RU2557557C2 - Наблюдение за оптическими сетями с мультиплексированием с разделением по длине волны - Google Patents

Наблюдение за оптическими сетями с мультиплексированием с разделением по длине волны Download PDF

Info

Publication number
RU2557557C2
RU2557557C2 RU2013146699/07A RU2013146699A RU2557557C2 RU 2557557 C2 RU2557557 C2 RU 2557557C2 RU 2013146699/07 A RU2013146699/07 A RU 2013146699/07A RU 2013146699 A RU2013146699 A RU 2013146699A RU 2557557 C2 RU2557557 C2 RU 2557557C2
Authority
RU
Russia
Prior art keywords
otdr
signal
feeder
pon
wdm
Prior art date
Application number
RU2013146699/07A
Other languages
English (en)
Other versions
RU2013146699A (ru
Inventor
Патрик УРБАН
Цэнь МИНЬ
Original Assignee
Телефонактиеболагет Лм Эрикссон (Пабл)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Телефонактиеболагет Лм Эрикссон (Пабл) filed Critical Телефонактиеболагет Лм Эрикссон (Пабл)
Publication of RU2013146699A publication Critical patent/RU2013146699A/ru
Application granted granted Critical
Publication of RU2557557C2 publication Critical patent/RU2557557C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3127Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR using multiple or wavelength variable input source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3136Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR for testing of multiple fibers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02218Centralized control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

Изобретение относится к технике связи и может использоваться в пассивной оптической сети с мультиплексированием с разделением по длине волны (WDM-PON). Технический результат состоит в осуществлении наблюдения за (WDM-PON). Для этого устройство содержит X делителей с коэффициентом деления 1:Y, причем каждый делитель имеет один вход и Y выходов. Один вход каждого из X делителей выполнен с возможностью принимать сигнал оптической рефлектометрии во временной области. Устройство содержит решетку на основе массива волноводов и первый фильтр, выполненный с возможностью смешивать сигнал фидера, содержащий передачу данных из терминала оптической линии, OLT, с одним из N OTDR-субсигналов. Один вход AWG выполнен с возможностью принимать смесь сигнала фидера и одного OTDR-субсигнала, и оставшиеся N-1 входов AWG выполнены с возможностью принимать соответствующий один из N-1 оставшихся OTDR-субсигналов. 3 н. и 8 з.п. ф-лы, 7 ил.

Description

Область техники
[0001] Варианты осуществления, раскрытые в данном документе, в общем, относятся к наблюдению за оптическими сетями с мультиплексированием с разделением по длине волны. Варианты осуществления в данном документе, в частности, относятся к устройству в узле и к способу в узле для выполнения наблюдения за оптическими сетями с мультиплексированием с разделением по длине волны.
Уровень техники
[0002] Пассивная оптическая сеть (PON) представляет собой сетевую архитектуру "точка-многоточка" с использованием волоконных кабелей от центральной станции до помещений. Одна такая PON представляет собой PON с мультиплексированием с разделением по длине волны (WDM-PON).
[0003] Она использует решетку на основе массива волноводов (AWG) для того, чтобы предоставлять возможность одному оптическому волокну обслуживать несколько помещений. AWG используется в качестве оптического (де-)мультиплексора в WDM-PON. AWG способна к мультиплексированию большого числа длин волн в одно оптическое волокно, тем самым повышая пропускную способность сети. WDM-PON содержит терминал оптической линии (OLT) в центральной станции поставщика услуг. Она содержит определенное число терминалов оптической сети (ONT) для конечных пользователей. WDM-PON-конфигурация уменьшает количество волокон и оборудования в центральной станции, требуемого по сравнению с архитектурами "точка-точка". Пассивная оптическая сеть представляет собой форму волоконно-оптической сети доступа.
[0004] PON, к примеру, WDM-PON должна подвергаться наблюдению и мониторингу для того, чтобы обнаруживать все возможные возникающие неисправности в WDM-PON. Отсутствие наблюдения приводит к тому, что неисправность в WDM-PON записывается только на основе прекращения предоставления услуг, что приводит к потерям дохода для оператора. Чтобы обеспечивать практическую применимость PON, а также WDM-PON для операторов за счет уменьшения их эксплуатационных затрат, важно разрабатывать экономически эффективные, полностью надежные и точные решения по мониторингу, которые поддерживают обнаружение повреждений, идентификацию и локализацию возможного повреждения в различных топологиях доступа по волокну.
[0005] Это имеет особое значение в WDM-PON, поскольку одна WDM-PON, наиболее вероятно, должна поддерживать большое число конечных пользователей с высоким потреблением полосы пропускания. Одно преимущество WDM-PON заключается в том, что она может предоставлять симметричную полосу пропускания для каждого пользователя или для каждой длины волны минимум в 1-10 Гбит/с. Надежность и короткое время простоя являются крайне важными для обеспечения хорошего качества для конечных пользователей и для недопущения потерь доходов для операторов.
[0006] Профилактический мониторинг PON позволяет предоставлять информацию оператору относительно прогнозируемых проблем, таких как снижение принимаемой мощности в ONT, ухудшение характеристик либо выход из строя разъема или спайки, износ или изгиб волокна в PON и т.д. Таким образом, профилактический мониторинг может помочь уменьшать потенциальные потери сигнала. Кроме того, в случае внезапного выхода из строя, система мониторинга должна иметь возможность своевременно обнаруживать и локализовать повреждения. Удаленный и автоматический мониторинг способствует сокращению эксплуатационных затрат, поскольку не требуется отправка группы технических специалистов на место вплоть до момента, когда неисправность будет определена и локализована.
[0007] Некоторые требования могут быть заданы для системы мониторинга. Например, мониторинг не должен влиять на обычную передачу данных. Другими словами, мониторинг должен быть «неинвазивным». Это является достижимым за счет использования выделенной оптической полосы пропускания. Кроме того, мониторинг должен быть чувствительным к относительно небольшим колебаниям мощности, обнаруживаемым в режиме по запросу или в периодическом режиме. Вдобавок ко всему, он не должен требовать высоких первоначальных вложений.
[0008] Для того чтобы выполнять наблюдение и выполнять мониторинг производительности PON, может быть использована оптическая рефлектометрия во временной области (OTDR). OTDR-устройство вводит последовательность оптических импульсов в волокно. Последовательности оптических импульсов, также называемые "OTDR-сигналами", перемещаются по сети в ONT. Части OTDR-сигналов отражаются обратно в OTDR-устройство. Обратно отраженный или обратно рассеянный OTDR-сигнал может использоваться для оценки длины волокна и общего ослабления, включающего в себя потери в делителе (разветвителе). OTDR-сигнал обратного рассеяния также может быть использован для того, чтобы находить такие повреждения, как обрывы, и измерять оптические потери на отражение.
[0009] Большинство способов или технологий, известных на сегодняшний день, удовлетворяют только некоторым вышеуказанным требованиям. Большинство способов или технологий, известных на сегодняшний день, значительно увеличивают капитальные затраты, поскольку они требуют перестраиваемой или многоволновой OTDR. Перестраиваемая или многоволновая OTDR требует большей полосы пропускания для того, чтобы размещать несколько OTDR-каналов. Некоторые способы или технологии, известные на сегодняшний день, требуют существенных модернизаций передающего OLT-устройства, которые предоставляют мониторинг с прерыванием предоставления услуг. Некоторые другие способы требуют значительных модернизаций оптической сети распространения вследствие дублирования частей световых путей. Кроме того, большинство способов или технологий, известных на сегодняшний день, могут обнаруживать только повреждение волокна, которое вводит значительные потери, гораздо выше предполагаемого порогового значения в 1 дБ. Еще дополнительно, большая часть способов позволяют обнаруживать повреждение и определять только поврежденную ветвь, т.е. волокно от удаленного узла до ONT, и они не имеют возможность определять точное местоположение повреждения, например, расстояние от удаленного узла.
Сущность изобретения
[00010] Цель примерных вариантов осуществления состоит в том, чтобы разрешать, по меньшей мере, некоторые вышеуказанные проблемы. В частности, цель примерных вариантов осуществления состоит в том, чтобы предоставлять устройство в узле в WDM-PON и способ в узле для выполнения наблюдения за WDM-PON. Эти и другие цели могут достигаться посредством предоставления устройства в узле в WDM-PON и способа в узле согласно независимым пунктам формулы изобретения, прилагаемой ниже.
[00011] Согласно аспекту предоставляется устройство в пассивной оптической сети с мультиплексированием с разделением по длине волны (WDM-PON) для выполнения наблюдения за WDM-PON. Устройство содержит X делителей с коэффициентом деления 1:Y, причем каждый делитель имеет один вход и Y выходов, так что X*Y равно N, при этом X, Y, N являются целыми числами, при этом один вход каждого из X делителей выполнен с возможностью принимать сигнал оптической рефлектометрии во временной области (OTDR) и разделять принимаемый OTDR-сигнал на Y OTDR-субсигналов, так что всего N OTDR-субсигналов выводится из X делителей. Устройство дополнительно содержит решетку на основе массива волноводов (AWG) N*N и первый фильтр, выполненный с возможностью смешивать сигнал фидера, содержащий передачу данных из терминала оптической линии (OLT), с одним из N OTDR-субсигналов. Один вход AWG выполнен с возможностью принимать смесь сигнала фидера и одного OTDR-субсигнала, и каждый из оставшихся N-1 входов AWG выполнен с возможностью принимать соответствующий один из N-1 оставшихся OTDR-субсигналов, за счет этого обеспечивая наблюдение за WDM-PON без влияния на передачу данных.
[00012] Согласно варианту осуществления устройство дополнительно содержит коммутатор, выполненный с возможностью принимать OTDR-сигнал из OTDR-устройства, коммутировать OTDR-сигнал на X OTDR-выходов и вставлять каждый из X выходных OTDR-сигналов на соответствующий вход X делителей с коэффициентом деления 1:Y.
[00013] Согласно аспекту предоставляются способ и устройство в пассивной оптической сети с мультиплексированием с разделением по длине волны (WDM-PON) для выполнения наблюдения за WDM-PON. Способ содержит прием сигнала оптической рефлектометрии во временной области (OTDR) из OTDR-устройства и разделение OTDR-сигнала на N OTDR-субсигналов, при этом N является целым числом. Способ дополнительно содержит прием сигнала фидера, содержащего передачу данных из терминала оптической линии (OLT), и смешивание сигнала фидера с одним из N OTDR-субсигналов посредством первого фильтра. Еще дополнительно, способ содержит вставку смешанного сигнала фидера и N-ного OTDR-субсигнала на первый вход решетки на основе массива волноводов (AWG) N*N и вставку каждого из оставшихся N-1 OTDR-субсигналов на соответствующие оставшиеся N-1 входов AWG. Таким образом, обеспечивается наблюдение за WDM-PON без влияния на передачу данных.
[00014] Согласно варианту осуществления, разделение OTDR-сигнала на N OTDR-субсигналов содержит коммутацию принимаемого OTDR-сигнала посредством коммутатора в X делителей с коэффициентом деления 1:Y, причем каждый делитель имеет один вход и Y выходов, так что X*Y равно N, при этом X, Y являются целыми числами, при этом каждый из X делителей принимает OTDR-сигнал и разделяет OTDR-сигнал на Y OTDR-субсигналов, так что всего N OTDR-субсигналов выводится из X делителей.
[00015] Упомянутое устройство и способ в нем имеют несколько преимуществ. Они обеспечивают оптимальные по времени и экономически эффективные всесторонние централизованные операции мониторинга без влияния на передачу данных или необходимости модернизировать ответвленные линии связи, которые поддерживают, в принципе, любую PON-систему. Их затраты разделяются для определенного числа OLT. Они дополнительно представляют собой эффективное по полосе пропускания решение, поскольку одна длина волны используется для того, чтобы предоставлять мониторинг определенного числа ответвленных линий связи в WDM-PON. Они дополнительно обеспечивают высокую точность и чувствительность обнаружения повреждений, ограниченную только посредством производительности применяемой OTDR. Они дополнительно позволяют уменьшать время простоя в ходе предоставления услуг и затраты на техническое обслуживание.
Краткое описание чертежей
[00016] Далее подробнее описываются варианты осуществления относительно прилагаемых чертежей, на которых:
[00017] Фиг. 1 является упрощенной блок-схемой WDM-PON, также имеющей OTDR-устройство для выполнения наблюдения за WDM-PON.
[00018] Фиг. 2 является блок-схемой примерного варианта осуществления устройства в узле в пассивной оптической сети с мультиплексированием с разделением по длине волны (WDM-PON) для выполнения наблюдения за WDM-PON.
[00019] Фиг. 3 является блок-схемой еще одного примерного варианта осуществления устройства в узле в WDM-PON для выполнения наблюдения за WDM-PON.
[00020] Фиг. 4 является блок-схемой еще одного примерного варианта осуществления устройства в узле в WDM-PON для выполнения наблюдения за WDM-PON.
[00021] Фиг. 5 является иллюстрацией ввода различных длин волн в AWG, причем ввод содержит сигнал фидера и OTDR-сигнал.
[00022] Фиг. 6 является схематичной иллюстрацией функции AWG.
[00023] Фиг. 7 является блок-схемой последовательности операций способа в узле в WDM-PON для выполнения наблюдения за WDM-PON.
Подробное описание
[00024] Если резюмировать описанное ниже, предусмотрены устройство в узле в WDM-PON и способ в узле в WDM-PON для выполнения наблюдения за WDM-PON. Наблюдение за WDM-PON использует OTDR-сигналы, отправляемые из OTDR-устройства, через WDM-PON, в терминалы оптической сети (ONT).
[00025] Фиг. 1 является упрощенной блок-схемой WDM-PON, также имеющей OTDR-устройство для выполнения наблюдения за WDM-PON.
[00026] WDM-PON содержит центральную станцию 150, в которой находится OLT 151. OLT 151 отправляет оптические импульсы, содержащие N различных длин волн в фидерном волокне, в N*N AWG 130, расположенную в удаленном узле 100. Центральная станция также содержит OTDR-устройство 152, которое отправляет оптический импульс мониторинга с определенной длиной волны в N*N AWG 130 в удаленном узле 100. AWG 130 отделяет N различных длин волн, принимаемых посредством фидерного волокна, и отправляет каждую длину волны в соответствующем волокне, также называемом "ответвленной линией связи", в N различных ONT 160.
[00027] Фиг. 2 является блок-схемой примерного варианта осуществления устройства в узле в WDM-PON для выполнения наблюдения за WDM-PON.
[00028] В этом примерном варианте осуществления, N=32, так что AWG представляет собой 32*32 AWG, и WDM-PON содержит 32 ONT, подключенных к AWG посредством соответствующих 32 ответвленных линий связи: ответвление 1, ответвление 2 и т.д. вплоть до ответвления 32. Следует отметить, что другие значения N являются возможными.
[00029] Устройство в узле 200 в WDM-PON для выполнения наблюдения за WDM-PON содержит четыре делителя 211-214 с коэффициентом деления 1:8, причем каждый делитель имеет один вход и восемь выходов, так что число делителей, умноженное на коэффициент деления, равно N. В этом примере, предусмотрено четыре делителя, каждый из которых разделяет вход на восемь выходов, т.е. 4*8=32. Один вход каждого из четырех делителей выполнен с возможностью принимать OTDR-сигнал и разделять принимаемый OTDR-сигнал на восемь OTDR-субсигналов, так что всего 32 OTDR-субсигналов выводится из четырех делителей.
[00030] Если обобщать, устройство содержит X делителей (211-214) с коэффициентом деления 1:Y, причем каждый делитель имеет один вход и Y выходов, так что X*Y равно N.
[00031] Устройство дополнительно содержит 32*32 AWG 230 и первый фильтр 220, выполненный с возможностью смешивать сигнал фидера, содержащий передачу данных из OLT 151, с одним из 32 OTDR-субсигналов.
[00032] Дополнительно, один вход AWG 230 выполнен с возможностью принимать смесь сигнала фидера и одного OTDR-субсигнала, и каждый из оставшихся 32-1=31 входов AWG выполнен с возможностью принимать соответствующий один из 32-1=31 оставшихся OTDR-субсигналов, за счет этого обеспечивая наблюдение за WDM-PON без влияния на передачу данных.
[00033] Сигнал фидера, который вводится в фильтр 220, содержит N различных длин волн, в этом примере 32 различных длины волн. AWG 230 выполнен с возможностью отделять 32 различных длины волн и выводить каждую соответствующую длину волны в соответствующую ответвленную линию связи. Дополнительно, AWG 230 выполнен с возможностью выводить 32 введенных OTDR-субсигнала на соответствующий выход, так что каждая ответвленная линия связи содержит оптический сигнал фидера с определенной длиной волны, переносящий информацию данных, и OTDR-субсигнал.
[00034] Это устройство имеет несколько преимуществ. Оно обеспечивает оптимальные по времени и экономически эффективные всесторонние централизованные операции мониторинга без влияния на передачу данных или необходимости модернизировать ответвленные линии связи, которые поддерживают, в принципе, любую PON-систему. Его затраты распределяются на определенное число OLT. Оно дополнительно представляет собой эффективное по полосе пропускания решение, поскольку одна длина волны используется для того, чтобы предоставлять мониторинг определенного числа ответвленных линий связи в WDM-PON. Оно дополнительно обеспечивает высокую точность и чувствительность обнаружения повреждений, ограниченную только посредством производительности применяемой OTDR. Оно дополнительно позволяет уменьшать время простоя в ходе предоставления услуг и затраты на техническое обслуживание.
[00035] Фиг. 2 дополнительно иллюстрирует устройство, дополнительно содержащее оптический коммутатор 240, выполненный с возможностью принимать OTDR-сигнал из OTDR-устройства 152, коммутировать OTDR-сигнал на четыре OTDR-выхода и вставлять каждый из четырех выходных OTDR-сигналов на соответствующий вход четырех делителей с коэффициентом деления 1:8.
[00036] Оптический коммутатор 240 может предпочтительно быть совсем недорогим оптическим коммутатором, способным к коммутации входного OTDR-сигнала, в этом примере по меньшей мере к четырем делителям.
[00037] Дополнительно, фиг. 2 иллюстрирует OTDR-сигнал, принимаемый посредством коммутатора 240. Коммутатор 240 коммутирует сигнал в четыре коммутатора 211-214. Это проиллюстрировано посредством стрелок "мониторинг 1" - "мониторинг 4". Фиг. 2 также иллюстрирует коммутацию посредством коммутатора 240 введенного или принимаемого OTDR-сигнала в дополнительный "мониторинг фидера"; однако это поясняется ниже.
[00038] Первый сигнал, "мониторинг 1", который является OTDR-сигналом, вводится в первый делитель 211. Делитель 211 разделяет OTDR-сигнал на восемь OTDR-субсигналов. Один выход первого делителя 211 вводится в фильтр 220. Фильтр 220 также принимает сигнал фидера, содержащий 32 различных длины волн, и фильтр 220 смешивает сигнал фидера с OTDR-субсигналом и выводит смешанный сигнал на один вход AWG 230, проиллюстрированный посредством "Фидер, мониторинг 1.1". Мониторинг 1.1 представляет делитель 1 и выход 1. Семь выходов делителя 211 вводятся на соответствующие семь входов AWG 230, проиллюстрированные посредством "Мониторинг 1.2-1.8". Мониторинг 1.2-1.8 представляет делитель 1 и выходы 2-8.
[00039] Второй сигнал, "мониторинг 2", который является OTDR-сигналом, вводится во второй делитель 212. Делитель 212 разделяет OTDR-сигнал на восемь OTDR-субсигналов. Восемь выходов второго делителя 212 вводятся на соответствующие восемь входов AWG 230, проиллюстрированные посредством "Мониторинг 2.1-2.8". Мониторинг 2.1-2.8 представляет делитель 2 и выходы 8-8. Это же применимо и для третьего и четвертого сигналов, "мониторинг 3" и "мониторинг 4", и третьего и четвертого делителей 213 и 214.
[00040] Фиг. 3 является блок-схемой примерного варианта осуществления устройства в узле в WDM-PON для выполнения наблюдения за WDM-PON.
[00041] Фиг. 3 иллюстрирует устройство, дополнительно содержащее второй фильтр 300, выполненный с возможностью принимать сигнал фидера из OLT 151, при этом коммутатор 240 выполнен с возможностью дополнительно коммутировать принимаемый OTDR-сигнал из OTDR-устройства 152 таким образом, что OTDR-сигнал вставляется во второй фильтр 300, второй фильтр 300 выполнен с возможностью передавать OTDR-сигнал в OLT, за счет этого обеспечивая наблюдение за фидерным волокном между OLT и вторым фильтром.
[00042] При сравнении фиг. 3 и фиг. 2 "мониторинг фидера" по фиг. 2 соответствует стрелке между коммутатором 240 и фильтром 300 на фиг. 3. Этот вариант осуществления предоставляет наблюдение за фидерным волокном между OLT 151 и фильтром 300. В случае неисправности в фидерном волокне между OLT 151 и фильтром 300 она приводит к обратному рассеянию OTDR-сигнала, которое должно быть обнаружено посредством OTDR-устройства 152. В этом варианте осуществления коммутатор 240 выполнен с возможностью коммутировать входящий или принимаемый OTDR-сигнал как в четыре делителя 211-214, так и в фильтр 300.
[00043] Фиг. 4 является блок-схемой примерного варианта осуществления устройства в узле в WDM-PON для выполнения наблюдения за WDM-PON.
[00044] Фиг. 4 иллюстрирует устройство, содержащее третий фильтр 400, выполненный с возможностью принимать OTDR-сигнал вместе с сигналом фидера и отделять OTDR-сигнал от сигнала фидера и предоставлять OTDR-сигнал в коммутатор 240 и сигнал фидера в первый фильтр 220.
[00045] В этом варианте осуществления дополнительное выделенное волокно недоступно для OTDR-устройства 152, как проиллюстрировано на фиг. 1 и 3. Вместо этого OTDR-сигнал должен отправляться по идентичному фидерному волокну, используемому посредством OLT. В этом варианте осуществления сигнал фидера, переносящий информацию данных, и OTDR-сигнал смешиваются. Это может выполняться, например, посредством фильтра 410.
[00046] Поскольку смешанный сигнал фидера и OTDR-сигнал принимаются в узле, они принимаются посредством фильтра 400. Фильтр 400 выполнен с возможностью отделять сигнал фидера и OTDR-сигнал таким образом, что сигнал фидера предоставляется в фильтр 220, а OTDR-сигнал предоставляется в коммутатор 240. Фильтр 220 является идентичным фильтру в предыдущих вариантах осуществления, и коммутатор 240 выполнен с возможностью коммутировать принимаемый OTDR-сигнал в четыре делителя 211-214. Четыре делителя 211-214 в этом варианте осуществления являются идентичными делителям в предыдущем варианте осуществления.
[00047] Кроме того, следует указать, что все примерные варианты осуществления раскрывают четыре делителя с коэффициентом деления 1:8 и 32*32 AWG. Это представляет собой просто пример, и могут быть использованы другие типы AWG, а также делители с другими коэффициентами деления, и может быть использовано другое число делителей. Просто в качестве примера, 128*128 AWG может быть использован вместе с шестнадцатью делителями с коэффициентом 1:8 или 128*128 AWG вместе с восемью делителями с коэффициентом 1:16.
[00048] Согласно примерному варианту осуществления, также для N=32, сигнал фидера содержит 32 длины волн, λ1, λ2,…, λ32, и OTDR-сигнал имеет длину волны λi1+n*FSR, где FSR является свободным спектральным диапазоном AWG, i является целым числом от 1 до 32 и n является целочисленным значением.
[00049] Значение i зависит от того, на какой вход AWG вставляется OTDR-сигнал. В примере, проиллюстрированном на фиг. 2, сигнал фидера и один из OTDR-субсигналов вставляются или предоставляются на первый вход AWG. OTDR-сигнал, введенный в первый порт AWG, имеет длину волны λ11+n*FSR, и OTDR-сигнал, введенный во второй порт AWG, имеет длину волны λ21+n*FSR и т.д., где FSR является свободным спектральным диапазоном AWG и n является целочисленным значением. Верхний индекс указывает порт, а нижний индекс указывает длину волны.
[00050] Значение n зависит от каналов с точной длиной волны для передачи данных. Предусмотрено два базовых варианта: одноволновая двунаправленная передача или одноволновая однонаправленная передача. Одноволновая двунаправленная передача требует, например, технологии повторной модуляции в ONT, тогда как одноволновая однонаправленная передача требует двух длин волн для двунаправленной передачи, например, удаленной раздачи с постоянной длиной волны. Могут поддерживаться оба подхода, и пример относительно выбора длины волны приведен на фиг. 5 (верх) и фиг. 5 (низ) соответственно.
[00051] Фиг. 6 является схематичной иллюстрацией функции AWG, и он иллюстрирует то, как OTDR-сигнал, также называемый "длиной волны OTDR-канала", направляется в пределах N*N AWG. В этом примере N также равно 32.
[00052] На первый вход AWG 230 предоставляется смесь сигнала фидера и OTDR-субсигнала. Сигнал фидера переносит информацию данных и содержит N=32 различных длин волн λ1, λ2,…, λ32. Это проиллюстрировано на фиг. 6 посредством λ11 … λ132. Нижние индексы 1-32 обозначают различные длины волн, которые содержатся в сигнале фидера, и верхние индексы 1 обозначают первый вход или порт 1 ввода. На порт 1 ввода также предоставляется OTDR-субсигнал, проиллюстрированный посредством λ11+n*FSR, где нижний индекс 1 обозначает "базовую" длину волны OTDR-субсигнала, а верхний индекс 1 обозначает первый порт ввода AWG. На оставшийся 31 (N-1) порт ввода AWG 230 предоставляется OTDR-субсигнал, проиллюстрированный посредством λ21+n*FSR, λ31+n*FSR, вплоть до λ321+n*FSR. Это означает то, что все OTDR-субсигналы имеют идентичные длины волн, поскольку все нижние индексы равны 1, что указывает идентичную "базовую" длину волны, так что длина волны всех OTDR-субсигналов составляет λ1+n*FSR. Верхние индексы 2-32 указывают соответствующие порты ввода AWG 230.
[00053] Фиг. 6 иллюстрирует, что сигнал фидера, λ11 … λ132, отделяется в AWG 230 таким образом, что первый выход или первый порт вывода предоставляет сигнал, который отправляется в первый ONT (см. фиг. 1), который содержит первую длину волны сигнала фидера λ11 и OTDR-субсигнала λ11+n*FSR, вводимого на первый порт ввода.
[00054] Второй порт вывода AWG 230 предоставляет сигнал, который отправляется во второй ONT (см. фиг. 1), который содержит вторую длину волны сигнала фидера λ12 и OTDR-субсигнала λ21+n*FSR, вводимого на второй порт ввода. Это же применимо для всех длин волн в сигнале фидера, так что тридцать вторая длина волны сигнала фидера λ132 выводится на тридцать втором порту вывода вместе с OTDR-субсигналом λ321+n*FSR, вводимым на тридцать второй порт ввода.
[00055] AWG может быть организован в один интегрированный модуль только с относительным увеличением затрат в расчете на ONT. Весь узел не вводит значительных дополнительных потерь в каналы передачи данных при пренебрежении относительными вносимыми потерями двух фильтров 220+300 или 220+400 в фидере (~1 дБ в случае, когда они интегрированы). С другой стороны, если делители 1:8 не интегрируются, это оставляет возможность модернизировать систему мониторинга (без прерывания передачи данных) с помощью делителей с низким коэффициентом деления в случае WDM-PON с большим покрытием, в которой мощность OTDR-сигнала может быть ограничена посредством ослабления в волокне большой длины.
[00056] OTDR-технология преимущественно может быть комбинирована с мониторингом оптических приемо-передающих устройств (OTM). OTM предоставляет некоторые измеряемые параметры, например, мощность передачи и приема в OLT и ONT. OTM-параметры могут запрашиваться из ONT и собираться из OLT посредством централизованного модуля управления, который также может управлять OTDR и оптическим коммутатором 240, см. фиг. 2-4.
[00057] Комбинированные OTDR- и OTM-технологии обеспечивают измерение уровней оптической мощности передачи и приема, дискретных и кумулятивных потерь, а также коэффициентов отражения или света обратного рассеяния. Их анализ дает полную картину по всем возможным неисправностям ODN, которые могут возникать между OLT и ONT.
[00058] Импульсный OTDR-сигнал отправляется из центральной станции (CO) в ONT и рассеивается обратно в CO. OTDR-сигнал вводится в фидерное волокно (см. фиг. 4) или в выделенное волокно (см. фиг. 3) и дополнительно через оптический коммутатор 240 и выделенные делители 211-244, составляющие порты мониторинга, в узле 200. Возвращаемая мощность обнаруживается посредством чувствительного приемного устройства в OTDR-устройстве 152, и информация относительно мощности сопоставляется с информацией относительно времени событий отправки и приема и иллюстрируется на OTDR-трассировке зависимости потерь от расстояния. Это OTDR-измерение выполняется периодически или по запросу. Второй режим инициируется вручную или автоматически, как только получается аварийный сигнал OTM относительно низкой принимаемой оптической мощности. После того, как принимается сигнал обратного рассеяния и выполняется анализ OTDR-трассировки, получается информация относительно типа и масштаба OTDR-события. Такие события сравниваются с эталонными данными, и если достигается пороговое значение нарушения, OTDR-результаты сопоставляются с OTM-сообщениями. Дополнительно, поврежденные ответвленные линии связи помечаются, и полная локализация, включающая в себя расстояние от узла 200, сообщается вместе с назначенным типом и масштабом повреждений. Измеренные данные сохраняются в базе данных, и к ним можно обращаться в любое время.
[00059] Согласно варианту осуществления предоставляется устройство в WDM-PON для выполнения наблюдения за WDM-PON, причем устройство содержит узел 200, как описано выше, и OTDR-устройство 152, при этом OTDR-устройство 152 выполнено с возможностью предоставлять OTDR-сигнал в узел, причем OTDR-сигнал имеет длину волны λ1+n*FSR, где FSR является свободным спектральным диапазоном AWG, n является целочисленным значением и λ1 соответствует длине волны в сигнале фидера, содержащем передачу данных из OLT.
[00060] Фиг. 7 является блок-схемой последовательности операций способа в узле в WDM-PON для выполнения наблюдения за WDM-PON.
[00061] Способ имеет цели и преимущества, идентичные целям и преимуществам устройства в узле, как пояснено выше. Следовательно, способ описывается только кратко во избежание необязательного повторения.
[00062] Фиг. 7 иллюстрирует способ, содержащий прием 700 OTDR-сигнал из OTDR-устройства и разделение 710 OTDR-сигнала на N OTDR-субсигналов, при этом N является целым числом. Способ дополнительно содержит прием 720 сигнала фидера, содержащего передачу данных из OLT, и смешивание 730 сигнала фидера с одним из N OTDR-субсигналов посредством первого фильтра. Способ также содержит вставку 740 смешанного сигнала фидера и N-ного OTDR-субсигнала на первый вход решетки на основе массива волноводов (AWG) N*N и вставку каждого из оставшихся N-1 OTDR-субсигналов на соответствующие оставшиеся N-1 входов AWG. Таким образом, обеспечивается наблюдение 750 за WDM-PON без влияния на передачу данных.
[00063] Согласно варианту осуществления, разделение OTDR-сигнала на N OTDR-субсигналов содержит коммутацию принимаемого OTDR-сигнала посредством коммутатора в X делителей с коэффициентом деления 1:Y, причем каждый делитель имеет один вход и Y выходов, так что X*Y равно N, при этом X, Y являются целыми числами, при этом каждый из X делителей принимает OTDR-сигнал и разделяет OTDR-сигнал на Y OTDR-субсигналов, так что всего N OTDR-субсигналов выводится из X делителей.
[00064] Согласно еще одному варианту осуществления, принимаемый OTDR-сигнал дополнительно коммутируется посредством коммутатора во второй фильтр, чтобы вставлять OTDR-сигнал в фидерное волокно между фильтром и OLT, чтобы выполнять наблюдение за фидерным волокном между OLT и вторым фильтром.
[00065] Согласно еще одному варианту осуществления OTDR-сигнал и сигнал фидера принимаются посредством третьего фильтра, который отделяет OTDR-сигнал и сигнал фидера и предоставляет OTDR-сигнал в коммутатор и сигнал фидера в первый фильтр.
[00066] Еще дополнительно, согласно варианту осуществления, сигнал фидера содержит N длин волн, λ1, λ2,…, λN, и OTDR-сигнал имеет длину волны λi1+n*FSR, где FSR является свободным спектральным диапазоном AWG, i является целым числом от 1-N и n является целочисленным значением.
[00067] Хотя варианты осуществления описаны с точки зрения нескольких вариантов осуществления, предполагается, что их альтернативы, модификации, перестановки и эквиваленты должны становиться очевидными после прочтения подробного описания и изучения чертежей. Следовательно, подразумевается, что нижеприведенная прилагаемая формула изобретения включает в себя такие альтернативы, модификации, перестановки и эквиваленты, попадающие в пределы объема вариантов осуществления и заданные посредством представленной для рассмотрения формулы изобретения.

Claims (11)

1. Устройство в узле (200) в пассивной оптической сети с мультиплексированием с разделением по длине волны, WDM-PON, для выполнения наблюдения за WDM-PON, причем устройство содержит:
- X делителей (211-214) с коэффициентом деления 1:Y, причем каждый делитель имеет один вход и Y выходов, так что X*Y равно N, при этом X, Y, N являются целыми числами, при этом один вход каждого из X делителей выполнен с возможностью принимать сигнал оптической рефлектометрии во временной области, OTDR, и разделять принимаемый OTDR-сигнал на Y OTDR-субсигналов, так что всего N OTDR-субсигналов выводятся из X делителей,
- решетку (230) на основе массива волноводов, AWG, N*N, и
- первый фильтр (220), выполненный с возможностью смешивать сигнал фидера, содержащий передачу данных из терминала (151) оптической линии, OLT, с одним из N OTDR-субсигналов,
- при этом один вход AWG выполнен с возможностью принимать смесь сигнала фидера и одного OTDR-субсигнала, и каждый из оставшихся N-1 входов AWG выполнен с возможностью принимать соответствующий один из N-1 оставшихся OTDR-субсигналов, за счет этого обеспечивая наблюдение за WDM-PON без влияния на передачу данных.
2. Устройство по п. 1, дополнительно содержащее коммутатор (240), выполненный с возможностью принимать OTDR-сигнал из OTDR-устройства (152), коммутировать OTDR-сигнал на X OTDR-выходов и вставлять каждый из X выходных OTDR-сигналов на соответствующий вход X делителей с коэффициентом деления 1:Y.
3. Устройство по п. 1, дополнительно содержащее второй фильтр (300), выполненный с возможностью принимать сигнал фидера из OLT (151), при этом коммутатор (240) выполнен с возможностью дополнительно коммутировать принимаемый OTDR-сигнал из OTDR-устройства (152) таким образом, что OTDR-сигнал вставляется во второй фильтр (300), причем второй фильтр (300) выполнен с возможностью передавать OTDR-сигнал в OLT, за счет этого обеспечивая наблюдение за фидерным волокном между OLT и вторым фильтром.
4. Устройство по п. 2, дополнительно содержащее третий фильтр (400), выполненный с возможностью принимать OTDR-сигнал вместе с сигналом фидера и отделять OTDR-сигнал от сигнала фидера и предоставлять OTDR-сигнал в коммутатор (240) и сигнал фидера в первый фильтр (220).
5. Устройство по п. 1, в котором сигнал фидера содержит N длин волн, λ1, λ2, ..., λN, и OTDR-сигнал имеет длину волны λi1+n*FSR, где FSR является свободным спектральным диапазоном AWG, i является целым числом от 1 до N и n является целочисленным значением.
6. Устройство в пассивной оптической сети с мультиплексированием с разделением по длине волны, WDM-PON, для выполнения наблюдения за WDM-PON, причем устройство содержит узел, который содержит устройство по любому из пп. 1-5, и OTDR-устройство, при этом OTDR-устройство выполнено с возможностью предоставлять OTDR-сигнал в узел, причем OTDR-сигнал имеет длину волны λ1+n*FSR, где FSR является свободным спектральнымдиапазоном AWG, n является целочисленным значением и λ1 соответствует длине волны в сигнале фидера, содержащем передачу данных из OLT.
7. Способ выполнения наблюдения за WDM-PON в узле в пассивной оптической сети с мультиплексированием с разделением по длине волны, WDM-PON, при этом способ содержит этапы, на которых:
- принимают (700) сигнал оптической рефлектометрии во временной области, OTDR, из OTDR-устройства,
- разделяют (710) OTDR-сигнал на N OTDR-субсигналов, при этом N является целым числом,
- принимают (720) сигнал фидера, содержащий передачу данных из терминала оптической линии, OLT,
- смешивают (730) сигнал фидера с одним из N OTDR-субсигналов посредством первого фильтра,
- вставляют (740) смешанный сигнал фидера и N-ный OTDR-субсигнал на первый вход решетки на основе массива волноводов, AWG, N*N и вставляют каждый из оставшихся N-1 OTDR-субсигналов на соответствующие оставшиеся N-1 входов AWG, за счет этого обеспечивая наблюдение за WDM-PON без влияния на передачу данных.
8. Способ по п. 7, в котором разделение OTDR-сигнала на N OTDR-субсигналов содержит этап, на котором коммутируют принимаемый OTDR-сигнал посредством коммутатора в X делителей с коэффициентом деления 1:Y, причем каждый делитель имеет один вход и Y выходов, так что X*Y равно N, при этом X, Y являются целыми числами, при этом каждый из X делителей принимает OTDR-сигнал и разделяет OTDR-сигнал на Y OTDR-субсигналов, так что всего N OTDR-субсигналов выводятся из X делителей.
9. Способ по п. 7, в котором принимаемый OTDR-сигнал дополнительно коммутируют посредством коммутатора во второй фильтр, чтобы вставлять OTDR-сигнал в фидерное волокно между фильтром и OLT, чтобы выполнять наблюдение за фидерным волокном между OLT и вторым фильтром.
10. Способ по п. 8, в котором OTDR-сигнал и сигнал фидера принимают посредством третьего фильтра, который отделяет OTDR-сигнал и сигнал фидера и предоставляет OTDR-сигнал в коммутатор и сигнал фидера в первый фильтр.
11. Способ по п. 7, в котором сигнал фидера содержит N длин волн, λ1, λ2, ..., λN, и OTDR-сигнал имеет длину волны λi1+n*FSR, где FSR является свободным спектральным диапазоном AWG, i является целым числом от 1 до N и n является целочисленным значением.
RU2013146699/07A 2011-03-21 2011-03-21 Наблюдение за оптическими сетями с мультиплексированием с разделением по длине волны RU2557557C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SE2011/050305 WO2012128677A1 (en) 2011-03-21 2011-03-21 Supervision of wavelength division multiplexed optical networks

Publications (2)

Publication Number Publication Date
RU2013146699A RU2013146699A (ru) 2015-04-27
RU2557557C2 true RU2557557C2 (ru) 2015-07-27

Family

ID=46879595

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013146699/07A RU2557557C2 (ru) 2011-03-21 2011-03-21 Наблюдение за оптическими сетями с мультиплексированием с разделением по длине волны

Country Status (6)

Country Link
US (1) US9008503B2 (ru)
EP (1) EP2689543B1 (ru)
CN (1) CN103548287A (ru)
AU (1) AU2011363087B2 (ru)
RU (1) RU2557557C2 (ru)
WO (1) WO2012128677A1 (ru)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012361A1 (en) 2011-07-18 2013-01-24 Telefonaktiebolaget Lm Ericsson (Publ) Otm functionality in soa based transceivers
US9231696B2 (en) 2011-08-24 2016-01-05 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for supervision of optical networks
US20130183035A1 (en) * 2011-12-01 2013-07-18 Joseph L. Smith Enhanced PON And Splitter Module And Associated Method
CN102723994B (zh) * 2012-06-15 2016-06-22 华为技术有限公司 数据传输的方法、装置及系统
EP2909599A4 (en) * 2012-10-18 2016-06-29 Ntest Inc LOSS ANALYSIS SYSTEMS OF A PASSIVE OPTICAL NETWORK
TWI502906B (zh) * 2012-11-01 2015-10-01 Univ Nat Taiwan Science Tech 主動式網路監控系統及其監控方法
US9544669B2 (en) * 2012-12-04 2017-01-10 Telefonaktiebolaget L M Ericsson (Publ) Routing in a WDM-based PON
US9887770B2 (en) 2014-03-03 2018-02-06 Telefonaktiebolaget Lm Ericsson (Publ) Transceiver and method for monitoring of SCM transmission on fibre cable
KR102037207B1 (ko) * 2015-03-17 2019-10-30 한국전자통신연구원 스마트 리모트 노드 광통신 단말장치 및 그에 따른 리모트 노드 운용방법
CA2964072C (en) * 2015-05-07 2021-11-02 Centre For Development Of Telematics Gis based centralized fiber fault localization system
KR20180113983A (ko) * 2015-12-03 2018-10-17 아리조나 보드 오브 리전츠 온 비해프 오브 더 유니버시티 오브 아리조나 Wdm 네트워크 내의 신호 품질의 신속한 검증
US9960845B2 (en) 2016-06-30 2018-05-01 Alcatel-Lucent Usa Inc. In-band optical-link monitoring for a WDM network
EP3404855B1 (en) 2017-05-17 2021-06-30 Alcatel Submarine Networks Use of band-pass filters in supervisory signal paths of an optical transport system
EP3404852B1 (en) 2017-05-17 2020-03-04 Alcatel Submarine Networks Supervisory signal paths for an optical transport system
WO2018210470A1 (en) 2017-05-17 2018-11-22 Alcatel Lucent Use of band-pass filters in supervisory signal paths of an optical transport system
US11489312B2 (en) 2017-12-20 2022-11-01 Nokia Of America Corporation Amplified optical link having a fault-protection capability
EP3528401A1 (en) 2018-02-16 2019-08-21 Xieon Networks S.à r.l. Single otdr measurement for a plurality of fibers
EP3599726B1 (en) 2018-07-25 2021-05-19 Alcatel Submarine Networks Monitoring equipment for an optical transport system
EP3696997B1 (en) 2019-02-15 2022-06-15 Alcatel Submarine Networks Symmetrical supervisory optical circuit for a bidirectional optical repeater
EP3951345A4 (en) * 2019-03-27 2022-05-11 NEC Corporation LIGHT TRANSMISSION PATH SPECTRUM MEASUREMENT DEVICE, LIGHT TRANSMISSION PATH SYSTEM, LIGHT TRANSMISSION PATH SPECTRUM MEASUREMENT METHOD AND COMPUTER READABLE MEDIA
EP3758257B1 (en) 2019-06-27 2024-03-13 Alcatel Submarine Networks Technique for monitoring optical paths
EP3771116B1 (en) 2019-07-23 2024-07-10 Alcatel Submarine Networks Technique for monitoring optical paths
US11606139B2 (en) * 2021-03-08 2023-03-14 At&T Intellectual Property I, L.P. Multi-path, smart optical time-domain reflectometer
CN115133982A (zh) * 2021-03-26 2022-09-30 华为技术有限公司 分光装置、分光系统、无源光网络和光纤故障检测方法
US11923893B2 (en) 2021-07-19 2024-03-05 At&T Intellectual Property I, L.P. Port-identified optical signal splitter
US20230283365A1 (en) * 2022-03-04 2023-09-07 Viavi Solutions Inc. Apparatuses integrating separate wdm modules and otdr/switch modules

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005317A (zh) * 2006-01-16 2007-07-25 华为技术有限公司 检测上行发送错误和保护无源光网络终端的方法和装置
CN101621452A (zh) * 2008-06-30 2010-01-06 华为技术有限公司 一种无源光网络系统、光线路终端和光网络单元
CN101640821A (zh) * 2009-07-14 2010-02-03 深圳市共进电子有限公司 一种检测控制流氓终端的光纤通讯系统
RU2390836C2 (ru) * 2003-08-07 2010-05-27 Майкрософт Корпорейшн Отображение достоверности из высоконадежной среды на незащищенную среду

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5546483A (en) 1993-08-02 1996-08-13 Nippon Telegraph And Telephone Corporation Integrated optical waveguide circuit and optical branch line test system using the same
US5790285A (en) * 1996-05-21 1998-08-04 Lucent Technologies Inc. Lightwave communication monitoring system
US5673342A (en) * 1996-05-28 1997-09-30 Lucent Technologies Inc. Communication system comprising a low cost optical filter
JP4055306B2 (ja) * 1999-11-08 2008-03-05 富士通株式会社 伝送路の障害検出装置及び方法
FR2844051B1 (fr) * 2002-08-30 2004-11-12 Nexans Systeme pour le controle par reflectometrie dans le domaine temporel (otdr) d'un reseau optique
KR100618130B1 (ko) * 2005-04-04 2006-08-31 한국과학기술원 파장분할다중방식 수동형 광가입자망에서의 광선로 장애위치 검출 장치
KR100786040B1 (ko) * 2006-05-19 2007-12-17 한국과학기술원 높은 스펙트럼 효율을 구비한 전송 포맷을 이용하여 고속광신호 전송이 가능한 파장 분할 다중방식 수동형 광가입자망
US7715718B2 (en) * 2006-08-01 2010-05-11 Alcatel Lucent Passive optical network optical time-domain reflectometry
TWI350071B (en) * 2006-09-11 2011-10-01 Univ Nat Taiwan Science Tech Detection system for identifying faults in a passive optical network
KR100813897B1 (ko) * 2006-11-07 2008-03-18 한국과학기술원 기존의 수동형 광가입자 망에서 파장분할다중방식 수동형광가입자 망 기반의 차세대 광가입자 망으로 진화하는 방법및 네트워크 구조
US8077298B2 (en) 2007-05-22 2011-12-13 Chunghwa Telecom Co., Ltd. Apparatus for monitoring optical obstructions in an optical split network and method thereof
JP2011518523A (ja) 2008-04-21 2011-06-23 オプリンク コミュニケーションズ, インコーポレイテッド ファイバネットワーク監視
US8175454B2 (en) * 2008-12-15 2012-05-08 Verizon Patent And Licensing Inc. Fault locator for long haul transmission system
CN102415019A (zh) 2009-04-30 2012-04-11 瑞典爱立信有限公司 用于无源光网络(pon)中的故障发现的方法和装置
TWI406526B (zh) * 2009-06-12 2013-08-21 Univ Nat Taiwan Science Tech 用於光網路監控及錯誤檢測之光信號切換模組
WO2011086400A1 (en) 2010-01-12 2011-07-21 Telefonaktiebolaget L M Ericsson (Publ) Optical switch for passive optical network (pon) supervision
US8724102B2 (en) 2010-12-22 2014-05-13 Telefonaktièbolaget LM Ericsson (publ) Optical time domain reflectometry (OTDR) trace analysis in PON systems
US8948589B2 (en) * 2012-03-30 2015-02-03 Alcatel Lucent Apparatus and method for testing fibers in a PON

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2390836C2 (ru) * 2003-08-07 2010-05-27 Майкрософт Корпорейшн Отображение достоверности из высоконадежной среды на незащищенную среду
CN101005317A (zh) * 2006-01-16 2007-07-25 华为技术有限公司 检测上行发送错误和保护无源光网络终端的方法和装置
CN101621452A (zh) * 2008-06-30 2010-01-06 华为技术有限公司 一种无源光网络系统、光线路终端和光网络单元
CN101640821A (zh) * 2009-07-14 2010-02-03 深圳市共进电子有限公司 一种检测控制流氓终端的光纤通讯系统

Also Published As

Publication number Publication date
EP2689543A1 (en) 2014-01-29
EP2689543B1 (en) 2015-11-25
AU2011363087A1 (en) 2013-10-03
AU2011363087B2 (en) 2015-03-26
CN103548287A (zh) 2014-01-29
WO2012128677A1 (en) 2012-09-27
RU2013146699A (ru) 2015-04-27
US9008503B2 (en) 2015-04-14
US20140003806A1 (en) 2014-01-02
EP2689543A4 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
RU2557557C2 (ru) Наблюдение за оптическими сетями с мультиплексированием с разделением по длине волны
Yuksel et al. Optical layer monitoring in passive optical networks (PONs): a review
Rad et al. Passive optical network monitoring: challenges and requirements
KR101657329B1 (ko) 수동 광통신 망에서 오류를 발견하기 위한 방법과 장치
EP2726837B1 (en) Device, remote node and methods for pon supervision
EP2357737A2 (en) Fault localization method and fault localization device in a passive optical network, and passive optical network having the fault localization device
US20060029390A1 (en) Optical distribution network monitoring method and system
EP2832018B1 (en) An arrangement at a remote node, a remote node and respective method therein for supervision of a wavelength division multiplexed passive optical network
EP0786878A2 (en) Passive optical network
US20060110161A1 (en) Method and apparatus for monitoring optical fibers of passive optical network system
EP2337240B1 (en) Multichannel WDM-PON module with integrated OTDR function
CN102821330B (zh) 一种不影响业务进行otdr测试的wdm-pon系统
Fathallah et al. Code-division multiplexing for in-service out-of-band monitoring of live FTTH-PONs
WO2011057528A1 (en) Tunable coherent optical time division reflectometry
US20140072296A1 (en) Method and a system for physical layer monitoring in passive optical networks
WO2008116309A1 (en) Method and system for testing for defects in a multipath optical network
Ehrhardt et al. PON measurements and monitoring solutions for FTTH networks during deployment and operation
Urban et al. Cost-efficient remote PON monitoring based on OTDR measurement and OTM functionality
CN102742184A (zh) 光纤链路检测方法、光线路终端和无源光网络系统
Cen Study on supervision of wavelength division multiplexing passive optical network systems
WO2013017302A1 (en) A method and a system for physical layer monitoring in point to multipoint passive optical networks based on reflectometry systems
Chen et al. Fast fault monitoring technique for reliable WDM PON: Achieving significant operational saving
Cen et al. A full monitoring scheme for long-reach TWDM PONs
Liu et al. In-service measurement of fiber fault in WDM-PON
Premadi et al. Protection scheme of fiber to the home passive optical network using access control system

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200322