RU2557297C2 - Термофильная маннаногидролаза и содержащие ее жидкости разрыва - Google Patents

Термофильная маннаногидролаза и содержащие ее жидкости разрыва Download PDF

Info

Publication number
RU2557297C2
RU2557297C2 RU2012119789/10A RU2012119789A RU2557297C2 RU 2557297 C2 RU2557297 C2 RU 2557297C2 RU 2012119789/10 A RU2012119789/10 A RU 2012119789/10A RU 2012119789 A RU2012119789 A RU 2012119789A RU 2557297 C2 RU2557297 C2 RU 2557297C2
Authority
RU
Russia
Prior art keywords
guar gum
enzyme
mannanohydrolase
group
crosslinking agent
Prior art date
Application number
RU2012119789/10A
Other languages
English (en)
Other versions
RU2012119789A (ru
Inventor
Чарльз Дэвид АРМСТРОНГ
Original Assignee
Бэйкер Хьюз Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бэйкер Хьюз Инкорпорейтед filed Critical Бэйкер Хьюз Инкорпорейтед
Publication of RU2012119789A publication Critical patent/RU2012119789A/ru
Application granted granted Critical
Publication of RU2557297C2 publication Critical patent/RU2557297C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/90Compositions based on water or polar solvents containing organic compounds macromolecular compounds of natural origin, e.g. polysaccharides, cellulose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • C09K8/685Compositions based on water or polar solvents containing organic compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/2488Mannanases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/2488Mannanases
    • C12N9/2494Mannan endo-1,4-beta-mannosidase (3.2.1.78), i.e. endo-beta-mannanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01078Mannan endo-1,4-beta-mannosidase (3.2.1.78), i.e. endo-beta-mannanase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Lubricants (AREA)

Abstract

Изобретение относится к способу разрыва подземной формации, имеющей температуру в скважине, составляющую свыше 160°F, включающий введение в формацию водной гелеобразующей жидкости разрыва с рН от 9,5 до 11, включающей гидратируемый полимер, выбранный из группы, состоящей из гуаровой камеди и из модифицированных гуаровых камедей; сшивающий агент для поперечной сшивки гидратируемого полимера с образованием полимерного геля; и фермент-разжижитель, включающий фермент маннаногидролазу, который имеет аминокислотную последовательность, которая, по меньшей мере, на 90% гомологична аминокислотной последовательности SEQ ID NO:2. Изобретение позволяет проводить операции разрыва в скважинах при температуре выше 160°F. 3 н. и 16 з.п. ф-лы, 7 пр., 8 ил.

Description

Область техники
Выделенный фермент маннаногидролаза, который гидролизует галактоманнановые субстраты при температурах, составляющих свыше 160°F, обладает конкретной применимостью в качестве фермента-разжижителя в жидкостях разрыва, содержащих гуаровую камедь и модифицированные гуаровые камеди.
Уровень техники
Гидравлический разрыв используется для создания разрывов в подземных формациях, которые исходят от буровой скважины в область формации с целью увеличения скорости, с которой могут быть получены жидкости из формации. Как правило, высоковязкая жидкость разрыва закачивается в скважину под давлением, достаточным для разрыва подземной формации. С целью поддержания повышенного давления на формацию, добавляют твердый расклинивающий агент в жидкость разрыва, которая подается в разрыв под высоким давлением, применяемым к жидкости.
Более чем 65% стандартных жидкостей разрыва делают из гуаровой камеди (галактоманнаны) или из производных гуаровой камеди, таких как гидроксипрпилпроизводное гуаровой камеди (HPG), карбоксиметилпроизводное гуаровой камеди (CMG) и карбоксиметилгидроксипропилпроизводное гуаровой камеди (CMHPG). Эти полимеры могут быть поперечно-сшитыми с целью повышения их вязкости и повышения их способности к транспортировке расклинивающего агента.
После того как высоковязкая жидкость разрыва транспортирует расклинивающий агент в формацию, используются разжижители для снижения вязкости жидкости, которая дает возможность расклинивающему агенту оседать в разрыве, усиливая таким образом воздействие формации по отношению к скважине. Разжижители работают путем уменьшения молекулярной массы полимеров, "разрушая", таким образом, полимер. Затем разрыв становится высокопроницаемым проходом обратно в скважину для получаемых жидкостей и газа.
В качестве разжижителей наиболее широко используются химические окислители и ферменты. Окислитель генерирует радикал, который затем разрушает полимер. Реакция ограничена тем фактом, что окислители необходимо добавлять в стехиометрическом соотношении, иначе они будут атаковать не только полимер, но и любую молекулу, которая склонна к окислению. С другой стороны, ферменты являются каталитическими и специфичными к субстрату и будут катализировать гидролиз специфичных связей внутри полимера. Фермент будет разрушать множество полимерных связей в течение его срока действия. К сожалению, ферменты действуют в очень узком температурном интервале и их функции часто инактивируются при высоких температурах.
Обычные ферменты, используемые для разрушения галактоманнанов, хорошо работают при температурах от комнатной до умеренных (75°F - 150°F). При повышенных температурах, (>150°F), эти ферменты быстро денатурируют и теряют активность. Фермент бета-маннаназа, используемый в обычных ферментных составах, имеет температурный максимум, составляющий приблизительно 150°F. Профили активности выявили, что фермент сохраняет мало активности или не сохраняет ее после этого момента. Так как многие скважинные операции разрыва проводят при температурах, составляющих свыше 150°F, то было бы предпочтительно иметь фермент, который может разрушать жидкости разрыва на основе гуаровой камеди при таких повышенных температурах.
Сущность изобретения
Фермент маннаногидролаза эффективно гидролизует галактоманнины и обладает особенной эффективностью при гидролизе полимеров гуаровой камеди в интервалах повышенных температур. Высокотемпературный фермент маннаногидролаза может быть связан с глутатион-S-трансферазой (GST) или может быть не связан с GST.
Нуклеотидная последовательность, кодирующая фермент маннаногидролазу, была получена из гена β-маннаназы из Caldocellum saccharolyticum с оптимизацией кодонов для экспрессии в E. coli. Ген, кодирующий маннаногидролазу, (далее "htβ"), имеет нуклеотидную последовательность, представленную на ФИГ.1A, с оптимизацией кодонов для повышения экспрессии маннаногидролазы в E. coli. Ген htβ может затем быть проклонирован в подходящие плазмидные векторы, такие как pUC57, pUC 19 и pGS-21a, или в другие коммерчески доступные или специально сконструированные клонирующие векторы. Маннаногидролаза может быть трансформирована и экспрессирована в коммерчески доступных штаммах Escherichia coli. Транслированная аминокислотная последовательность маннаногидролазы представлена на ФИГ.1B.
Затем может быть получена водная жидкость разрыва, содержащая фермент, полимер на основе гуаровой камеди и сшивающий агент.
При использовании в гидравлическом разрыве маннаногидролаза эффективна в разрушении полимеров на основе гуаровой камеди при температурах, составляющих свыше 160°F.
Краткое описание чертежей
С целью более полного понимания чертежей, на которые делается ссылка в подробном описании настоящего изобретения, представлено краткое описание каждого чертежа, где:
На ФИГ.1A представлена нуклеотидная последовательность, которая кодирует маннаногидролазу, используемую в изобретении;
На ФИГ.1B представлена аминокислотная последовательность фермента маннаногидролазы;
На ФИГ.2 представлена схема создания плазмид pUC57-htβ, pGS-21a-gst-htβ и pGS-21-htβ, несущих ген маннаногидролазы;
На ФИГ.3 сопоставляется уменьшение вязкости 25 частей на триллион суспензии гуаровой камеди, поперечно сшитой с помощью бората, содержащей фермент маннаногидролазу, через 18 часов при 180°F по сравнению с суспензией, не содержащей фермент маннаногидролазу;
На ФИГ.4 сопоставляется уменьшение вязкости 25 частей на триллион суспензии гуаровой камеди, поперечно сшитой с помощью бората, содержащей фермент маннаногидролазу, через 18 часов при 160°F по сравнению с суспензией, не содержащей фермент маннаногидролазу;
На ФИГ.5 сопоставляется уменьшение вязкости суспензии гуаровой камеди, поперечно сшитой с помощью бората, содержащей фермент маннаногидролазу, через 10 часов при 180°F по сравнению с суспензией, не содержащей фермент маннаногидролазу;
На ФИГ.6 сопоставляется уменьшение вязкости суспензии гуаровой камеди, поперечно сшитой с помощью бората, содержащей фермент маннаногидролазу, через 3,5 часа при 140°F по сравнению с суспензией, не содержащей фермент маннаногидролазу;
На ФИГ.7 сопоставляется уменьшение вязкости при различных температурах суспензии гуаровой камеди, содержащей фермент маннаногидролазу;
На ФИГ.8 представлены микрофотографии барьеров из расклинивающего агента, и сопоставляется проводимость суспензии, содержащей фермент маннаногидролазу, по сравнению с суспензией, не содержащей фермент маннаногидролазу.
Подробное описание предпочтительных вариантов осуществления изобретения
Высокотемпературный фермент, используемый в способе разрыва по изобретению, если он не связан с глутатион-S-трансферазой (GST), то обозначается в настоящем документе как "маннаногидролаза", и "GST-маннаногидролаза", когда он представляет собой продукт слияния β-маннаназы и GST.
Фермент маннаногидролаза, описанный в настоящем документе, происходит из термофильных и анаэробных бактерий Caldocellum saccharolyticum. Выделение гена, кодирующего фермент β-маннаназу, описано в публикации E. Luthi et al., "Cloning, Sequence Analysis, and Expression in Escherichia coli of a Gene Coding for a β-Mannanase From the Extremely Thermophilic Bacterium 'Caldocellum saccharolyticum', Applied and Environmental Microbiology, Mar. 1991, pp. 694-700, которая включена в настоящей документ в качестве ссылки.
Затем проводили оптимизацию кодонов гена фермента маннаногидролазы для повышения эффективности его экспрессии в E. coli. Нуклеотидная последовательность гена htβ представлена на ФИГ.1 A. Нуклеотидная последовательность имеет 74% гомологии с последовательностью гена маннаназы, изображенной на ФИГ.2 у Luthi et al. Нуклеотидная последовательность включает кодирующую последовательность маннаногидролазы и лидерную последовательность на N-конце.
На ФИГ.2 (a) проиллюстрировано, что ген htβ может быть проклонирован в клонирующий вектор pUC57 для создания плазмиды pUC57-htβ. На (b) и (c) проиллюстрировано, что ген может быть проклонирован в экспрессирующий вектор pGS-21a, который содержит кодирующий участок белка GST. На (b) проиллюстрировано, что полученный в результате ген кодирует продукт слияния GST и маннаногидролазы. На (c) проиллюстрировано, что полученный в результате ген кодирует фермент без слияния с фрагментом GST. В результате экспрессия с использованием плазмид pGS-21a-gst-htβ и pGS-21a-htβ (b) и (c), соответственно, получают маннаногидролазу, слитую с N-концевой областью белка GST, и маннаногидролазу, не связанную с белком GST, соответственно.
На каждой из ФИГ.2 (a), (b) и (c), Ampr регулирует экспрессию β-лактамазы, rep(pMBl), и fl ori соответствуют последовательностям начала репликации pUC57 и pGS-21a, соответственно, ответственным за репликацию плазмид, lacl кодирует лактозный репрессор, T7 соответствует T7 РНК-полимеразному промотору, и MCS соответствует полилинкеру с множеством сайтов клонирования. 5'-конец оптимизированной последовательности содержит сайт эндонуклеазы рестрикции BamHI, и 3'-конец содержит сайт эндонуклеазы рестрикции HindIII для клонирования в экспрессирующий вектор pGS-21a для создания слитого белка GST-маннаногидролаза. Альтернативно, 5'-сайт BamHI заменяли на сайт эндонуклеазы рестрикции Ndel для создания белка маннаногидролазы, не связанной с GST.
Плазмиды pGS-21a-htβ, pGS-21a-gst-htβ и pUC57-htβ могут быть трансформированы в коммерчески доступные штаммы E. coli и могут культивироваться. Затем клетки могут быть собраны, лизированы, и полученный в результате раствор используют в качестве клеточного лизата. Бесклеточный экстракт может быть получен путем удаления клеточного дебриса из лизата, и затем фермент может быть выделен из экстракта. Термин "выделенный" означает, что фермент был удален из интактных клеток или из клеточного дебриса, и при условиях, отличных от естественной среды, он является свободным от других чужеродных или нежелательных нуклеиновых кислот, протеаз и липидов, и представлен в форме, подходящей для применения в качестве разжижителя для жидкостей разрыва.
Ген, кодирующий фермент маннаногидролазу, может дополнительно содержать нуклеотидную последовательность, которая по существу гомологична нуклеотидной последовательности, представленной на ФИГ.1A. Термин "по существу гомологичный" используется в настоящем документе для обозначения нуклеотидов, обладающих, по меньшей мере, 75% идентичности последовательности, более предпочтительно, по меньшей мере, 80%, более предпочтительно, по меньшей мере, 85%, и еще более предпочтительно, по меньшей мере, 90% идентичности последовательности с последовательностью, представленной на ФИГ.1.
Транслированная аминокислотная последовательность маннаногидролазы представлена на ФИГ.1B. Как правило, транслированная аминокислотная последовательность фермента маннаногиролазы, используемого для способа гидравлического разрыва, описанного в настоящем документе, по меньшей мере, на 60% гомологична транслированной аминокислотной последовательности, представленной на ФИГ.1B.
В предпочтительной форме, выделенный белок по существу свободен от других белков. Предпочтительно получение белков со степенью чистоты более чем 40%, более предпочтительно, со степенью чистоты более чем 60%. Еще более предпочтительно, получение белка в высокочистом виде, т.е., со степенью чистоты более чем 80%, более предпочтительно, со степенью чистоты более чем 95%, и еще более предпочтительно, со степенью чистоты более чем 99%, которую определяли с помощью SDS-PAGE.
Маннаногидролаза эффективно гидролизует полимер на основе гуаровой камеди в интервалах повышенных температур, таких как свыше 72°F, как правило, в интервалах pH примерно от 5 примерно до 11. Фактически, маннаногидролаза гидролизует полимер на основе гуаровой камеди при температурах, составляющих свыше 160°F, а также свыше 180°F. Кроме того, маннаногидролаза может использоваться в комбинации с другими ферментами и/или с окисляющими разжижителями для разрушения гелей гуаровой камеди при более широких температурных интервалах и интервалах pH.
Водная жидкость разрыва, используемая по изобретению, может быть получена путем смешивания гидратируемого полимера в водной жидкости. Водная жидкость может представлять собой, например, воду, солевой раствор или водно-спиртовые смеси. Для этой процедуры может использоваться любой аппарат для смешивания. В случае периодического смешивания, гидратируемый полимер и водная жидкость смешиваются в течение периода времени, которого достаточно для образования гидратируемого раствора. Гидратируемый полимер добавляют к водной жидкости в концентрациях в интервале примерно от 0,1% до 5% по массе водной жидкости. Наиболее предпочтительный интервал по настоящему изобретению составляет примерно от 0,2% до 0,8% по массе.
Гидратиуемый полимер, используемый в настоящем изобретении, представляет собой не модифицированную гуаровую камедь, а также модифицированную гуаровую камедь. Не модифицированная гуаровая камедь является предпочтительной. Примеры модифицированной гуаровой камеди включают гидроксипропилгуаровую камедь, карбоксиметилгидроксипропилгуаровую камедь и карбоксиметилгидроксиэтилцеллюлозу.
Дополнительно к ферменту-разжижителю и гидратируемому полимеру жидкость разрыва включает сшивающий агент. Сшивающий агент может представлять собой полимер с ионами металлов, включающими соединения, содержащие алюминий, сурьму, цирконий и титан, включающие так называемые органотитанаты, а также соединения, высвобождающие бораты и бор. В случае боратных сшивателей, сшивающим агентом может быть любое вещество, которое является источником боратных ионов. Подходящие боратные сшиватели включают органобораты, монобораты, полибораты, минеральные бораты, борную кислоту, борат натрия, включая ангидрид или любой гидрат, боратные минералы, такие как колеманит или улексит, а также любые боратные комплексы с органическими соединениями для задержки высвобождения боратного иона. Боратные сшивающие агенты являются предпочтительными.
Сшивающий агент предпочтительно присутствует в количестве в интервале примерно от 0,001% до свыше 0,5% по массе водной жидкости. Предпочтительно, концентрация сшивающего агента находится в интервале примерно от 0,005% примерно до 0,25% по массе водной жидкости.
Как правило, фермент вводят в виде водного раствора фермента. Массовое процентное содержание раствора фермента в жидкости для обработки скважины зависит от количества единиц активности фермента в водном растворе фермента. Например, количество водного раствора фермента, имеющего активность 30000 единиц активности фермента в жидкости для обработки скважины, как правило, составляет примерно от 0,05 примерно до 1,3 масс.%, предпочтительно, примерно от 0,103 примерно до 0,206 масс.%. Массовое процентное содержание раствора фермента, содержащего различное количество единиц активности фермента, можно определить с использованием определенного массового процентного содержания для раствора фермента, содержащего 30000 единиц активности фермента.
Оптимальное pH водной жидкости, содержащей сшиваемый полимер, является щелочным и, как правило, составляет примерно от 9,5 примерно до 11.
Жидкости разрыва по изобретению также могут содержать включенное в их состав вещество, регулирующее pH, в качестве материала, дополнительного к ферменту-разжижителю. Веществом, регулирующим pH, может быть любое вещество, которое исходно инертно, но при этом слегка гидролизует в гелеобразной жидкости разрыва с получением кислоты Брэнстеда, таким образом, постепенно снижая pH гелеобразной жидкости и активируя фермент-разжижитель. Предпочтительные вещества, регулирующие pH, включают органические ангидриды, ацилгалогениды, сульфонилгалогениды, бензилгалогениды и низкомолекулярные эфиры, которые медленно гидролизуют с получением кислот Брэнстеда. Под "низкомолекулярным" эфиром понимают, что эфир должен быть растворим в жидкости разрыва с целью осуществления его предназначенной цели гидролиза в течение периода времени с получением кислоты. Как правило, чем выше молекулярная масса, тем менее растворим эфир. В результате, эфиры с меньшей молекулярной массой являются предпочтительными в связи с легкостью применения. Предпочтительно, вещество, регулирующее pH, представляет собой низкомолекулярный эфир, выбранный из группы, состоящей из этилацетата, 2-этоксиэтилацетата, этилацетоацетата, триэтилцитрата, метилбензоата и диметилфталата. Типичные молекулярные массы для 2-этоксиэтилацетата, этилацетоацетата и триэтилцитрата, используемых в примерах, которые представлены ниже, составляет 132, 130 и 276, соответственно. Предпочтительно, количество вещества, регулирующего рН, находится в интервале примерно от 0,01% примерно до 0,85% по массе водной жидкости.
Жидкость обработки скважины может быть получена на месте с использованием пеногенератора с большими сдвиговыми усилиями или может быть транспортирована в желаемое месторасположение.
Жидкость разрыва может дополнительно содержать расклинивающий агент, который обычно добавляют к жидкости перед добавлением сшивающего агента. Подходящие расклинивающие агенты включают стандартные агенты, известные в данной области, включающие зернистый кварцевый песок, стеклянные гранулы, алюминиевые гранулы, керамику, пластмассовые гранулы, включающие полиамиды, и сверхлегкие (ULW) частицы, такие как перемолотая или измельченная шелуха орехов типа грецкого ореха, кокоса, ореха-пекана, миндаля, плода фителефаса, бразильского ореха и т.д.; перемолотая или измельченная шелуха семян (включая косточки фруктов), таких как слива, олива, персик, вишня, абрикос и т.д.; перемолотая или измельченная шелуха семян других растений, таких как маис (например, сердцевина кукурузного початка или кукурузные зерна), и т.д.; обработанный древесный материал, такой как материал, полученный из древесины, такой как древесина дуба, гикори, грецкого ореха, тополя, красного дерева и т.д., включая такую древесину, которая была обработана с помощью шлифовки, обтесывания или другой формы измельчения, обработки и т.д.
Кроме того, расклинивающий агент может включать пористую керамику или органические полимерные частицы. Пористый зернистый материал может быть обработан с использованием непористого проникающего материала, покрывающего слоя или лакирующего слоя. Например, пористый зернистый материал может представлять собой обработанный зернистый материал, определенный в Патентной публикации U.S. № 20050028979, где (a) ASG обработанного пористого материала составляет менее чем ASG пористого зернистого материала; (b) проницаемость обработанного материала составляет менее чем проницаемость пористого зернистого материала; или (c) пористость обработанного материала составляет менее чем пористость пористого зернистого материала.
Расклинивающие агенты обычно используются в концентрациях примерно от 1 до 8 фунтов на галлон состава жидкости разрыва, но если необходимо, могут использоваться более высокие или более низкие концентрации.
Жидкость разрыва также может содержать другие подходящие добавки, широко распространенные в индустрии эксплуатации скважины, такие как поверхностно-активные вещества, ингибиторы коррозии, агенты замедляющие сшивку и так далее.
В обычной операции разрыва, жидкость разрыва по изобретению прокачивают под достаточно высоким давлением для того, чтобы вызвать образование или расширение разрывов и для помещения расклинивающего агента в разрыв.
Следующие примеры являются иллюстрациями некоторых из вариантов осуществления настоящего изобретения. Все процентные содержания, представленные в Примерах, приведены в виде массовых единиц за исключением тех, что могут быть указаны иначе.
ПРИМЕРЫ
Пример 1. Ген htβ клонировали в клонирующий вектор pUC57 с созданием плазмиды pUC57-htβ и в экспрессирующий вектор pGS-21a c созданием плазмиды pGS-21a-htβ. Плазмиды pGS-21a-htβ и pUC57-htβ трансформировали в компетентные клетки E. Coli, штаммы BL21 (DE3) или DH5a, и культивировали в 5 мл питательной среды LB-Miller при 98,6°F при 200 об./мин. в течение 16 часов. Культуральный бульон с добавленным в него ампициллином в концентрации 100 мкг/мл использовали в качестве посевного материала для 100 мл культуры E. coli, несущей плазмиды pGS-21a-htβ или pUC57-htβ. Эти культуры растили при 98,6°F и при 200 об./мин. Через 4 часа к культуре добавляли изопропил-β-D-1-тиогалактопиранозид (IPTG) до конечной концентрации 0,1 мМ. Через 3 часа инкубации в присутствии IPTG, клетки охлаждали до 39°F и собирали с помощью центрифугирования при 3000 об./мин. в течение 20 минут. Культуральную среду затем удаляли и клетки хранили при -4°F до момента применения. Клетки затем размораживали и ресуспендировали в 5 мл охлажденного 50 мМ натриево-фосфатного буфера. Лизоцим добавляли до конечной концентрации 1 мг/мл, и культуру инкубировали при комнатной температуре в течение 30 минут. Нуклеиновые кислоты разрушали с помощью коротких стимулов ультразвука, и конечный бесклеточный экстракт (CFX) получали путем центрифугирования.
Пример 2. Около 1 г/т стандартного фермента бета-маннаназы, коммерчески доступного как GBW-12CD от BJ Services Company, разводили в объемном соотношении 1:33 в воде, и добавляли около 2 мл CFX Примера 1, содержащего pGS-21a-htβ и pUC57-htβ, к 100 мл водной жидкости, содержащей 25 частей на триллион GW3, 2 г/т BF-7L и 1 г/т XLW-32, и инкубировали в течение 18 часов при 180°F. (GW-3 представляет собой агент суспензии гуаровой камеди, XLW-32 представляет собой боратный сшивающий агент, и BF-7L представляет собой буферный агент, каждый из которых коммерчески доступен в BJ Services Company). Образцам затем давали охладиться до комнатной температуры, и их вязкость измеряли с использованием вискозиметра Fann 35. Результаты представлены на ФИГ.3, где иллюстрируется, что маннаногидролаза обеспечивает почти полное снижение вязкости гуаровой камеди через 18 часов при 180°F, в то время как стандартный ферментный продукт не проявляет себя в качестве эффективного средства в снижении вязкости поперечно сшитой жидкости при данных температуре и pH. Стрелка на ФИГ.3 соответствует неразрушенному образцу. Исходное значение pH всех образцов составило 10,5.
Пример 3. Около 1 г/т стандартного фермента Примера 3 и 2 мл CFX из образцов, содержащих pGS-21a-htβ и pUC57-htβ из Примера 1, добавляли к 100 мл водной жидкости, содержащей 25 частей на триллион GW3, 2 г/т BF-7L и 1 г/т XLW-32, и инкубировали в течение 18 часов при 160°F. Образцы использовали при pH 6,5 и 10,5. Было продемонстрировано, что стандартный фермент, GBW-12, разрушает образец GW-3 при pH 6,5, но не при 10,5. Образцы, содержащие маннаногидролазу, обеспечивали частичное или полное разрушение поперечно сшитого GW-3 через 18 часов при 160°F. вязкости измеряли на приборе Fann 35, и их значения представлены на ФИГ.4, где демонстрируется снижение вязкости с помощью маннаногидролазы в 25 частей на триллион образца GW-3, поперечно сшитого с помощью бората. Стрелка соответствует неразрушенному образцу.
Пример 4. Получали 100 мл водной жидкости, содержащей 25 частей на триллион GW3, 1,5 г/т BF-7L и 1,5 г/т сшивающего агента в виде боратного минерала, суспендированного в нефтяном масле, коммерчески доступного в BJ Services Company в виде XLW-30. pH раствора составило 10,8. Затем получали образец. Один образец, обозначенный как (-), не содержал фермента в жидкости. Другой образец, обозначенный как (+), содержал 0,75 г/т разведенного 1/25 раствора маннаногидролазы, CFX, полученной из экспрессирующего вектора pGS21a-htβ. ФИГ.5 демонстрирует снижение вязкости двух образцов через 10 часов при 180°F. ФИГ.6 демонстрирует снижение вязкости двух образцов через 10 часов при 140°F.
Пример 5. Получали 100 мл водной жидкости, содержащей 25 частей на триллион GW3, 1,3 г/т BF-7L и 1 г/т сшивающего агента XLW-32, для тестов при 72°F и 140°F. Получали вторые 100 мл водной жидкости, содержащей 25 частей на триллион GW3, 2 г/т BF-7L и 1,5 г/т сшивающего агента XLW-32, для тестов при 200°F. Во всех образцах концентрация фермента маннаногидролазы составила 0,5 г/т. Реологические свойства каждого образца измеряли на вискозиметре Chandler HTHP 5550 при 100 сек-1. ФИГ.7 демонстрирует реологические профили тестов при различных температурах и демонстрирует, что маннаногидролаза эффективна в снижении вязкости поперечно сшитого полимера галактоманнана в температурном интервале от 72°F до, по меньшей мере, 200°F.
Примеры 2, 3, 4 и 5 демонстрируют, что жидкости, содержащие маннаногидролазу, эффективно гидролизуют полимер на основе гуаровой камеди в интервалах повышенных температур и при таких pH, когда стандартный фермент не настолько эффективен.
Пример 6. Данный пример иллюстрирует восстановленную проводимость барьера из расклинивающего агента, обработанного с использованием водной жидкости, которая содержит фермент-разжижитель маннаногидролазу. Получали два образца по 100 мл водной жидкости, содержащих 25 частей на триллион GW-3, 1,5 г/т BF-7L и 1,3 г/т XLW-30. Один образец дополнительно содержал 1,25 г/т (разведение 1/5) маннаногидролазы (упомянутой в Примере 6); другой образец не содержал никакого фермента. 60-мл шприц оснащали проволочной мембраной 30 меш, обрезанной по внутреннему диаметру шприца. К мембране прилагался кусок фильтровальной бумаги (размер пор 2,5 мкм), которую также обрезали по внутреннему диаметру шприца. Затем на фильтровальную бумагу наносили 10 граммов 20/40 CarboProp, расклинивающего агента Carbo Ceramics. Затем добавляли 100 мл поперечно сшитой жидкости к слою расклинивающего агента и продавливали через барьер из расклинивающего агента до тех пор, пока плунжер не остановится наверху барьера из расклинивающего агента. На конец шприца надевали колпачок, и шприц погружали в водяную баню при 180°F на 24 часа. Затем шприц удаляли из водяной бани и давали ему охладиться до комнатной температуры. Затем шприц переворачивали и плунжер мягко удаляли для минимизации повреждений барьера из расклинивающего агента. Барьер из расклинивающего агента помещали на синее блюдце весов и немедленно визуализировали под сложным световым микроскопом с 10-м увеличением. На ФИГ.8 представлены микрофотографии барьеров из расклинивающего агента, иллюстрирующие проводимость суспензии, не содержащей маннаногидролазу (микрофотография А), по сравнению с суспензией, содержащей фермент маннаногидролазу (микрофотография В).
Как представлено на микрофотографии A, барьер из расклинивающего агента обладает высокоточной структурой, обозначающей то, что жидкость разрыва остается поперечно сшитой. (Оставшаяся жидкость из шприца также была поперечно сшита). Микрофотография B иллюстрирует барьеры из расклинивающего агента без четкой структуры, где барьер "распадается" немедленно после удаления из шприца. Оставшаяся жидкость из шприца была подобна воде, имея очень низкую вязкость. Барьеры из расклинивающего агента из жидкостей, содержащих мананногидролазу, демонстрировали состояния от геля с небольшим количеством поперечных сшивок до геля без поперечных сшивок. Это предполагает превосходную очистку и высокую степень получения проницаемости барьера из расклинивающего агента.
Пример 7. Далее данный пример иллюстрирует получение фермента маннаногидролазы в процессе ферментации с загрузкой 10 литров. Ген htβ клонировали в экспрессирующий вектор pGS21-a с использованием эндонуклеаз рестрикции NdeI и HindIII с созданием маннаногидролазы, не связанной с GST. Полученный в результате экспрессирующий вектор трансформировали в клетки BL21 (DE3) E. coli и высевали на чашки с LB-агаром, содержащим 100 мкг/мл ампициллина. Чашки инкубировали при 98,6°F в течение ночи. Одну колонию выкалывали с чашки и использовали в качестве посевного материала в 100 мл бульона LB-Miller, содержащего 100 мкг/мл ампициллина. Культуру инкубировали в течение ночи при 98,6°F при 200 об./мин.
100 мл ночной культуры использовали в качестве посевного материала в 10 л среды Terrific Broth в ферментере Bioflow 3000 из New Brunswick Scientific. Ампициллин добавляли до конечной концентрации 100 мкг/мл. Ферментационную культуру растили в течение 24 часов при 98,6°F с максимальным перемешиванием и подпиткой сжатым воздухом для поддержания максимально возможной аэрации. Глицерин добавляли со скоростью 4 мл/час в течение полных 24 часов. Раствор противовспенивателя добавляли по необходимости. По достижении OD600 значения 0,5 добавляли к смеси стерильный раствор лактозы, так, чтобы конечная концентрация лактозы в системе составила 15 мМ. Через 24 часа клеточную культуру сохраняли при 39°F до момента следующей обработки.
Затем клеточную культуру гомогенизировали и клеточный дебрис удаляли или посредством центрифугирования, или фильтрации через полиэфирсульфоновую мембрану с размером пор 0,2 мкм. Полученный в результате раствор затем можно было использовать в качестве раствора фермента маннаногидролазы или по необходимости подвергать его дополнительному концентрированию. В данном примере, фильтрат концентрировали с помощью проточной фильтрации вдоль потока (TFF) с использованием полиэфирсульфонового фильтра 30000 MWCO. Ультраконцентрат затем использовали в качестве раствора фермента маннаногидролазы.
Другие варианты осуществления в рамках данной формулы изобретения будут очевидны специалисту в данной области из описания изобретения, представленного в данном документе. Подразумевается, что описание изобретения вместе с примерами рассматриваются только в качестве примера, в то время как рамки и сущность изобретения определены с помощью формулы изобретения, представленной ниже.

Claims (19)

1. Способ разрыва подземной формации, имеющей температуру в скважине, составляющую свыше 160°F, включающий введение в формацию водной гелеобразующей жидкости разрыва с рН от 9,5 до 11, включающей:
(a) гидратируемый полимер, выбранный из группы, состоящей из гуаровой камеди и из модифицированных гуаровых камедей;
(b) сшивающий агент для поперечной сшивки гидратируемого полимера с образованием полимерного геля; и
(c) фермент-разжижитель, включающий фермент маннаногидролазу, который имеет аминокислотную последовательность, которая, по меньшей мере, на 90% гомологична аминокислотной последовательности SEQ ID NO:2.
2. Способ по п. 1, где гидратируемый полимер представляет собой немодифицированную гуаровую камедь.
3. Способ по п. 1, где сшивающий агент содержит бор или способен обеспечивать жидкость ионами бора.
4. Способ по п. 1, где температура в скважине подземной формации составляет до 180°F.
5. Способ по п. 1, где гуаровая камедь выбрана из группы, состоящей из гидроксипропилпроизводного гуаровой камеди, карбоксиметилгидроксипропилпроизводного гуаровой камеди и карбоксиметилгидроксизтилцеллюлозы.
6. Способ по п. 1, где сшивающий агент представляет собой полимерный сшивающий агент, содержащий металл, выбранный из группы, состоящей из алюминия, сурьмы, циркония и титана.
7. Способ по п. 1, где гидратируемый полимер представлен в виде раствора, выбранного из группы, состоящей из водного раствора, солевого раствора и водно-спиртовой смеси.
8. Способ по п. 1, где водная гелеобразующая жидкость разрыва дополнительно включает вещество, регулирующее рН.
9. Способ по п. 1, где водную гелеобразующую жидкость разрыва получают на месте.
10. Способ по п. 1, где водная гелеобразующая жидкость разрыва дополнительно содержит расклинивающий агент.
11. Способ по п. 1, где водная гелеобразующая жидкость разрыва дополнительно содержит, по меньшей мере, одну добавку, выбранную из группы, состоящей из поверхностно-активных веществ, ингибиторов коррозии и агентов, замедляющих поперечную сшивку.
12. Способ гидравлического разрыва подземной формации, имеющей температуру в скважине, составляющую свыше 160°F, включающий введение в формацию водной гелеобразующей жидкости разрыва под давлением, достаточным для создания или расширения разрывов в формации, с рН от 9,5 до 11, указанная жидкость включает:
(a) гидратируемый полимер, выбранный из группы, состоящей из немодифицированных гуаровых камедей и из модифицированных гуаровых камедей;
(b) сшивающий агент для поперечной сшивки гидратируемого полимера с образованием полимерного геля; и
(c) фермент-разжижитель, включающий фермент маннаногидролазу, который имеет аминокислотную последовательность, которая, по меньшей мере, на 90% гомологична аминокислотной последовательности SEQ ID No:2.
13. Способ по п. 12, где температура в скважине подземной формации составляет свыше 180°F.
14. Способ по п. 12, где гидратируемый полимер представляет собой немодифицированную гуаровую камедь.
15. Способ по п. 1, где сшивающий агент содержит бор или способен обеспечивать жидкость ионами бора.
16. Способ по п. 12, где гуаровая камедь выбрана из группы, состоящей из гидроксипропилпроизводного гуаровой камеди, карбоксиметилгидроксипропилпроизводного гуаровой камеди и карбоксиметилгидроксиэтилцеллюлозы.
17. Способ по п. 12, где водную гелеобразующую жидкость разрыва получают на месте.
18. Способ разрыва подземной формации, имеющей температуру в скважине, составляющую свыше 160°F, включающий введение в формацию водной гелеобразующей жидкости разрыва с рН от 9,5 до 11, включающей:
(a) водную жидкость, выбранную из группы, состоящей из воды, солевого раствора и водно-спиртовых смесей;
(b) гидратируемый полимер, выбранный из группы, состоящей из немодифицированной гуаровой камеди, гидроксипропилпроизводного гуаровой камеди, карбоксиметилгидроксипропилпроизводного гуаровой камеди и карбоксиметилгидроксиэтилцеллюлозы;
(c) сшивающий агент для поперечной сшивки гидратируемого полимера с образованием полимерного геля, где сшивающий агент содержит бор или способен обеспечивать жидкость ионами бора; и
(d) фермент-разжижитель, включающий фермент маннаногидролазу, который имеет аминокислотную последовательность, которая, по меньшей мере, на 90% гомологична аминокислотной последовательности SEQ ID NO:2.
19. Способ по п. 18, где температура в скважине подземной формации составляет до 180°F.
RU2012119789/10A 2009-10-15 2010-09-21 Термофильная маннаногидролаза и содержащие ее жидкости разрыва RU2557297C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/579,771 US8058212B2 (en) 2009-10-15 2009-10-15 Method of fracturing using mannanohydrolase enzyme breaker
US12/579,771 2009-10-15
PCT/US2010/002579 WO2011046585A1 (en) 2009-10-15 2010-09-21 Thermophilic mannanohydrolase and fracturing fluids containing the same

Publications (2)

Publication Number Publication Date
RU2012119789A RU2012119789A (ru) 2013-11-20
RU2557297C2 true RU2557297C2 (ru) 2015-07-20

Family

ID=43228374

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012119789/10A RU2557297C2 (ru) 2009-10-15 2010-09-21 Термофильная маннаногидролаза и содержащие ее жидкости разрыва

Country Status (10)

Country Link
US (1) US8058212B2 (ru)
CN (1) CN102822195A (ru)
AU (1) AU2010307295B2 (ru)
BR (1) BR112012012144A2 (ru)
CA (1) CA2775446C (ru)
GB (1) GB2487340B (ru)
IN (1) IN2012DN02995A (ru)
MX (1) MX2012004372A (ru)
RU (1) RU2557297C2 (ru)
WO (1) WO2011046585A1 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8486867B2 (en) * 2009-10-15 2013-07-16 Baker Hughes Incorporated Method of fracturing using mannanohydrolase enzyme breaker
US8833457B2 (en) * 2011-03-08 2014-09-16 Baker Hughes Incorporated Sulfates and phosphates as allosteric effectors in mannanohydrolase enzyme breakers
WO2014154814A1 (en) 2013-03-28 2014-10-02 Basf Se Method for blocking permeable zones in oil and natural gas bearing subterranean formations by in-situ xyloglucan degalactosylation
US9856414B2 (en) 2013-06-10 2018-01-02 Dober Chemical Corp. Compositions, systems and methods of making coated additive components
CN104559994A (zh) * 2013-10-14 2015-04-29 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种生物破胶剂
CN110664012A (zh) * 2013-12-23 2020-01-10 尤尔实验室有限公司 蒸发装置系统和方法
US10215008B2 (en) * 2014-09-24 2019-02-26 Halliburton Energy Services, Inc. Polymeric metal crosslinker for shear tolerant fracturing fluid application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007124428A (ru) * 2007-03-02 2009-01-10 Трайкэн Велл Сервис Лтд. (Ca) Устройство и способ гидравлического разрыва пласта

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874558A (en) 1986-03-17 1999-02-23 Novo Nordisk Nucleic acid encoding a recombinant humicola sp. lipase
US5800992A (en) 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5165477A (en) 1990-12-21 1992-11-24 Phillips Petroleum Company Enzymatic decomposition of drilling mud
US5067566A (en) 1991-01-14 1991-11-26 Bj Services Company Low temperature degradation of galactomannans
US5226479A (en) 1992-01-09 1993-07-13 The Western Company Of North America Fracturing fluid having a delayed enzyme breaker
US5247995A (en) 1992-02-26 1993-09-28 Bj Services Company Method of dissolving organic filter cake obtained from polysaccharide based fluids used in production operations and completions of oil and gas wells
US5201370A (en) 1992-02-26 1993-04-13 Bj Services Company Enzyme breaker for galactomannan based fracturing fluid
US5224544A (en) 1992-02-26 1993-07-06 Bj Services Company Enzyme complex used for breaking crosslinked cellulose based blocking gels at low to moderate temperatures
DK38893D0 (da) 1993-03-31 1993-03-31 Novo Nordisk As Dna
US5421412A (en) * 1994-03-10 1995-06-06 North Carolina State University Methods and compositions for fracturing subterranean formations
US5421409A (en) 1994-03-30 1995-06-06 Bj Services Company Slag-based well cementing compositions and methods
US5441109A (en) 1994-04-19 1995-08-15 The Western Company Of North America Enzyme breakers for breaking fracturing fluids and methods of making and use thereof
US5562160A (en) 1994-08-08 1996-10-08 B. J. Services Company Fracturing fluid treatment design to optimize fluid rheology and proppant pack conductivity
US5437331A (en) 1994-08-24 1995-08-01 The Western Company Of North America Method for fracturing subterranean formations using controlled release breakers and compositions useful therein
US5566759A (en) 1995-01-09 1996-10-22 Bj Services Co. Method of degrading cellulose-containing fluids during completions, workover and fracturing operations of oil and gas wells
US5547026A (en) 1995-04-19 1996-08-20 Bj Services Company Crosslinked guar based blocking gel system for use at low to high temperatures
WO1997025417A1 (en) 1996-01-11 1997-07-17 Recombinant Biocatalysis, Inc. Glycosidase enzymes
US5806597A (en) 1996-05-01 1998-09-15 Bj Services Company Stable breaker-crosslinker-polymer complex and method of use in completion and stimulation
US5881813A (en) 1996-11-06 1999-03-16 Bj Services Company Method for improved stimulation treatment
US20050028979A1 (en) 1996-11-27 2005-02-10 Brannon Harold Dean Methods and compositions of a storable relatively lightweight proppant slurry for hydraulic fracturing and gravel packing applications
DE69733322T2 (de) 1996-12-06 2006-02-02 Diversa Corp., San Diego Glycosidase-enzyme
US6110875A (en) 1997-03-07 2000-08-29 Bj Services Company Methods and materials for degrading xanthan
CN101024826B (zh) 1998-06-10 2014-09-03 诺沃奇梅兹有限公司 新的甘露聚糖酶
US6138760A (en) 1998-12-07 2000-10-31 Bj Services Company Pre-treatment methods for polymer-containing fluids
US20020193343A1 (en) * 2000-09-27 2002-12-19 Khan Saad A. Controlled enzymatic degradation of guar galactomannan solutions using enzymatic inhibition
US7585818B2 (en) 2005-05-10 2009-09-08 Halliburton Energy Services, Inc. Nonnatural galactomannans and methods of use
EP2021432B1 (en) * 2006-05-19 2012-02-01 Hercules Incorporated Oxidized guar for oilfield servicing fluids
CN101412905B (zh) * 2008-11-28 2010-12-15 中国石油集团川庆钻探工程有限公司 一种水力压裂的复合压裂液的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007124428A (ru) * 2007-03-02 2009-01-10 Трайкэн Велл Сервис Лтд. (Ca) Устройство и способ гидравлического разрыва пласта

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUTHI E et.al. Cloning, sequence analysis, and expression in Escherichia coli of a gene coding for a beta-mannanase from the extremely thermophilic bacterium "Caldocellum saccharolyticum", Appl Environ Microbiol. 1991 March; 57(3): 694-700. *

Also Published As

Publication number Publication date
AU2010307295B2 (en) 2014-01-23
RU2012119789A (ru) 2013-11-20
WO2011046585A1 (en) 2011-04-21
US20110092397A1 (en) 2011-04-21
AU2010307295A1 (en) 2012-05-03
US8058212B2 (en) 2011-11-15
CA2775446C (en) 2017-08-29
GB2487340A (en) 2012-07-18
BR112012012144A2 (pt) 2016-04-12
GB2487340B (en) 2017-08-23
CN102822195A (zh) 2012-12-12
IN2012DN02995A (ru) 2015-07-31
GB201208509D0 (en) 2012-06-27
CA2775446A1 (en) 2011-04-21
MX2012004372A (es) 2012-06-12

Similar Documents

Publication Publication Date Title
US8486867B2 (en) Method of fracturing using mannanohydrolase enzyme breaker
RU2557297C2 (ru) Термофильная маннаногидролаза и содержащие ее жидкости разрыва
US5869435A (en) Compositions for fracturing subterranean formations
McCutchen et al. Characterization of extremely thermostable enzymatic breakers (α‐1, 6‐galactosidase and β‐1, 4‐mannanase) from the hyperthermophilic bacterium Thermotoga neapolitana 5068 for hydrolysis of guar gum
US8096360B2 (en) Alkaline β-mannanase containing compositions useful for the hydrolysis of guar in high pH environments and methods related thereto
US5226479A (en) Fracturing fluid having a delayed enzyme breaker
NO303744B1 (no) Fremgangsmöte til avstivning av brudd i geologiske formasjoner og hydraulisk vµske til samme
WO1995028548A1 (en) Enzyme breakers for breaking fracturing fluids and methods of making and using thereof
US20230183559A1 (en) Glycosyl hydrolase enzymes in high temperature industrial processes
KR20140139118A (ko) 극한의 갱정 조건 하에서 구아 파쇄액을 가수 분해하기 위한 셀룰라아제를 코딩하는 유전자
Hu et al. Performance of a new thermostable mannanase in breaking guar-based fracturing fluids at high temperatures with little premature degradation
Berezina et al. Xanthan: enzymatic degradation and novel perspectives of applications
US8844629B2 (en) Method of fracturing using alkaliphile derived enzyme breaker
CA2861254C (en) Compositions useful for the hydrolysis of guar in high ph environments and methods related thereto

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200922