RU2559863C2 - Изолятор фарадея на постоянных магнитах для лазеров большой мощности - Google Patents

Изолятор фарадея на постоянных магнитах для лазеров большой мощности Download PDF

Info

Publication number
RU2559863C2
RU2559863C2 RU2013155764/28A RU2013155764A RU2559863C2 RU 2559863 C2 RU2559863 C2 RU 2559863C2 RU 2013155764/28 A RU2013155764/28 A RU 2013155764/28A RU 2013155764 A RU2013155764 A RU 2013155764A RU 2559863 C2 RU2559863 C2 RU 2559863C2
Authority
RU
Russia
Prior art keywords
magnetic system
faraday
isolator
faraday isolator
permanent magnets
Prior art date
Application number
RU2013155764/28A
Other languages
English (en)
Other versions
RU2013155764A (ru
Inventor
Александр Владимирович Войтович
Евгений Александрович Миронов
Олег Валентинович Палашов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук (ИПФ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук (ИПФ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук (ИПФ РАН)
Priority to RU2013155764/28A priority Critical patent/RU2559863C2/ru
Publication of RU2013155764A publication Critical patent/RU2013155764A/ru
Application granted granted Critical
Publication of RU2559863C2 publication Critical patent/RU2559863C2/ru

Links

Images

Abstract

Изобретение относится к оптике и представляет собой изолятор Фарадея на постоянных магнитах для лазеров большой мощности. Изолятор включает в себя последовательно расположенные на оптической оси поляризатор, магнитооптический элемент, установленный в магнитной системе, выполненной с использованием постоянных магнитов, и анализатор, при этом в его магнитной системе области, наиболее подверженные перемагничиванию, заполнены неферромагнитной средой. Техническим результатом является предотвращение попадания магнитов в область сильных размагничивающих полей и исключение появления перемагниченных областей при сборке магнитной системы, что приводит к увеличению напряженности магнитного поля, создаваемого в ней, и обеспечивает возможность использования более короткого магнитооптического элемента и тем самым увеличения максимально допустимой рабочей мощности. За счет этого удалось создать простой в использовании и работающий при комнатной температуре компактный изолятор Фарадея с одним магнитооптическим элементом для лазеров с уровнем мощности порядка 650 Вт. 2 з. п. ф-лы, 2 ил.

Description

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с субкиловаттной средней мощностью излучения.
Основной проблемой, ограничивающей применение изоляторов Фарадея в лазерах с большой средней мощностью излучения, является неизбежное тепловыделение в магнитооптических элементах, вызванное поглощением лазерного излучения при прохождении через них. Тепловыделение приводит к неоднородному распределению температуры по поперечному сечению элемента, в результате чего возникают искажения волнового фронта проходящего излучения ("тепловая линза") и неоднородное распределение угла поворота его плоскости поляризации, вызванное зависимостью постоянной Верде от температуры. Также наряду с циркулярным двулучепреломлением появляется и линейное, связанное с механическими напряжениями, обусловленными градиентом температуры (фотоупругий эффект). Поляризационные искажения лазерного пучка, появляющиеся при проходе через магнитооптический элемент изолятора Фарадея, снижают важнейшую характеристику данного устройства - степень изоляции. Наибольший вклад в поляризационные искажения мощного лазерного пучка вносит фотоупругий эффект (Хазанов Е.А. Компенсация термонаведенных поляризационных искажений в вентилях Фарадея. Квантовая электроника, 26, №1, 1999, стр.59-64).
Существует несколько путей уменьшения термонаведенных поляризационных искажений. Известна конструкция изолятора Фарадея для лазера с киловаттной средней мощностью, магнитооптический ротатор которого изготовлен в виде двух фарадеевских элементов, поворачивающих плоскость поляризации на 22,5° каждый, между которыми расположен взаимный оптический элемент в виде кварцевой пластины (Андреев Н.Ф. и др. Изолятор Фарадея с развязкой 45 дБ при средней мощности излучения 100 Вт, Квантовая электроника, 30, №12, 2000, стр.1107-1108; I.B. Mukhin et al., Experimental Study of Kilowatt-Average-Power Faraday Isolator, ASSP, Technical Digest, 2007, TuB13). Такая конструкция изолятора Фарадея обеспечивает частичную компенсацию поляризационных искажений лазерного пучка, возникающих в первом фарадеевском элементе при прохождении излучения через второй фарадеевский элемент, что позволяет получить степень изоляции оптического вентиля более 20 дБ для лазера с киловаттной средней мощностью. Основным недостатком такого устройства является сложная конструкция магнитооптического ротатора, состоящего как минимум из трех элементов, что существенно затрудняет настройку изолятора.
Также недостатком этой конструкции изолятора Фарадея является невозможность оптимального использования области пространства магнитной системы, в которой создается поле с наибольшей напряженностью. Поскольку оба упомянутых фарадеевских элемента должны поворачивать плоскость поляризации на одинаковые углы, они должны быть расположены в таких местах системы, в которых средняя напряженность поля одинакова. В силу симметрии магнитной системы профиль поля также оказывается симметричным относительно ее центра, где напряженность максимальна. Таким образом, магнитооптические элементы должны располагаться на равном удалении от центра магнитной системы и между ними в области максимального поля должен быть помещен взаимный кварцевый вращатель. При этом расположение взаимного кварцевого вращателя в сильном магнитном поле также играет негативную роль. Поскольку кварц обладает слабыми магнитооптическими свойствами, это вызывает отстройку угла поворота плоскости поляризации излучения, проходящего через него, на 1-1,5°, обусловленную эффектом Фарадея. Компенсация этой отстройки приводит к дополнительному усложнению оптической конструкции данного изолятора, а также к небольшим потерям мощности излучения на прямом проходе через него.
Другой путь уменьшения термонаведенных поляризационных искажений требует увеличения напряженности поля внутри магнитной системы изолятора Фарадея. Угол поворота плоскости поляризации φ излучения, проходящего через магнитооптический элемент с постоянной Верде V длины L, помещенный в магнитное поле с напряженностью Н, определяется выражением: φ=VHL. Из него видно, что увеличение напряженности поля позволит укоротить магнитооптический элемент, снизив тем самым все паразитные тепловые эффекты.
Одним из направлений получения магнитных полей с высокой напряженностью является использование сверхпроводящих соленоидов (D.S. Zheleznov, I.B. Mukhin, O.V. Palashov, E.A. Khazanov, A.V. Voitovich, Faraday rotators with short magneto-optical elements for 50 kW laser power, IEEE Journal of Quantum Electronics, v.43, 451-457, 2007). Поскольку при этом удается получать поля с высокой напряженностью (выше 5 Тл), магнитооптические элементы могут быть выполнены в виде тонких дисков, что позволяет обеспечить высокую рабочую мощность изолятора, однако, громоздкость, сложность конструкции, дороговизна эксплуатации делает применение таких устройств нецелесообразным в подавляющем большинстве случаев.
Наиболее близкой по технической сущности к заявляемой конструкции является известная конструкция изолятора Фарадея на постоянных магнитах для лазеров большой мощности, магнитная система которой выполнена из постоянных магнитов и магнитопроводящих материалов, в которой создается поле с напряженностью 2,1 Тл, и которая выбрана в качестве прототипа (I. Mukhin, A. Voitovich, О. Palashov, E. Khazanov "2.1 Tesia permanent-magnet Faraday isolator for subkilowatt average power lasers". Optics Communications, 282, 1969 (2009)). Постоянные магниты в конструкции магнитной системы изолятора прототипа (см. фиг.1) представляют собой коаксиально и радиально намагниченные кольца, размеры и расположение которых тщательно подобраны с целью создания сильного магнитного поля в области магнитооптического элемента. Магнитопроводы, расположенные внутри магнитной системы, позволяют концентрировать силовые линии магнитного поля в области магнитооптического элемента, тем самым создавать локально в центре поле с еще более высокой напряженностью. Это позволило изготовить изолятор Фарадея с одним магнитооптическим элементом длиной всего 10,3 мм, обеспечивающий степень изоляции 30 дБ при максимально допустимой рабочей мощности ~ 400 Вт.
Недостатком изолятора Фарадея прототипа является ограничение в величине напряженности поля, достигаемой в его магнитной системе, накладываемое особенностями ее конструкции. Увеличение габаритов магнитной системы и замена материала намагниченных колец на кольца с большей величиной остаточной индукции не приводит к возрастанию напряженности магнитного поля. Этот факт можно объяснить усилением эффекта перемагничивания постоянных магнитов, расположенных в центральной области магнитной системы. Как установлено авторами предлагаемого изобретения, в таких магнитных системах происходит перемагничивание магнитов в i-х областях 1 (см. фиг.1) из-за сильных (>3 Тл) локальных магнитных полей. Ситуация усугубляется тем, что после перемагничивания каждая i-я область 1 начинает создавать вблизи себя поле с напряженностью Н, противоположной изначальному направлению намагниченности М, в результате чего сильное размагничивающее поле перемещается вглубь центрального кольца и перемагничивает новые области 2 (j-я область) и т.д. В результате перемагничивается важнейшая часть магнитной системы - область магнитов, наиболее близкая к магнитооптическому элементу.
Такое размагничивание является существенным препятствием на пути к увеличению напряженности магнитного поля в магнитной системе, собранной из колец с коаксиальным и радиальным направлениями намагниченности.
Задачей, на решение которой направлено изобретение, является повышение максимально допустимой рабочей мощности изолятора Фарадея на постоянных магнитах, работающего при комнатной температуре, при сохранении заданной степени изоляции (30 дБ) и без усложнения его оптической конструкции.
Технический результат в разработанном изоляторе Фарадея на постоянных магнитах для лазеров большой мощности достигается за счет того, что он, как и прототип, содержит последовательно расположенные на оптической оси поляризатор, магнитооптический элемент, установленный в магнитной системе, выполненной с использованием постоянных магнитов, и анализатор.
Новым в разработанном изоляторе Фарадея является то, что в его магнитной системе области, наиболее подверженные перемагничиванию, заполнены неферромагнитной средой.
Такое построение изолятора Фарадея в соответствии с п.1 формулы позволяет повысить его степень изоляции и максимально допустимую рабочую мощность. Этот результат достигается за счет предотвращения попадания магнитов в области сильных размагничивающих полей. Таким образом, во-первых, исключаются области магнитов, которые меняют свое направление намагниченности при сборке магнитной системы и снижают напряженность поля в ее центре, и, во-вторых, предотвращается проникновение размагничивающих полей вглубь магнитной системы. В итоге полностью исключается появление перемагниченных областей при сборке магнитной системы, что приводит к увеличению напряженности поля, создаваемого в ней, а это, в свою очередь, предоставляет возможность использования более коротких магнитооптических элементов и соответственно сокращения всех паразитных тепловых эффектов.
В первом частном случае реализации разработанного изолятора Фарадея целесообразно для заполнения областей, подверженных перемагничиванию, в качестве неферромагнитной среды использовать медь.
Во втором частном случае реализации разработанного изолятора Фарадея целесообразно для заполнения областей, подверженных перемагничиванию, в качестве неферромагнитной среды использовать воздух или вакуум.
Сущность изобретения поясняется чертежами:
- на фиг.1 представлена в разрезе схема изолятора Фарадея прототипа;
- на фиг.2 представлена в разрезе схема разработанного изолятора Фарадея в соответствии с п.1 формулы.
Схема и особенности работы изолятора Фарадея прототипа, изображенного на фиг.1, достаточно подробно описаны выше.
Разработанный изолятор Фарадея на постоянных магнитах для лазеров большой мощности, изготовленный в соответствии с п.1 формулы и представленный на фиг.2, содержит магнитооптический элемент 3, помещенный в магнитную систему. Снаружи магнитной системы, вдоль оптической оси изолятора Фарадея находятся поляризатор 4 и анализатор 5, расположенные по разные стороны магнитооптического элемента 3.
Магнитная система изолятора, изготовленного в соответствии с п.1 формулы, центральная часть которой представлена на фиг.2, содержит коаксиально и радиально намагниченные кольца 6 и магнитопроводы 7. Часть намагниченных колец 6 имеет поверхности, наклоненные относительно оси изолятора Фарадея таким образом, чтобы не допустить попадание магнитов в i-е области 1, в которых индуцируются сильные размагничивающие поля. В разработанной конструкции изолятора Фарадея i-е области 1 заполнены неферромагнитной средой, что позволяет предотвратить проникновение размагничивающих полей в j-е области 2 магнитной системы.
В итоге в магнитной системе разработанного изолятора Фарадея удалось создать поля на оси с напряженностью 2,6 Тл, при диаметре "чистой" апертуры в 13 мм. В системах же, подобных магнитной системе изолятора Фарадея прототипа, получить поля с напряженностью выше 2,1 Тл не удавалось. Такое увеличение напряженности поля позволило сократить длину используемого в качестве магнитооптического элемента кристалла TGG до 9 мм и поднять максимально допустимую рабочую мощность, при которой обеспечивается степень изоляции в 30 дБ, до 650 Вт (Е.А. Миронов, И.Л. Снетков, А.В. Войтович, О.В. Палашов. Изолятор Фарадея на постоянных магнитах с напряженностью поля 25 кЭ. Квант, электроника, 43 (8)), то есть решить поставленную задачу.

Claims (3)

1. Изолятор Фарадея на постоянных магнитах для лазеров большой мощности, содержащий последовательно расположенные на оптической оси поляризатор, магнитооптический элемент, установленный в магнитной системе, выполненной с использованием постоянных магнитов, и анализатор, отличающийся тем, что в его магнитной системе области, наиболее подверженные перемагничиванию, заполнены неферромагнитной средой.
2. Изолятор Фарадея по п.1, отличающийся тем, что в его магнитной системе для заполнения областей, подверженных перемагничиванию, в качестве неферромагнитной среды используется медь.
3. Изолятор Фарадея по п.1, отличающийся тем, что в его магнитной системе для заполнения областей, подверженных перемагничиванию, в качестве неферромагнитной среды используется воздух или вакуум.
RU2013155764/28A 2013-12-17 2013-12-17 Изолятор фарадея на постоянных магнитах для лазеров большой мощности RU2559863C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013155764/28A RU2559863C2 (ru) 2013-12-17 2013-12-17 Изолятор фарадея на постоянных магнитах для лазеров большой мощности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013155764/28A RU2559863C2 (ru) 2013-12-17 2013-12-17 Изолятор фарадея на постоянных магнитах для лазеров большой мощности

Publications (2)

Publication Number Publication Date
RU2013155764A RU2013155764A (ru) 2015-06-27
RU2559863C2 true RU2559863C2 (ru) 2015-08-20

Family

ID=53497021

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013155764/28A RU2559863C2 (ru) 2013-12-17 2013-12-17 Изолятор фарадея на постоянных магнитах для лазеров большой мощности

Country Status (1)

Country Link
RU (1) RU2559863C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2726274C1 (ru) * 2020-02-21 2020-07-10 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр Институт прикладной физики Российской академии наук" (ИПФ РАН) Изолятор Фарадея на постоянных магнитах с высокой напряженностью магнитного поля

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927909B2 (en) * 2002-05-09 2005-08-09 Matsushita Electric Industrial Co., Ltd. Integrated magneto-optical modulator with optical isolator, method of manufacturing the same and optical communication system using the same
US20080165418A1 (en) * 2007-01-04 2008-07-10 Electro-Optics Technology, Inc. Compact, high power, fiber pigtailed faraday isolators
RU2342688C2 (ru) * 2007-01-29 2008-12-27 ООО "Центр научного и технического развития" (ООО "Ц-НТР"), Войтович Александр Владимирович, Железнов Дмитрий Сергеевич, Мухин Иван Борисович, Палашов Олег Валентинович, Хазанов Ефим Аркадьевич Оптический вентиль для лазеров большой мощности
US20120194906A1 (en) * 2009-04-09 2012-08-02 Trumpf Laser Gmbh + Co. Kg Optical insulator with parallelepiped magnets
RU2458374C1 (ru) * 2011-04-22 2012-08-10 Общество с ограниченной ответственностью "Центр научного и технического развития" Оптический вентиль с компенсацией термонаведенной деполяризации для лазеров большой мощности
RU122498U1 (ru) * 2012-02-22 2012-11-27 Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук (ИПФ РАН) Вращатель фарадея по традиционной схеме для лазеров с высокой средней мощностью

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927909B2 (en) * 2002-05-09 2005-08-09 Matsushita Electric Industrial Co., Ltd. Integrated magneto-optical modulator with optical isolator, method of manufacturing the same and optical communication system using the same
US20080165418A1 (en) * 2007-01-04 2008-07-10 Electro-Optics Technology, Inc. Compact, high power, fiber pigtailed faraday isolators
RU2342688C2 (ru) * 2007-01-29 2008-12-27 ООО "Центр научного и технического развития" (ООО "Ц-НТР"), Войтович Александр Владимирович, Железнов Дмитрий Сергеевич, Мухин Иван Борисович, Палашов Олег Валентинович, Хазанов Ефим Аркадьевич Оптический вентиль для лазеров большой мощности
US20120194906A1 (en) * 2009-04-09 2012-08-02 Trumpf Laser Gmbh + Co. Kg Optical insulator with parallelepiped magnets
RU2458374C1 (ru) * 2011-04-22 2012-08-10 Общество с ограниченной ответственностью "Центр научного и технического развития" Оптический вентиль с компенсацией термонаведенной деполяризации для лазеров большой мощности
RU122498U1 (ru) * 2012-02-22 2012-11-27 Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук (ИПФ РАН) Вращатель фарадея по традиционной схеме для лазеров с высокой средней мощностью

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2726274C1 (ru) * 2020-02-21 2020-07-10 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр Институт прикладной физики Российской академии наук" (ИПФ РАН) Изолятор Фарадея на постоянных магнитах с высокой напряженностью магнитного поля

Also Published As

Publication number Publication date
RU2013155764A (ru) 2015-06-27

Similar Documents

Publication Publication Date Title
Snetkov et al. Review of Faraday isolators for kilowatt average power lasers
Zheleznov et al. Faraday rotators with short magneto-optical elements for 50-kW laser power
Trénec et al. Permanent magnets for Faraday rotators inspired by the design of the magic sphere
US9304337B2 (en) Faraday rotator for an optical isolator
JPH0968675A (ja) ファラデー回転子を使用した高性能小型光学アイソレーター
Mukhin et al. 2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers
Mironov et al. Permanent-magnet Faraday isolator with the field intensity of more than 3 tesla
Vojna et al. Verdet constant dispersion of CeF3 in the visible and near-infrared spectral range
Palashov et al. High-vacuum-compatible high-power faraday isolators for gravitational-wave interferometers
US20150124318A1 (en) High magnetic field-type multi-pass faraday rotator
RU2559863C2 (ru) Изолятор фарадея на постоянных магнитах для лазеров большой мощности
RU2458374C1 (ru) Оптический вентиль с компенсацией термонаведенной деполяризации для лазеров большой мощности
US7501909B2 (en) Wide-bandwidth polarization modulator for microwave and mm-wavelengths
Han et al. Topologically Protected and Highly Localized Surface Waves in Gyro‐Electromagnetic Metamaterials
Mironov et al. Nonorthogonally magnetised permanent-magnet Faraday isolators
RU2717394C1 (ru) Изолятор Фарадея с компенсацией аксиально-симметричных поляризационных искажений
RU2690037C2 (ru) Изолятор Фарадея для лазеров с высокой средней мощностью излучения
RU2598623C1 (ru) Изолятор фарадея с неоднородным магнитным полем для лазеров большой мощности
RU122498U1 (ru) Вращатель фарадея по традиционной схеме для лазеров с высокой средней мощностью
RU2637363C2 (ru) Изолятор Фарадея с кристаллическим магнитооптическим ротатором для лазеров большой мощности
RU2646551C1 (ru) Изолятор Фарадея с переменным направлением поля магнитной системы
RU173568U1 (ru) Оптический изолятор на основе магнитофотонного микрорезонатора
JP2019211753A (ja) 磁気回路、ファラデー回転子及び磁気光学素子
Jacobs et al. Faraday rotation optical isolator for 10.6-μm radiation
RU2589754C2 (ru) Изолятор фарадея для лазерных пучков с квадратным поперечным профилем распределения интенсивности

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181218