы, основанный на анализе данных о полном электронном содержании в ионосфере Земли [3].
Сущность его заключается в том, что с помощью решетки, состоящей из трех пространственно разнесенных двухчастотных приемников сигналов спутниковых радионавигационных систем ГЛОНАСС/GPS получают временные ряды флуктуации полного электронного содержания в ионосфере Земли для линий "приемник - навигационный искусственный спутник Земли". В результате фильтрации рядов полного электронного содержания для отдельных приемников выделяют возмущения, содержащие отклик ионосферы на воздействие источника. При этом параметры движения фронта волны возмущений определяются по значениям взаимных задержек флуктуации полного электронного содержания, зарегистрированных в трех точках. В силу того, что при указанном способе решение об обнаружении возмущения принимается по анализу сигнала каждого приемника отдельно, без учета информации двух других приемников, а для определения направления прихода волны возмущения используется минимально необходимое число приемников n=3, способ-прототип характеризуется низкой чувствительностью обнаружения. Кроме того, этот способ обеспечивает определение направления прихода возмущения, но не позволяет определить местоположение источника возмущения. Это обусловлено тем, что расстояние между приемниками в способе выбрано малым, соответствующим дальней зоне источника. При этом фронт волны возмущения для приемной решетки мало отличается от плоского, а информация о местоположении источника возмущения, заложенная в величине кривизны волнового фронта, теряется.
Целью изобретения является повышение чувствительности обнаружения и точности определения местоположения источника возмущения. В сравнении со способом прототипом это достигается за счет того, что для реализации предложенного способа используется решетка с большим числом n(n>3) пространственно разнесенных двухчастотных приемников сигналов ГЛОНАСС/GPS. Апертура решетки выбирается таким образом, чтобы выполнялось условие зоны Френеля
Figure 00000002

где L - апертура решетки;
R - предполагаемое расстояние до источника возмущения;
λ - длина волны возмущения [3, 4, 5].
Сигналы, полученные в результате фильтрации рядов полного электронного содержания для отдельных приемников решетки, задерживают на время Δτi (i - номер приемника) относительно сигнала одного из приемников, выбранного в качестве опорного сигнала, и когерентно суммируют между собой. Решение об обнаружении возмущений принимают при превышении суммарным сигналом заданного порога. Местоположение источника возмущения находят из решения системы уравнений, описывающих в избранной системе координат семейство сферических волновых фронтов, отстоящих друг от друга на расстояние, определяемое относительными временными сдвигами Δτi сигналов отдельных приемников, соответствующими абсолютному максимуму суммарного сигнала.
На фиг. 1 в декартовой системе координат изображены точки расположения приемников, проекции подионосферных точек лучей "приемник - навигационный искусственный спутник Земли", семейство фазовых фронтов возмущения полного электронного содержания. На фиг.2 изображены вариации полного электронного содержания, полученные для отдельных приемников, соответствующие отклику ионосферы на воздействие источника возмущений, и суммарный сигнал всех приемников.
Исследованиями ряда авторов установлено, что откликом ионосферы на воздействие мощных антропогенных (ядерные и химические взрывы, запуски космических аппаратов) и естественных (землетрясения, извержения вулканов) источников являются распространяющиеся в направлении от источника ударно-акустические волны. Распространение ударно-акустической волны приводит к возмущениям полного электронного содержания в ионосфере. Возмущение полного электронного содержания имеет длину волны λ ≈ 100-200 км, период Т≈200-300 с, амплитуду 1015-1016 эл/м2 [3, 4, 5].
Каждый из разнесенных в пространстве двухчастотных приемников ГЛОНАСС/GPS осуществляет регистрацию фазовых задержек l1 и L2 навигационных сигналов с несущей частотой f1= 1575,42 МГц, f2= 1227,6 МГц на трассе "приемник - навигационный искусственный спутник Земли".
На основе измеренных значений задержек l1 и L2 находят величину полного электронного содержания для указанной трассы:
Figure 00000003

где
Figure 00000004

Zm - зенитный угол луча "приемник - навигационный искусственный спутник Земли", отсчитываемый от вертикального направления;
λ12 - длина волны навигационных сигналов с частотой f1 и f2 соответственно.
Флуктуации значений полного электронного содержания содержат как низкочастотные составляющие, обусловленные движением навигационного искусственного спутника Земли, широтно-долготным и суточным ходом полного электронного содержания, так и высокочастотные колебания ΔI(t), вызванные возмущением полного электронного содержания при распространении ударно-акустической волны от источника. Для выделения этих колебаний ряды полного электронного содержания с выхода каждого приемника подают на вход фильтра с полосой пропускания, соответствующей полосе частот ударно-акустической волны. Полученные отклики ΔI(t) относят к проекциям 2 (фиг.1) на горизонтальную плоскость точек в ионосфере, соответствующих пересечению луча "приемник - навигационный искусственный спутник Земли" с поверхностью на высоте максимума слоя F2 ионосферы. Координаты хi; уi указанной точки находят, зная координаты приемника и навигационного искусственного спутника Земли, с помощью стандартных в системе GPS процедур.
Полученные с выходов фильтров сигналы ΔIi(t) 3 (фиг.2) задерживают на время Δτi относительно сигнала опорного приемника ΔI0(t) 4 (фиг.2) и затем суммируют. Значения Δτi подбирают так, чтобы обеспечить максимальную амплитуду суммарного сигнала ΔIc(t) 5 (фиг.2). При превышении суммарным сигналом заданного порога принимается решение об обнаружении источника возмущения. Величина порога определяется выбранным критерием обнаружения.
Если размер апертуры решетки L и расстояние до источника возмущений R таковы, что выполняется условие зоны Френеля, то фронт ударно-акустической волны в раскрыве решетки приемников является сферическим. Значения Δτi определяют расстояния ρi между фазовыми фронтами, проходящими через точки хi; уi и имеющими форму окружностей с центром xu; yи, где
ρi = Δτi•V;
xи; yи - координаты источника возмущения;
V - фазовая скорость волны возмущения.
Расстояния ρi определяются относительно фазового фронта, проходящего через точку х0; (у0), соответствующую опорному приемнику. Пусть декартова система координат задана таким образом, что ее начало совпадает с точкой х0; (у0), ось Оу системы направлена на север, а ось Ox - на восток (фиг.1). В заданной системе координат уравнение фазового фронта имеет вид
(x-xu)2+(y-yu)2 = τV,
где τ - время распространения возмущения.
Тогда для точек xi можем записать
Figure 00000005

Figure 00000006

Figure 00000007

Неизвестные координаты источника возмущений (хи; уи) можно найти из численного решения данной системы уравнений одним из известных методов [6].
ЛИТЕРАТУРА
[l] Calais E. , Minster B.J., Hofton M.A., Hedlin M.A.H. Ionospheric signature of surface mine blasts from Global Positioning System measurements.//Geophys. J. Int. 1998. V. 132. P. 191-202.
[2] Calais E., Minster J.B. GPS detection of ionospheric perturbations following a Space Shuttle ascent. //Geophys. Res. Lett. 1996. V. 23. P. 1897-1900.
[3] Э. Л.Афраймович, Е.А.Косогоров, А.В.Плотников. Детектирование с помощью GPS-решеток ударно-акустических волн, генерируемых при запуске ракет. Труды VI международной научно-технической конференции "Радиолокация, навигация, связь". - Воронеж, 25-27 апреля 2000 г. Том 1, с. 462-474. Прототип.
[4] Li Y.Q., Jacobson A.R., Carlos R.C., Massey R.S., Taranenko Y.N., Wu G. The blast wave of the Shuttle plume at ionospheric heights. // Geophys. Res. Lett. 1994. V. 21. P. 2737-2740.
[5] Blanc E., Jacobson A.R. Observation of ionospheric disturbances follwing a 5-kt chemical explosion. 2. Prolonged anomalies and stratifications in the lower thermosphere after shock passage. //Radio Science. 1989. V. 24. P. 739-746.
[6] Н. С. Бахвалов, Н. П.Жидков, Г.М.Кобельков. Численные методы. - М. Наука". 1987.

Claims (1)

  1. Способ обнаружения ионосферного возмущения и определения местоположения его источника, основанный на анализе данных о полном электронном содержании в ионосфере Земли, которые получают в результате обработки сигналов, принятых двухчастотными приемниками спутниковой радионавигационной системы ГЛОНАСС/GPS, расположенными в узлах решетки, с последующим формированием временных рядов полного электронного содержания и их фильтрацией в диапазоне периодов колебаний, соответствующих отклику ионосферы на воздействие источника ионосферного возмущения, отличающийся тем, что используют решетку с числом n (n>3) пространственно разнесенных приемников и с апертурой, удовлетворяющей условию зоны Френеля, а сигналы, полученные после фильтрации временных рядов полного электронного содержания, когерентно суммируют с временными сдвигами Δτi которые обеспечивают максимальную амплитуду суммарного сигнала, решение об обнаружении ионосферного возмущения принимают при превышении суммарным сигналом порогового уровня, а координаты источника ионосферного возмущения (хи; уи) находят из решения системы уравнений, описывающих в избранной системе координат семейство сферических волновых фронтов, отстоящих друг от друга на расстояние, определяемое измеренными относительными временными сдвигами Δτi сигналов отдельных приемников.
RU2000118491/09A 2000-07-11 2000-07-11 Способ обнаружения ионосферного возмущения и определения местоположения его источника RU2189051C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000118491/09A RU2189051C2 (ru) 2000-07-11 2000-07-11 Способ обнаружения ионосферного возмущения и определения местоположения его источника

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000118491/09A RU2189051C2 (ru) 2000-07-11 2000-07-11 Способ обнаружения ионосферного возмущения и определения местоположения его источника

Publications (2)

Publication Number Publication Date
RU2000118491A RU2000118491A (ru) 2002-06-10
RU2189051C2 true RU2189051C2 (ru) 2002-09-10

Family

ID=20237739

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000118491/09A RU2189051C2 (ru) 2000-07-11 2000-07-11 Способ обнаружения ионосферного возмущения и определения местоположения его источника

Country Status (1)

Country Link
RU (1) RU2189051C2 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484494C1 (ru) * 2011-11-07 2013-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Мурманский государственный технический университет" (ФГБОУВПО "МГТУ") Способ определения местоположения объекта
RU2560094C2 (ru) * 2013-12-03 2015-08-20 Федеральное государственное бюджетное учреждение "Институт прикладной геофизики имени академика Е.К.Федорова" (ФГБУ "ИПГ") Способ определения скорости распространения и направления прихода ионосферного возмущения
RU2560525C1 (ru) * 2014-06-25 2015-08-20 Александр Васильевич Тертышников Способ определения положения эпицентральной зоны источника и скорости распространения перемещающихся ионосферных возмущений
RU2624634C1 (ru) * 2016-03-29 2017-07-05 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ определения скорости распространения и направления прихода ионосферного возмущения
CN108332784A (zh) * 2016-12-22 2018-07-27 西安交通大学青岛研究院 一种距离测量验证方法
RU2683113C1 (ru) * 2018-03-26 2019-03-26 Александр Васильевич Тертышников Способ определения характеристик аврорального овала и состояния магнитного поля земли

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
АФРАЙМОВИЧ Э.Л. и др., Детектирование с помощью GPS-решеток ударно-акустических волн, генерируемых при запуске ракет. - В: Труды VI МНТК, Радиолокация, навигация, связь.- Воронеж, 25-27 апреля 2000 г., т. 1, с. 462-474. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484494C1 (ru) * 2011-11-07 2013-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Мурманский государственный технический университет" (ФГБОУВПО "МГТУ") Способ определения местоположения объекта
RU2560094C2 (ru) * 2013-12-03 2015-08-20 Федеральное государственное бюджетное учреждение "Институт прикладной геофизики имени академика Е.К.Федорова" (ФГБУ "ИПГ") Способ определения скорости распространения и направления прихода ионосферного возмущения
RU2560525C1 (ru) * 2014-06-25 2015-08-20 Александр Васильевич Тертышников Способ определения положения эпицентральной зоны источника и скорости распространения перемещающихся ионосферных возмущений
RU2624634C1 (ru) * 2016-03-29 2017-07-05 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ определения скорости распространения и направления прихода ионосферного возмущения
CN108332784A (zh) * 2016-12-22 2018-07-27 西安交通大学青岛研究院 一种距离测量验证方法
RU2683113C1 (ru) * 2018-03-26 2019-03-26 Александр Васильевич Тертышников Способ определения характеристик аврорального овала и состояния магнитного поля земли

Similar Documents

Publication Publication Date Title
Calais et al. Ionospheric signature of surface mine blasts from Global Positioning System measurements
Hibert et al. Single-block rockfall dynamics inferred from seismic signal analysis
Heki et al. Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array
US4463357A (en) Method and apparatus for calibrating the ionosphere and application to surveillance of geophysical events
US7372774B1 (en) System for detecting, tracking, and reconstructing signals in spectrally competitive environments
US20160216363A1 (en) Acoustic detection system
RU2560525C1 (ru) Способ определения положения эпицентральной зоны источника и скорости распространения перемещающихся ионосферных возмущений
RU2379709C1 (ru) Способ определения скорости распространения и направления прихода ионосферного возмущения
CN113176609A (zh) 一种基于地声场的地下浅层目标定位方法
Afraimovich et al. Localization of the source of ionospheric disturbance generated during an earthquake
RU2189051C2 (ru) Способ обнаружения ионосферного возмущения и определения местоположения его источника
Bowman et al. Infrasound direction of arrival determination using a balloon-borne aeroseismometer
RU2424538C1 (ru) Способ поиска месторождения полезных ископаемых с использованием подводного геофизического судна
Lognonné et al. Seismic waves in the ionosphere
Hibert et al. Machine learning prediction of the mass and the velocity of controlled single-block rockfalls from the seismic waves they generate
RU2189052C2 (ru) Способ обнаружения, измерения фазовой скорости и направления прихода ионосферного возмущения
Obenberger et al. Identification of acoustic wave signatures in the ionosphere from conventional surface explosions using MF/HF Doppler sounding
Jarmołowski et al. Combining Swarm Langmuir probe observations, LEO-POD-based and ground-based GNSS receivers and ionosondes for prompt detection of ionospheric earthquake and tsunami signatures: case study of 2015 Chile-Illapel event
Afraimovich et al. Shock–acoustic waves generated during rocket launches and earthquakes
Sanchez et al. Rapid Detection of Co‐Seismic Ionospheric Disturbances Associated With the 2015 Illapel, the 2014 Iquique and the 2011 Sanriku‐Oki Earthquakes
Savastano et al. Real-time monitoring of ionospheric irregularities and tec perturbations
Park et al. Ionospheric observations of underground nuclear explosions (UNE) using GPS and the Very Large Array
Asming et al. Algorithms for the detection, location, and discrimination of seismic and infrasound events
Permana et al. Seismic signature detection during the 2018 Anak Krakatau flank collapse and tsunami using seismic amplitudes from regional-scale monitoring
Schmidt Navigation sensors and systems in GNSS degraded and denied environments 2018:(Or how i learned to stop worrying about GPS)