RU2552643C2 - Способ осуществления связи в сети - Google Patents

Способ осуществления связи в сети Download PDF

Info

Publication number
RU2552643C2
RU2552643C2 RU2011148594/07A RU2011148594A RU2552643C2 RU 2552643 C2 RU2552643 C2 RU 2552643C2 RU 2011148594/07 A RU2011148594/07 A RU 2011148594/07A RU 2011148594 A RU2011148594 A RU 2011148594A RU 2552643 C2 RU2552643 C2 RU 2552643C2
Authority
RU
Russia
Prior art keywords
station
primary station
communication
communication scheme
secondary station
Prior art date
Application number
RU2011148594/07A
Other languages
English (en)
Other versions
RU2011148594A (ru
Inventor
Милош ТЕСАНОВИЧ
Тимоти МОУЛСЛИ
Мэттью Бейкер
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Шарп Кабусики Кайся
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В., Шарп Кабусики Кайся filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2011148594A publication Critical patent/RU2011148594A/ru
Application granted granted Critical
Publication of RU2552643C2 publication Critical patent/RU2552643C2/ru

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/0434Power distribution using multiple eigenmodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Изобретение относится к системе беспроводной связи, применяющей режим множество входов, множество выходов (MIMO). Изобретение относится к способу работы системы связи в сети, причем система содержит первичную станцию и, по меньшей мере, одну вторичную станцию, причем первичная станция содержит множество передающих антенн, а вторичная станция содержит множество приемных антенн, при этом способ содержит этапы, на которых: выбирают на первичной станции первую схему связи из множества схем связи, вычисляют на первичной станции вектор передачи на основании первой схемы связи и вычисляют на вторичной станции вектор приема на основании второй схемы связи, причем вторичная станция выбирает вторую схему связи из множества схем связи, исходя из того, что первичная станция использует заранее определенную схему связи. 4 н. и 12 з.п. ф-лы, 1 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к способу осуществления связи в сети связи. В частности, оно относится к способу осуществления связи между первичной станцией и одной или более вторичными станциями в режиме MIMO (множество входов, множество выходов). Оно также относится к первичным станциям или вторичным станциям, способным реализовать такой способ.
Это изобретение подходит, например, для всех беспроводных сетей связи и, в качестве примера, приведенном в нижеследующем описании, для сети мобильной связи, такой как UMTS или UMTS LTE.
Уровень техники
В сетях связи для увеличения предельной пропускной способности системы связи широко применяется режим MIMO (множество входов, множество выходов). MIMO предусматривает использование множества антенн на передатчике и на приемнике для повышения производительности связи. Этот режим действительно обеспечивает значительное увеличение скорости передачи данных без дополнительного расширения полосы или увеличения мощности передачи за счет повышения эффективности использования спектра (больше битов в секунду на один герц полосы) и надежности линии связи.
Многопользовательский MIMO (MU-MIMO) представляет собой усовершенствованный MIMO, позволяющий станции одновременно осуществлять связь с множеством пользователей в одной и той же полосе. В иллюстративном варианте осуществления изобретения сеть мобильной связи содержит первичную станцию (базовую станцию или NodeB или eNodeB), которая может одновременно осуществлять связь с множеством вторичных станций (мобильных станций или пользовательским оборудованием (UE)) посредством потоков MIMO, используя множество антенн первичной станции и множество антенн вторичной станции. Для формирования потока вторичные станции снабжают первичную станцию информацией о состоянии канала, передавая CSI (информацию состояния канала) в порядке обратной связи с первичной станцией. Такая CSI указывает оптимальный или, по меньшей мере, предпочтительный вектор предварительного кодирования, используемый для максимизации предельной скорости передачи данных, соответствующей пространственно разделимому потоку данных, передаваемому первичной станцией. Этот вектор предварительного кодирования может представлять собой набор комплексных значений, применяемых к каждому антенному порту первичной станции при передаче для направления потока данных на антенны вторичной станции.
Однако, применительно к MU-MIMO, использование сигнализируемого вектора предварительного кодирования может приводить к появлению луча, создающего помехи для другой вторичной станции, которая в это время осуществляет связь с первичной станцией. Кроме того, вторичная станция не способна оценивать, где находятся станции, создающие помехи, и может ли использование вектора предварительного кодирования создавать помеху.
Кроме того, для конкретных режимов передачи, например режима MIMO на основе сингулярного разложения (SVD), необходимо согласовывать постобработку, осуществляемую вторичной станцией, и предобработку, осуществляемую первичной станцией, например, для достижения диагонализации матрицы передачи. Однако гибкость системы в целом снижается, если режим передачи или отдельные аспекты режима передачи необходимо переинициализировать при каждом событии, например изменении местоположения вторичной станции или появлении в сети источника помехи. Такая переинициализация может потребовать больших объемов сигнализации для перенастройки системы передачи.
Раскрытие изобретения
Задачей изобретения является обеспечение способа, который снижает остроту вышеупомянутой проблемы.
Другой задачей изобретения является обеспечение способа осуществления связи между первичной станцией, позволяющего гибко использовать систему передачи многорежимного MIMO.
Еще одной задачей одного из вариантов осуществления изобретения является обеспечение способа осуществления связи в сети, позволяющего применять многопользовательский MIMO, когда требуется сокращение объема сигнализации.
В соответствии с первым аспектом изобретения, предусмотрен способ работы системы связи в сети, причем система содержит первичную станцию и, по меньшей мере, одну вторичную станцию, причем первичная станция содержит множество передающих антенн и вторичная станция содержит множество приемных антенн, при этом способ содержит этапы, на которых:
выбирают на первичной станции первую схему связи из множества схем связи,
вычисляют на первичной станции вектор передачи на основании первой схемы связи,
вычисляют на вторичной станции вектор приема на основании второй схемы связи, причем вторичная станция выбирает вторую схему связи из множества схем связи исходя из того, что первичная станция использует заранее определенную схему связи.
В соответствии со вторым аспектом изобретения, предусмотрен способ работы вторичной станции в сети, содержащей первичную станцию, осуществляющую связь с множеством вторичных станций, причем способ содержит этапы, на которых вычисляют на вторичной станции вектор приема согласно заранее определенной схеме связи, оценивают комбинированный канал на основании произведения фактического канала и вектора приема.
В соответствии с третьим аспектом изобретения, предусмотрена вторичная станция, причем вторичная станция содержит средство связи для осуществления связи в сети с первичной станцией, причем вторичная станция содержит средство управления для вычисления вектора приема согласно заранее определенной схеме связи и для оценивания комбинированного канала на основании произведения фактического канала и вектора приема.
В соответствии с четвертым аспектом изобретения, предусмотрена первичная станция, содержащая средство для осуществления связи в сети с, по меньшей мере, одной вторичной станцией, причем первичная станция содержит множество передающих антенн и вторичная станция содержит множество приемных антенн, причем первичная станция дополнительно содержит средство управления для выбора первой схемы связи из множества схем связи и для вычисления вектора передачи на основании первой схемы связи, причем первая схема связи отличается от заранее определенной схемы связи, используемой вторичной станцией.
Таким образом, это изобретение формирует набор механизмов связи со множеством входов и выходов (MIMO) между центральным объектом сети (первичной станцией, или eNodeB применительно к LTE) и, по меньшей мере, одной вторичной станцией (мобильной станцией, или пользовательским оборудованием применительно к LTE). Механизмы, описанные в этом изобретении, обеспечивают дополнительную гибкость при выборе пользователей и/или потоков за счет улучшения предварительного кодирования, осуществляемого центральным объектом сети. Согласно изобретению это обеспечивается за счет того, что центральному объекту сети известно, какую постобработку осуществляет вторичная станция. Это дает то преимущество, что предварительное кодирование не ограничивается режимом, на который настроена вторичная станция. Действительно, согласно варианту осуществления первичная станция способна переходить от первого режима передачи ко второму режиму передачи, хотя вторичная станция может даже не знать об этом переходе и продолжать вычислять весовые коэффициенты приема или постобработку в соответствии с этим первым режимом передачи. Это дает первичной станции дополнительную гибкость.
Эти и другие аспекты изобретения будут очевидны из и пояснены со ссылкой на описанные ниже варианты осуществления.
Краткое описание чертежей
Ниже представлено подробное описание настоящего изобретения, в качестве примера, со ссылкой на прилагаемый чертеж, на котором:
Фиг.1 - блок-схема сети, в которой реализован первый вариант осуществления изобретения.
Осуществление изобретения
Настоящее изобретение относится к сети связи, имеющей первичную станцию и множество вторичных станций, осуществляющих связь с первичной станцией. Такая сеть проиллюстрирована, например, на Фиг.1, где первичная станция или базовая станция 100 осуществляет беспроводную связь с множеством вторичных станций 101, 102, 103 и 104. В иллюстративном примере изобретения вторичные станции 101-104 являются мобильными станциями или пользовательскими оборудованиями сети UMTS.
В соответствии с первым вариантом осуществления изобретения, первичная станция 100 содержит антенную решетку, содержащую множество антенн, и усилитель комплексного напряжения, что позволяет первичной станции 100 формировать диаграмму направленности, например диаграмму направленности MIMO. Первичная станция обычно содержит четыре антенны. В наиболее передовых версиях LTE первичные станции могут содержать 8, 16 и более антенн. Аналогично, вторичные станции 101-104 содержат множество антенн, например 2 антенны для UE, отвечающих первому выпуску LTE. В более поздних выпусках вторичные станции могут иметь 4 или 8 антенн, или даже больше. Благодаря антенным решеткам, первичная станция 100 может формировать лучи потоков данных, например лучи 150 и 151, изображенные на Фиг.1. Для формирования луча и установления связи по схеме MIMO необходимо генерировать векторы предварительного кодирования, для чего требуется информация о состоянии канала и вычисление как на вторичной станции, так и на первичной станции.
В системах MIMO, которые поддерживают передачу множества независимых потоков, например в системах MIMO с сингулярным разложением (SVD), данные для вторичной станции предварительно кодируются правыми сингулярными векторами канальной матрицы, а затем подвергаются постобработке на вторичной станции с использованием левых сингулярных векторов. Таким образом, пре- и постобработка согласуются между собой, благодаря чему эквивалентный канал диагонализируется для поддержки передачи множества потоков без межпотоковой помехи.
В линейной алгебре сингулярное разложение (SVD) является полезным инструментом разложения прямоугольной действительной или комплексной матрицы. Приложения, где применяется SVD, включают в себя, например, вычисление псевдообратной матрицы, аппроксимацию данных методом наименьших квадратов, матричную аппроксимацию и определение ранга, области значений и нуль-пространства матрицы.
Пусть M есть матрица m×n, элементы которой принадлежат полю K, которое является либо полем действительных чисел, либо полем комплексных чисел. Тогда существует разложение в виде
M = UΣV*,
где U - унитарная матрица m×m в K, матрица Σ - диагональная матрица m×n с неотрицательными действительными числами на диагонали, и V* обозначает унитарную матрицу n×n в K, полученную комплексным сопряжением и транспонированием матрицы V. Такое разложение называется сингулярным разложением M.
Согласно общему соглашению диагональные элементы Σi,i упорядочены невозрастающим образом. В этом случае, диагональная матрица Σ уникально определяется матрицей M (в отличие от матриц U и V). Диагональные элементы Σ называются сингулярными значениями M.
В M=UΣV* столбцы V задают набор ортонормированных "входных" или "анализирующих" базисных векторов для M, столбцы U задают набор ортонормированных "выходных" базисных векторов для M, матрица Σ содержит сингулярные значения, которые можно рассматривать как скалярные "коэффициенты усиления", на которые умножается каждое соответствующее входное значение для получения соответствующего выходного значения.
Кроме того, заметим, что неотрицательное действительное число σ является сингулярным значением для M тогда и только тогда, когда существуют единичные векторы u в Km и v в Kn, так что
Mv=σu и M*u=σv
Векторы u и v называются, соответственно, левым и правым сингулярными векторами для σ.
В любом сингулярном разложении M=UΣV* диагональные элементы Σ с необходимостью равны сингулярным значениям M. Столбцы U и V являются, соответственно, левым и правым сингулярными векторами для соответствующих сингулярных значений. Таким образом, вышеприведенная теорема утверждает, что:
матрица M размером m×n имеет, по меньшей мере, одно и, самое большее, p=min(m,n) различных сингулярных значений.
Однако передатчик, в данном случае, первичная станция 100, если располагает информацией о канале, M, также должен знать весовые коэффициенты, которые будет использовать приемник, например вторичная станция 101, чтобы иметь возможность вычислять соответствующий прекодер. Это еще важнее, если действует ограничение, согласно которому первичная и вторичная станции должны работать в одном и том же режим MIMO.
В типичной системе SVD первичная станция будет вычислять матрицу V правых сингулярных векторов на основании канальной матрицы, принимаемой в порядке обратной связи от вторичной станции. Это налагает на первичную станцию ограничение в отношении режима передачи, который она может использовать. Если, например, первичная станция решила использовать принудительное обнуление (ZF) и/или осуществлять диспетчеризацию множества пользователей в режиме MU-MIMO, ей придется перенастроить систему, для чего требуется сигнализация параметров передачи, по меньшей мере, с первичной станции и, в ряде случаев, с обеих сторон. Знание матрицы постобработки U, используемой вторичными станциями 101-104, позволяет первичной станции модифицировать предварительное кодирование в новой матрице Vnew.
Таким образом, в соответствии с этим первым вариантом осуществления изобретения, предполагается, что для установления линии связи методом, который будет использоваться для передачи множественных потоков с первичной станции 100 на вторичную станцию, является сингулярное разложение (SVD). Вторичная станция 101, снабженная N приемными антеннами, будет вычислять левые сингулярные векторы оценочной канальной матрицы и использовать их для линейной обработки N принятых сигналов с целью реконструировать N независимых потоков данных. Вторичная станция может информировать первичную станцию, сигнализируя результат такой оценки.
В первой версии этого варианта осуществления, первичная станция осуществляет связь только с одной вторичной станцией по схеме MIMO. В этом примере, первичная станция 100 может снижать эффективный ранг передачи в ходе передачи. Под рангом передачи понимают количество пространственно разделимых потоков данных при осуществлении связи по схеме MIMO между первичной станцией и данной вторичной станцией. Заметим, что ранг не может превышать минимальное количество антенн первичной станции и вторичной станции. Например, вторичная станция, имеющая четыре антенны, не может принимать более четырех пространственно разделимых потоков, поэтому ранг ее связи не может превышать 4. Кроме того, шестиантенная первичная станция не может передавать более 16 лучей, не создавая помехи между ними. В порядке примера, такая первичная станция может одновременно передавать четыре передачи 4 ранга по схеме MIMO на четыре вторичные станции, или одну передачу 4 ранга по схеме MIMO на одну вторичную станцию и две передачи 2 ранга по схеме MIMO на две другие вторичные станции и восемь передач 1 ранга по схеме MIMO на еще восемь вторичных станций.
Выполнив свою постобработку, вторичная станция ожидает оценок N независимо передаваемых потоков, соответствующих случаю полного ранга. Первичная станция может решить, что некоторые сингулярные значения бесполезны, или просто использовать некоторые из своих M передающих антенн для передач другим пользователям, в связи с чем необходимо указывать вторичной станции, какие и сколько из N реконструированных потоков пригодны, и соответственно изменять свое предварительное кодирование.
В этом примере, оценки можно вычислять на основании коэффициентов постобработки или посткодирования и фактического коэффициента усиления канала, т.е. канальных условий передачи в ходе передачи. В конкретном примере этого изобретения эти оценки основаны на произведении коэффициентов постобработки и фактических канальных условий. Эти оценки можно передавать на первичную станцию в информационных отчетах о состоянии канала (CSI), которые также могут включать в себя индикатор качества канала (CQI).
Информационный отчет о состоянии канала (CSI) содержит информацию, описывающую характеристики радиоканала, обычно указывающие комплексную матрицу передаточной функции между одной или более передающими антеннами и одной или более приемными антеннами.
CQI содержит информацию, сигнализируемую вторичной станцией первичной станции для указания подходящей скорости передачи данных (обычно, значение схемы модуляции и кодирования (MCS)) для передач нисходящей линии связи, обычно на основании измерения принятого отношения сигнал/помеха + шум (SINR) нисходящей линии связи и известных характеристик приемника вторичной станции.
Согласно варианту этого примера вторичная станция получает коэффициенты постобработки из оценки опорных символов для каждого из пространственно разделимых потоков. Это позволяет снизить необходимый объем сигнализации от первичной станции. Однако согласно варианту этого примера коэффициенты постобработки, используемые вторичной станцией, явно сигнализируются первичной станцией. Фактически, первичная станция берет на себя оценивание этих коэффициентов. Это позволяет упростить конструкцию вторичных станций, поскольку все необходимые расчеты выполняет первичная станция. В этом примере, вторичные станции могут отправлять в порядке обратной связи качество приема, достигаемое с конкретным набором коэффициентов. Заметим, что вектор V можно отправлять в порядке обратной связи на первичную станцию в CSI, чтобы первичная станция могла регулировать режим передачи или даже менять выбранную схему передачи.
В другой версии этого варианта осуществления первичная станция может решить осуществлять диспетчеризацию множества пользователей с использованием формирования диаграммы направленности методом принудительного обнуления (ZF), а не одного пользователя с использованием режима сингулярного разложения (SVD).
Поскольку первичная станция знает или предполагает, что все одновременно диспетчеризованные пользователи будут использовать постобработку на основе SVD, она может вычислить предварительное кодирование, благодаря чему векторы эквивалентных каналов от каждой виртуальной передающей антенны к каждой приемной антенне оказываются взаимно ортогональными, что позволяет ей осуществлять диспетчеризацию множества пользователей.
В другом варианте осуществления изобретения предусмотрена система связи, действующая, как описано на Фиг.1, т.е. содержащая первичную станцию 100, снабженную множеством передающих антенн, и множество вторичных станций 101-104, снабженных множеством приемных антенн, причем первичная станция осуществляет предварительное кодирование данных, и вторичные станции осуществляют постобработку, что позволяет вторичным станциям принимать один или более независимых потоков данных 150 или 151. В этом варианте осуществления параметры постобработки вычисляются на вторичном устройстве из канальной матрицы или фактических канальных условий исходя из того, что применяется конкретная схема передачи, например SVD или принудительное обнуление.
Предварительное кодирование на первичной станции не ограничивается использованием того же предположения, которое использует вторичная станция для постобработки (например, первичная станция в действительности не обязана использовать SVD, или первичная станция в действительности не обязана использовать указанную кодовую книгу, причем последний вариант конкретно относится к случаю LTE-A с выделенным RS).
Фактически, предположение, используемое вторичной станцией, может быть выбрано из набора доступных предположений. Кроме того, конкретное используемое предположение первичная станция может сигнализировать вторичной станции, или вторичная станция может выводить его из опорных сигналов (или пилот-сигналов). Заметим, что здесь имеются отличия от настройки режима, поскольку это может осуществляться динамически в ходе работы линии связи.
В любом из вышеописанных вариантов осуществления первичная станция может сигнализировать вторичной станции, сколько использовать пространственно разделимых потоков, т.е. ранг передачи. Этот ранг может отличаться от стандартного значения, которое вторичная станция ожидает для используемого предположения о схеме передачи.
В соответствии с другим вариантом осуществления, первичная станция определяет, какое предварительное кодирование использовать, на основании канальной обратной связи от вторичного устройства, информации о постобработке, используемой вторичным объектом сети, и определенных целей обслуживания, и соответственно осуществляет диспетчеризацию.
В конкретном варианте осуществления первичная станция является мобильной станцией или пользовательским оборудованием и вторичная станция является базовой станцией или eNodeB.
Изобретение имеет частное, но не исключительное, применение к системам беспроводной связи, где используется MIMO и MU-MIMO. Примеры включают в себя системы сотовой связи, такие как UMTS, UMTS LTE и усовершенствованный UMTS LTE, а также беспроводные LAN (IEEE 802.11n) и широкополосные беспроводные сети (IEEE 802.16).
Изобретение применимо к системам мобильной связи, например UMTS LTE и усовершенствованный UMTS LTE, а также к системам беспроводной связи, где используется MIMO и MU-MIMO. Примеры включают в себя системы сотовой связи, в том числе UMTS, UMTS LTE и UMTS усовершенствованный LTE, например беспроводные LAN (IEEE 802.11n) и широкополосные беспроводные сети (IEEE 802.16).
В описании изобретения и формуле изобретения, употребление названия элемента в единственном числе не исключает возможности наличия множества таких элементов. Кроме того, слово "содержащий" не исключает возможности наличия других элементов или этапов помимо перечисленных.
Условные обозначения, заключенные в скобки, употребляются в формуле изобретения для облегчения понимания, но не для ограничения.
Ознакомившись с настоящим раскрытием, специалисты в данной области техники смогут предложить другие модификации. Такие модификации могут использовать другие признаки, которые уже известны в области радиосвязи.

Claims (16)

1. Способ работы вторичной станции в сети, содержащей первичную станцию и, по меньшей мере, одну вторичную станцию, причем первичная станция содержит множество передающих антенн, а вторичная станция содержит множество приемных антенн, причем вторичная станция осуществляет постобработку на основании первой схемы связи, при этом способ дополнительно содержит этапы, на которых оценивают комбинированный канал на основании фактического канала и постобработки.
2. Способ по п. 1, в котором оценка является произведением фактического канала и коэффициентов постобработки.
3. Способ по любому из пп. 1 и 2, в котором первая схема связи заранее определена.
4. Способ по любому из пп. 1 и 2, в котором характеристики первой схемы связи заранее сигнализируются первичной станцией на вторичную станцию.
5. Способ по любому из пп. 1 и 2, в котором первая схема связи основана на любом из следующего: SVD, принудительном обнулении или предварительном кодировании на основе кодовой книги.
6. Способ по п. 1, в котором вторичная станция включает оценку комбинированного канала в индикатор состояния канала, сообщаемый первичной станции.
7. Способ по п. 6, в котором сообщаемый CSI включает в себя индикатор качества канала (CQI), вычисляемый исходя из того, что первичная станция использует вторую схему связи.
8. Способ по п. 6, в котором сообщаемый CSI включает в себя соответствующие сингулярные векторы для предварительного кодирования с SVD.
9. Способ по любому из пп. 6-8, в котором сообщаемый CSI включает в себя указание, представляющее комплексную матрицу передаточной функции между, по меньшей мере, одной из множества передающих антенн и, по меньшей мере, одной из множества приемных антенн.
10. Способ по любому из пп. 6-8, в котором сообщаемый CSI включает в себя указание, представляющее правый сингулярный вектор, вычисленный из сингулярного разложения передаточной функции канала.
11. Способ по любому из пп. 6-8, в котором вторичная станция принимает данные от первичной станции с использованием предварительного кодирования, выведенного из сообщенного CSI.
12. Способ по любому из пп. 1, 6-8, в котором связь осуществляется посредством множества пространственно разделимых потоков, причем количество пространственных потоков заранее определено на основании первой или второй схемы связи.
13. Способ по любому из пп. 1, 6-8, в котором связь осуществляется посредством множества пространственно разделимых потоков, причем первичная станция в ходе работы сигнализирует вторичной станции количество используемых пространственных потоков.
14. Первичная станция, содержащая средство для осуществления связи в сети с, по меньшей мере, одной вторичной станцией, причем первичная станция содержит множество передающих антенн, а вторичная станция содержит множество приемных антенн, причем первичная станция дополнительно содержит средство управления для выбора первой схемы связи из множества схем связи и для вычисления вектора передачи на основании первой схемы связи, причем первая схема связи отличается от заранее определенной схемы связи, используемой вторичной станцией.
15. Вторичная станция, содержащая средство связи для осуществления связи в сети с первичной станцией, причем вторичная станция содержит средство управления для вычисления вектора приема согласно заранее определенной схеме связи и для оценивания комбинированного канала на основании произведения фактического канала и вектора приема.
16. Способ работы системы связи в сети, причем система содержит первичную станцию и, по меньшей мере, одну вторичную станцию, причем первичная станция содержит множество передающих антенн, а вторичная станция содержит множество приемных антенн, при этом способ содержит этапы, на которых
выбирают на первичной станции первую схему связи из множества схем связи,
вычисляют на первичной станции вектор передачи на основании первой схемы связи, и
вычисляют на вторичной станции вектор приема на основании второй схемы связи, причем вторичная станция выбирает вторую схему связи из множества схем связи, исходя из того, что первичная станция использует заранее определенную схему связи.
RU2011148594/07A 2009-04-30 2010-04-22 Способ осуществления связи в сети RU2552643C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09305386.6 2009-04-30
EP09305386 2009-04-30
PCT/IB2010/051771 WO2010125503A1 (en) 2009-04-30 2010-04-22 A method for communicating in a network

Publications (2)

Publication Number Publication Date
RU2011148594A RU2011148594A (ru) 2013-06-10
RU2552643C2 true RU2552643C2 (ru) 2015-06-10

Family

ID=42352206

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011148594/07A RU2552643C2 (ru) 2009-04-30 2010-04-22 Способ осуществления связи в сети

Country Status (9)

Country Link
US (2) US8942305B2 (ru)
EP (1) EP2425546A1 (ru)
JP (2) JP2012525757A (ru)
KR (1) KR101752327B1 (ru)
CN (1) CN102415006B (ru)
BR (1) BRPI1007099B1 (ru)
RU (1) RU2552643C2 (ru)
TW (1) TWI516043B (ru)
WO (1) WO2010125503A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2750912C1 (ru) * 2016-06-28 2021-07-06 АйПиКОМ ГМБХ УНД КО. КГ Информация о направленном радиолуче в системе мобильной связи

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315907B (zh) * 2011-09-23 2017-02-01 中兴通讯股份有限公司 一种信道系数矩阵信息反馈方法和终端
US9300373B2 (en) * 2012-06-19 2016-03-29 Telefonaktiebolaget L M Ericsson (Publ) Selection of precoding vectors in lean-carrier systems
US9673878B1 (en) * 2012-08-28 2017-06-06 Marvell International Ltd. Systems and methods for performing precoding in multi-user systems
CN104125626B (zh) * 2013-04-28 2019-02-19 中兴通讯股份有限公司 通信模式的选择方法及终端
KR20200132161A (ko) 2019-05-15 2020-11-25 삼성전자주식회사 전자 장치의 발열을 제어하기 위한 방법, 이를 위한 전자 장치 및 저장 매체
WO2022235178A1 (en) * 2021-05-03 2022-11-10 Telefonaktiebolaget Lm Ericsson (Publ) Determination of reciprocity-based precoder for a user equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1821473A2 (en) * 2006-02-21 2007-08-22 Fujitsu Limited MIMO wireless communication system and receiving device
RU2006133289A (ru) * 2004-02-18 2008-03-27 Квэлкомм Инкорпорейтед (US) Разнесение передачи и расширение по пространству для основанной на ofdm системе связи со множеством антенн

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195559B1 (en) * 1997-11-26 2001-02-27 U.S. Philips Corporation Communication system, a primary radio station, a secondary radio station, and a communication method
CN1462516B (zh) * 2001-04-25 2010-06-09 皇家菲利浦电子有限公司 无线通信系统
US7039135B2 (en) * 2001-10-11 2006-05-02 D.S.P.C. Technologies Ltd. Interference reduction using low complexity antenna array
US7020110B2 (en) 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
GB2384660B (en) * 2002-01-25 2004-11-17 Toshiba Res Europ Ltd Reciever processing systems
US7606334B2 (en) * 2003-09-30 2009-10-20 Telecom Italia S.P.A. Channel estimation using pilot symbols
KR100950643B1 (ko) * 2004-11-15 2010-04-01 삼성전자주식회사 Mimo 통신 시스템과 그 시스템에서의 데이터 송수신방법 및 그 장치
JP4578418B2 (ja) * 2006-02-08 2010-11-10 株式会社エヌ・ティ・ティ・ドコモ チャネル送信方法および基地局
EP2018730B1 (en) * 2006-05-10 2010-12-22 Koninklijke Philips Electronics N.V. Wireless communication system and apparatus using harq and method of operating the system
US7944985B2 (en) * 2006-08-24 2011-05-17 Interdigital Technology Corporation MIMO transmitter and receiver for supporting downlink communication of single channel codewords
US8254927B2 (en) * 2006-09-11 2012-08-28 Qualcomm Incorporated SFN and signaling mechanisms for softer handoff groups
JP4855888B2 (ja) * 2006-10-03 2012-01-18 株式会社エヌ・ティ・ティ・ドコモ 基地局装置
JP4734210B2 (ja) * 2006-10-04 2011-07-27 富士通株式会社 無線通信方法
WO2008045532A2 (en) * 2006-10-11 2008-04-17 Interdigital Technology Corporation Increasing a secret bit generation rate in wireless communication
CN101536389B (zh) 2006-11-22 2013-01-16 富士通株式会社 Mimo-ofdm通信系统和mimo-ofdm通信方法
US7859990B2 (en) * 2007-01-23 2010-12-28 Beceem Communications Inc. Methods and systems for performing channels estimation in a wireless communication system
WO2009002269A1 (en) * 2007-06-23 2008-12-31 Panasonic Corporation Method and system for communication channel optimization in a multiple-input multiple-output (mimo) communication system
US8259871B2 (en) * 2007-07-18 2012-09-04 Panasonic Corporation Reception device, transmission device, and adaptive transmission rate control method
US8798183B2 (en) 2007-08-13 2014-08-05 Qualcomm Incorporated Feedback and rate adaptation for MIMO transmission in a time division duplexed (TDD) communication system
US8014265B2 (en) 2007-08-15 2011-09-06 Qualcomm Incorporated Eigen-beamforming for wireless communication systems
KR101421592B1 (ko) * 2007-09-05 2014-08-14 삼성전자주식회사 인터리버 분할 다중 접속 시스템에서 송수신 장치 및 방법
US20090093222A1 (en) * 2007-10-03 2009-04-09 Qualcomm Incorporated Calibration and beamforming in a wireless communication system
US9025537B2 (en) * 2008-02-12 2015-05-05 Centre Of Excellence In Wireless Technology Inter-cell interference mitigation using limited feedback in cellular networks
JP5658658B2 (ja) * 2008-04-30 2015-01-28 コーニンクレッカ フィリップス エヌ ヴェ 無線局にリソースを通知するための方法及びそのための無線局
RU2518085C2 (ru) * 2009-04-17 2014-06-10 Эппл Инк Способ осуществления разделения на каналы в сети беспроводной связи (варианты) и центральная станция, используемая в системе беспроводной связи
US10158470B2 (en) * 2009-08-18 2018-12-18 Koninklijke Philips N.V. Method for operating a radio station in a mobile network
RU2559292C2 (ru) * 2009-10-05 2015-08-10 Конинклейке Филипс Электроникс Н.В. Способ сигнализации предварительного кодирования в режиме передачи с совместным формированием диаграммы направленности
US8885746B2 (en) * 2009-10-08 2014-11-11 Koninklijke Philips N.V. Method for operating a radio station in a cellular communication network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2006133289A (ru) * 2004-02-18 2008-03-27 Квэлкомм Инкорпорейтед (US) Разнесение передачи и расширение по пространству для основанной на ofdm системе связи со множеством антенн
EP1821473A2 (en) * 2006-02-21 2007-08-22 Fujitsu Limited MIMO wireless communication system and receiving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2750912C1 (ru) * 2016-06-28 2021-07-06 АйПиКОМ ГМБХ УНД КО. КГ Информация о направленном радиолуче в системе мобильной связи

Also Published As

Publication number Publication date
CN102415006A (zh) 2012-04-11
US8942305B2 (en) 2015-01-27
TW201126938A (en) 2011-08-01
BRPI1007099A2 (pt) 2016-03-01
CN102415006B (zh) 2016-01-06
EP2425546A1 (en) 2012-03-07
WO2010125503A1 (en) 2010-11-04
TWI516043B (zh) 2016-01-01
US20150146814A1 (en) 2015-05-28
KR101752327B1 (ko) 2017-07-11
BRPI1007099A8 (pt) 2018-10-30
BRPI1007099B1 (pt) 2021-02-09
JP2015109665A (ja) 2015-06-11
US20120057645A1 (en) 2012-03-08
RU2011148594A (ru) 2013-06-10
KR20120008065A (ko) 2012-01-25
US9520924B2 (en) 2016-12-13
JP2012525757A (ja) 2012-10-22

Similar Documents

Publication Publication Date Title
US8761288B2 (en) Limited channel information feedback error-free channel vector quantization scheme for precoding MU-MIMO
JP5129346B2 (ja) コラボラティブ多入力多出力通信システムにおけるプリコーディングされた信号を送信する方法
EP2227869B1 (en) Method for reducing inter-cell interference
KR101650699B1 (ko) 프리코딩 및 프리코딩 디바이스를 사용하여 다중 사용자 mimo 네트워크에서의 통신 방법
US9520924B2 (en) Method for communicating in a network
US9008008B2 (en) Method for communicating in a MIMO context
DK2932621T3 (en) DISTRIBUTION OF TRANSMISSION EFFECT TO MIMO COMMUNICATIONS AT LIMITED MULTIPLICATIVE NOISE
EP2932620A1 (en) Precoder weight selection for mimo communications when multiplicative noise limited
JP5744833B2 (ja) Mimoネットワークにおいて通信するための方法
US9319115B2 (en) Method for providing precoding information in a multi-user MIMO system
US11223401B2 (en) Technique for selecting a MIMO transport format
US20140226520A1 (en) Method for coordinating interference in an uplink interference channel for a terminal in a wireless communication system

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20181031