RU2551821C1 - Способ борьбы с беспилотными летательными аппаратами ближнего и малого радиуса действия с помощью электромагнитного излучения дециметрового диапазона длин волн - Google Patents

Способ борьбы с беспилотными летательными аппаратами ближнего и малого радиуса действия с помощью электромагнитного излучения дециметрового диапазона длин волн Download PDF

Info

Publication number
RU2551821C1
RU2551821C1 RU2013159255/08A RU2013159255A RU2551821C1 RU 2551821 C1 RU2551821 C1 RU 2551821C1 RU 2013159255/08 A RU2013159255/08 A RU 2013159255/08A RU 2013159255 A RU2013159255 A RU 2013159255A RU 2551821 C1 RU2551821 C1 RU 2551821C1
Authority
RU
Russia
Prior art keywords
electromagnetic radiation
range
uavs
uav
radiation
Prior art date
Application number
RU2013159255/08A
Other languages
English (en)
Inventor
Игорь Николаевич Белоконь
Евгений Николаевич Бойко
Дмитрий Викторович Зайцев
Евгений Викторович Иванов
Алексей Сергеевич Кудряшов
Анатолий Александрович Метельский
Андрей Алексеевич Пирожков
Дмитрий Юрьевич Сосков
Сергей Владимирович Холод
Original Assignee
Федеральное государственное казённое учреждение "12 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казённое учреждение "12 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации filed Critical Федеральное государственное казённое учреждение "12 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации
Priority to RU2013159255/08A priority Critical patent/RU2551821C1/ru
Application granted granted Critical
Publication of RU2551821C1 publication Critical patent/RU2551821C1/ru

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Изобретение предназначено для борьбы с беспилотными летательными аппаратами (БЛА) ближнего и малого радиуса действия. Техническим результатом является повышение эффективности поражения БЛА. Способ заключается в генерации потока электромагнитных волн дециметрового диапазона в направлении летящего БЛА, что приводит к появлению на его паразитных антеннах наведенных токов, вызывающих отказы в работе бортовой системы управления БЛА.

Description

Изобретение предназначено для борьбы с беспилотными летательными аппаратами (БЛА).
В армиях иностранных государств уделяется пристальное внимание вопросам разработки и применения БЛА в боевых действиях. Разработано и производится более 300 типов БЛА, из которых состоят на вооружении около 80 типов в количестве более ста тысяч единиц. По различным оценкам, в ходе крупномасштабных боевых действий можно ожидать применения до 50 тысяч БЛА [Савенков Ю.А., Сомков Н.И., Травкин А.А. Зенитный ракетно-пушечный комплекс «Панцирь» // Военная мысль. 2012. № 6. с. 39-43].
На сегодняшний день до 70% всех беспилотных летательных аппаратов составляют тактические БЛА (с радиусом действия до 200 км) [Распопов В.Я. Микросистемная авионика: учебное пособие. - Тула: «Гриф и К», 2010].
Тактические БЛА подразделяются на аппараты малого (10-200 км) и ближнего (не более 10 км) радиусов действия. Беспилотные летательные аппараты малого радиуса действия характеризуются массой до 50 кг и полезной нагрузкой порядка 7-10 кг. Тактические БЛА ближнего радиуса действия представлены миниатюрными или мини-БЛА (массой до 15 кг, полезной нагрузкой 2-3 кг) и микроминиатюрными или микро-БЛА (характерные геометрические размеры не более 15 см, взлетная масса не более 100 г).
Небольшая масса тактического БЛА накладывает ряд ограничений как на конструкцию самого летательного аппарата, так и на конструкцию его бортовой системы управления, силовой установки, полезной нагрузки и энергоисточников. При этом для снижения веса и увеличения прочности летательных аппаратов широко применяются композиционные материалы. Использование подобных материалов позволяет снизить вес планера летательного аппарата на 30-40 % [Сенюшкин Н.С., Ямалиев Р.Р., Ялчибаева Л.Р. Применение композиционных материалов в конструкции БПЛА // Молодой ученый, 2011. № 4. Т. 1. С. 59-61]. Малые размеры и вес тактических БЛА позволяет оснащать их маломощными двигателями.
Развитие БЛА вызывает необходимость разработки средств борьбы с ними.
Использование для противодействия БЛА традиционных средств борьбы с воздушным противником (зенитные ракетные и зенитные артиллерийские комплексы, истребительная и армейская авиация, стрелковое оружие) может оказаться неэффективным. Основная проблема борьбы средствами ПВО с тактическими БЛА заключается в их малой эффективной поверхности рассеивания (ЭПР), что объясняется небольшими габаритными размерами и широким применением композиционных материалов [Аминов С. ПВО в борьбе с БЛА // Беспилотная авиация: спецвыпуск МАКС. 2011. С. 34-36]. Малые габаритные размеры БЛА не позволяют эффективно поражать их зенитными артиллерийскими комплексами и стрелковым оружием. Малая ЭПР осложняет поражение их управляемыми ракетами с радиолокационными головками самонаведения (ГСН). Использование против тактических БЛА управляемых ракет с инфракрасными (ИК) ГСН также является малоэффективным ввиду того, что ИК-излучение маломощных двигателей БЛА практически равно фоновым значениям.
Возможно использование против тактических БЛА пилотируемых самолетов и вертолетов, однако в этом случае требуется их постоянное присутствие в воздушном пространстве в районе возможного появления БЛА противника, что приведет к отвлечению авиации от выполнения основных задач.
Известно устройство борьбы с БЛА с помощью сети-ловушки (RU 72753 U1, 27.04.2008; RU 72754 U1, 27.04.2008). После обнаружения БЛА сеть доставляется в нужную точку пространства в контейнере и отстреливается в сторону летательного аппарата. Для повышения эффективности задачи поражения БЛА используются металлизированные нити в ячейках сети и грузила с контейнерами с регулируемыми в полете парашютирующими свойствами. При этом размеры сети определяют величину компенсации ошибок наведения. Недостатком данного подхода является необходимость точной и своевременной доставки контейнера с сетью в строго определенную точку пространства, а также зависимость от погодных условий (например, от направления и скорости ветра).
Известно авиационное средство борьбы с БЛА (RU 94690 U1, 27.05.2010), представляющее собой мини-БЛА, оснащенный боеприпасом направленного или ненаправленного поражения и системой управления его подрывом. Его основным недостатком является необходимость обеспечения постоянного пребывания в воздухе мини-БЛА вне зависимости от наличия там беспилотных летательных аппаратов противника. Кроме того, наведение управляемой авиационной ракеты на БЛА противника будет сопряжено с трудностями, описанными выше (малая эффективная поверхность рассеивания и слабое ИК-излучение двигателей). Использование боеприпаса ненаправленного поражения приведет к повреждению (либо уничтожению) БЛА-истребителя, что исключит возможность его многократного использования.
Известен способ дистанционного воздействия волновыми сигналами на опасный объект данного типа и устройство для его реализации (RU 2500035 C2, 27.11.2013). Способ заключается в обнаружении опасного объекта, которым, в частности, может являться самолет, и воздействии на него сигналом определенной мощности и длительности. При этом для вывода из строя радиоэлектронной аппаратуры противника используется излучение на частотах 3-15 ГГц, что соответствует длинам волн от 2 до 10 см (сантиметровый диапазон).
Указанный способ выбран в качестве прототипа.
Главным недостатком данного способа является то, что он не учитывает селективную чувствительность опасного объекта к излучениям с различной длиной волны.
Технический результат, на решение которого направлено изобретение, заключается в выводе из строя бортовой системы управления БЛА путем наведения токов на его паразитных антеннах.
Достижение технического результата обеспечивается тем, что в известном способе борьбы с беспилотными летательными аппаратами ближнего и малого радиуса действия, заключающемся в обнаружении беспилотного летательного аппарата, определении расстояния до него, ориентации в его сторону излучающей антенны, расчете мощности излучения и генерации электромагнитного излучения, длины волн электромагнитного излучения выбирают в диапазоне 10-20 см, а мощность излучения антенны задают достаточную для наведения токов на паразитных антеннах беспилотного летательного аппарата и вывода из строя бортовой системы управления.
Как было сказано выше, современные тактические БЛА характеризуются широким использованием в конструкции планера композиционных материалов. Применение указанных материалов приводит к существенному снижению радиолокационной заметности. Вместе с тем, данное техническое решение делает возможным прохождение электромагнитного излучения через корпус БЛА и воздействие на его электронное оборудование. Многочисленные проводники, входящие в состав аппаратуры беспилотных летательных аппаратов, можно рассматривать как паразитные антенны, принимающие или излучающие электромагнитные поля [Волин М. Л. Паразитные связи и наводки. Второе издание. М.: «Советское радио», 1965]. Наибольшая амплитуда наводки на паразитной антенне формируется при ее размерах, близких к половине длине волны воздействующего излучения [Шифрин Я. С. Вопросы статистической теории антенн. М.: «Советское радио», 1970].
Известно, что бортовое оборудование отечественных и зарубежных БЛА в обязательном порядке включает систему управления (автопилот), модуль спутниковой навигационной системы, датчики полетных параметров, систему аварийной посадки, сервоприводы элеронов и дроссельной заслонки двигателя, систему управления электродвигателем, блок полезной нагрузки и блок командной радиолинии и телеметрии [Чистяков Н.В. Анализ архитектуры ДПЛА «Пчела», http://dpla.ru/, 2008; БЛА «Орлан-3»: основные характеристики, , 2009; Бортовой комплекс навигации и управления БЛА, http://www.teknol.ru/, 2009].
Из вышеперечисленных систем критически важными являются бортовая система управления, система управления двигателем и датчики полетных параметров. Бортовая система управления является центральным блоком, координирующим работу всех периферийных устройств, отказ в ее работе неизбежно приведет к срыву выполнения боевой задачи и падению аппарата.
Конструктивно бортовая система управления тактического БЛА представляет собой одну или несколько печатных плат, как правило, жестко скрепленных между собой в два и более «этажа» для минимизации занимаемого объема. При этом модуль автопилота малоразмерного БЛА имеет характерные габаритные размеры 50-150 мм [www.teknol.ru, http://www.zala-aero.ru, www.forgis.ru]. Нижняя граница габаритных размеров обусловлена плотностью монтажа и размерами электронных компонентов, а верхняя - размерами отсека БЛА, в котором размещается бортовая система управления. Проводники на печатной плате, являющиеся паразитными антеннами для электромагнитного излучения, имеют характерную длину 40-60 мм. Паразитными антеннами могут являться также межблочные соединительные кабели, длина которых, как правило, составляет 50-100 мм. Представление паразитных антенн в виде полуволновых вибраторов позволяет определить диапазон длин волн воздействующего излучения, способного создать максимальную амплитуду помеховых сигналов - 10-20 см. Эффективная площадь паразитных антенн при этом составит 5-30 см2 [Гошин Г.Г. Устройства СВЧ и антенны: учебное методическое пособие. Часть 2: Антенны. Томск, 2003]. Известно, что для большей части полупроводниковых приборов уровни деградации лежат в диапазоне от 0,2 до 200 Вт [Добыкин В.Д, Куприянов А.И., Пономарев В.Г., Шустов Л.Н. Радиоэлектронная борьба. Силовое поражение радиоэлектронных систем. - М.: Вузовская книга, 2007]. Для наведения на паразитных антеннах БЛА помеховых сигналов такой мощности требуется плотность потока энергии излучения на БЛА 0,007-40 Вт/см2.
Таким образом, облучение БЛА электромагнитным излучением с длиной волны 10-20 см и плотностью потока энергии в диапазоне 0,007-40 Вт/см2 способно вызвать появление наведенных токов на паразитных антеннах, которые приведут к отказам в работе электронного оборудования бортовой системы управления БЛА (от перемежающихся отказов (сбоев) до необратимых катастрофических отказов), следствием чего станет падение аппарата, в том числе в результате срабатывания системы аварийной посадки.
Расчет мощности излучателя, необходимой для обеспечения требуемой плотности потока энергии, производят по формуле [Д.В. Сивухин. Курс общей физики. Оптика. М.: Наука, 1980]:
PизлобθR2, где,
Поб - плотность потока энергии на объекте, Вт/м2;
R - расстояние до объекта воздействия, м;
θ - величина телесного угла, в пределах которого распространяется 98% энергии излучателя, ст. рад.
Значение θ в дальней зоне антенны определяется по формуле:
θ=1,17( λ D
Figure 00000001
)2 , где,
λ -длина волны, соответствующая максимуму спектральной плотности излучения, м;
D - диаметр излучающей апертуры, м.
Сущность способа заключается в следующем. После визуального обнаружения летящего БЛА в его сторону осуществляется ориентация излучающей антенны. Далее, как и в способе-прототипе, с помощью ЭВМ осуществляется расчет мощности излучения, необходимой для противодействия БЛА, находящегося на данном расстоянии, и осуществляется генерация в направлении БЛА электромагнитного излучения, в результате чего на его паразитных антеннах появляются наведенные токи, которые вызовут отказы в работе электронного оборудования бортовой системы управления.
Следует подчеркнуть принципиальное различие между заявляемым способом и способом-прототипом. Способ-прототип использует для поражения радиоэлектронного оборудования опасного объекта (в частности, самолета) электромагнитное излучение с частотой 3-15 ГГц, что соответствует длинам волн от 2 до 10 см (сантиметровый диапазон), и плотностью мощности 30-50000 Вт/см2. Предлагаемый способ использует электромагнитное излучение с длинами волн от 10 до 20 см (дециметровый диапазон), что позволяет осуществлять поражение БЛА с меньшими энергетическими затратами (требуемая плотность мощности 0,007-40 Вт/см2).

Claims (1)

  1. Способ борьбы с беспилотными летательными аппаратами ближнего и малого радиуса действия, заключающийся в обнаружении беспилотного летательного аппарата, определении расстояния до него, ориентации в его сторону излучающей антенны, расчёте мощности излучения и генерации электромагнитного излучения, отличающийся тем, что длины волн электромагнитного излучения выбирают в диапазоне 10-20 см, при этом за счет изменения мощности генерации электромагнитного излучения задают мощность излучения антенны, обеспечивающую наведение токов на паразитных антеннах беспилотного летательного аппарата, достаточных для вывода из строя бортовой системы управления.
RU2013159255/08A 2013-12-30 2013-12-30 Способ борьбы с беспилотными летательными аппаратами ближнего и малого радиуса действия с помощью электромагнитного излучения дециметрового диапазона длин волн RU2551821C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013159255/08A RU2551821C1 (ru) 2013-12-30 2013-12-30 Способ борьбы с беспилотными летательными аппаратами ближнего и малого радиуса действия с помощью электромагнитного излучения дециметрового диапазона длин волн

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013159255/08A RU2551821C1 (ru) 2013-12-30 2013-12-30 Способ борьбы с беспилотными летательными аппаратами ближнего и малого радиуса действия с помощью электромагнитного излучения дециметрового диапазона длин волн

Publications (1)

Publication Number Publication Date
RU2551821C1 true RU2551821C1 (ru) 2015-05-27

Family

ID=53294617

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013159255/08A RU2551821C1 (ru) 2013-12-30 2013-12-30 Способ борьбы с беспилотными летательными аппаратами ближнего и малого радиуса действия с помощью электромагнитного излучения дециметрового диапазона длин волн

Country Status (1)

Country Link
RU (1) RU2551821C1 (ru)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU178484U1 (ru) * 2017-09-26 2018-04-05 Общество с ограниченной ответственностью "Связь Спецзащита" Устройство электронного противодействия беспилотным летательным аппаратам
RU2680605C1 (ru) * 2018-03-06 2019-02-25 Акционерное общество "Научно-исследовательский институт современных телекоммуникационных технологий" Способ и устройство автоматизированного определения координат и подавления оптико-электронных средств малых беспилотных воздушных судов
RU2685509C1 (ru) * 2018-04-03 2019-04-19 АО "Научно-технический центр радиоэлектронной борьбы" Комплекс радиоэлектронной борьбы с беспилотными летательными аппаратами
RU2691645C1 (ru) * 2018-05-04 2019-06-17 Акционерное общество "НИИ измерительных приборов - Новосибирский завод имени Коминтерна" (АО "НПО НИИИП-НЗиК") Способ защиты радиолокационной станции от не обнаруживаемых малоразмерных беспилотных летательных аппаратов и устройство для его осуществления
RU2692058C1 (ru) * 2018-06-08 2019-06-20 Акционерное общество "НИИ измерительных приборов - Новосибирский завод имени Коминтерна" (АО "НПО НИИИП-НЗиК") Способ защиты радиолокационной станции от малоразмерных беспилотных летательных аппаратов и устройство для его осуществления
RU2700206C1 (ru) * 2018-04-20 2019-09-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет" (ФГБОУ ВО "Пензенский государственный университет") Способ двухфакторного функционального подавления беспилотного летательного аппарата
RU2700207C1 (ru) * 2018-12-05 2019-09-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет" (ФГБОУ ВО "Пензенский государственный университет") Способ функционального подавления беспилотного летательного аппарата
RU2738508C1 (ru) * 2020-08-11 2020-12-14 Публичное акционерное общество «Научно-производственное объединение «Алмаз» имени академика А.А. Расплетина» (ПАО «НПО «Алмаз») Система наблюдения и противодействия беспилотным летательным аппаратам
US11156707B2 (en) * 2014-12-19 2021-10-26 Xidrone Systems, Inc. Systems and methods for detecting, tracking and identifying small unmanned systems such as drones
RU2787694C1 (ru) * 2022-08-12 2023-01-11 Федеральное государственное казенное образовательное учреждение высшего образования "Московский пограничный институт Федеральной службы безопасности Российской Федерации" Беспилотный летательный аппарат для поражения радиоэлектронных средств противника
US11644535B2 (en) 2014-12-19 2023-05-09 Xidrone Systems, Inc. Deterrent for unmanned aerial systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378563A (en) * 1943-01-04 1945-06-19 Jr Alexander J Lakatos Protecting apparatus
RU68672U1 (ru) * 2007-07-04 2007-11-27 Пензенский Артиллерийский Инженерный Институт Малогабаритное устройство измерения углов наклона и азимутов
RU2497063C2 (ru) * 2012-10-15 2013-10-27 Дмитрий Геннадьевич Митрофанов Способ противодействия выполнению задач беспилотным летательным аппаратом
RU2500035C2 (ru) * 2011-08-01 2013-11-27 Владимир Анатольевич Ефремов Способ дистанционного воздействия волновыми сигналами на опасный объект данного типа и устройство для его реализации

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378563A (en) * 1943-01-04 1945-06-19 Jr Alexander J Lakatos Protecting apparatus
RU68672U1 (ru) * 2007-07-04 2007-11-27 Пензенский Артиллерийский Инженерный Институт Малогабаритное устройство измерения углов наклона и азимутов
RU2500035C2 (ru) * 2011-08-01 2013-11-27 Владимир Анатольевич Ефремов Способ дистанционного воздействия волновыми сигналами на опасный объект данного типа и устройство для его реализации
RU2497063C2 (ru) * 2012-10-15 2013-10-27 Дмитрий Геннадьевич Митрофанов Способ противодействия выполнению задач беспилотным летательным аппаратом

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
АНТОНОВ О.Е. РАДИОЭЛЕКТРОННОЕ ПРОТИВОДЕЙСТВИЕ БЛА. НАЙДЕНО В ИНТЕРНЕТ 14.11.2014: http://www.jaroslaff.net/modules.php?file=view&name=News&news _id=15004 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644535B2 (en) 2014-12-19 2023-05-09 Xidrone Systems, Inc. Deterrent for unmanned aerial systems
US11965977B2 (en) 2014-12-19 2024-04-23 Xidrone Systems, Inc. Deterrent for unmanned aerial systems
US11156707B2 (en) * 2014-12-19 2021-10-26 Xidrone Systems, Inc. Systems and methods for detecting, tracking and identifying small unmanned systems such as drones
RU178484U1 (ru) * 2017-09-26 2018-04-05 Общество с ограниченной ответственностью "Связь Спецзащита" Устройство электронного противодействия беспилотным летательным аппаратам
RU2680605C1 (ru) * 2018-03-06 2019-02-25 Акционерное общество "Научно-исследовательский институт современных телекоммуникационных технологий" Способ и устройство автоматизированного определения координат и подавления оптико-электронных средств малых беспилотных воздушных судов
RU2685509C1 (ru) * 2018-04-03 2019-04-19 АО "Научно-технический центр радиоэлектронной борьбы" Комплекс радиоэлектронной борьбы с беспилотными летательными аппаратами
RU2700206C1 (ru) * 2018-04-20 2019-09-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет" (ФГБОУ ВО "Пензенский государственный университет") Способ двухфакторного функционального подавления беспилотного летательного аппарата
RU2691645C1 (ru) * 2018-05-04 2019-06-17 Акционерное общество "НИИ измерительных приборов - Новосибирский завод имени Коминтерна" (АО "НПО НИИИП-НЗиК") Способ защиты радиолокационной станции от не обнаруживаемых малоразмерных беспилотных летательных аппаратов и устройство для его осуществления
RU2692058C1 (ru) * 2018-06-08 2019-06-20 Акционерное общество "НИИ измерительных приборов - Новосибирский завод имени Коминтерна" (АО "НПО НИИИП-НЗиК") Способ защиты радиолокационной станции от малоразмерных беспилотных летательных аппаратов и устройство для его осуществления
RU2700207C1 (ru) * 2018-12-05 2019-09-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет" (ФГБОУ ВО "Пензенский государственный университет") Способ функционального подавления беспилотного летательного аппарата
RU2738508C1 (ru) * 2020-08-11 2020-12-14 Публичное акционерное общество «Научно-производственное объединение «Алмаз» имени академика А.А. Расплетина» (ПАО «НПО «Алмаз») Система наблюдения и противодействия беспилотным летательным аппаратам
RU2787694C1 (ru) * 2022-08-12 2023-01-11 Федеральное государственное казенное образовательное учреждение высшего образования "Московский пограничный институт Федеральной службы безопасности Российской Федерации" Беспилотный летательный аппарат для поражения радиоэлектронных средств противника
RU225662U1 (ru) * 2023-11-09 2024-05-02 Леопольд Владимирович Брук Устройство противодействия беспилотным летательным аппаратам

Similar Documents

Publication Publication Date Title
RU2551821C1 (ru) Способ борьбы с беспилотными летательными аппаратами ближнего и малого радиуса действия с помощью электромагнитного излучения дециметрового диапазона длин волн
US20100253567A1 (en) Device, system and method of protecting aircrafts against incoming threats
RU2604914C2 (ru) Дирижабль дальнего радиолокационного обнаружения
US9212872B2 (en) Threat simulating system
US11987355B2 (en) Method and flexible apparatus permitting advanced radar signal processing, tracking, and classification/identification design and evaluation using single unmanned air surveillance (UAS) device
RU2733600C1 (ru) Термобарический способ борьбы с роем малогабаритных беспилотных летательных аппаратов
RU2625506C1 (ru) Способ борьбы с беспилотными летательными аппаратами
BEŇO et al. Unmanned combat air vehicle: MQ-9 Reaper
Lobo Submunition design for a low-cost small UAS counter-swarm missile
RU2725662C2 (ru) Способ противодействия беспилотным летательным аппаратам
Hamilton UAVs: Unmanned aerial vehicles
RU2802089C1 (ru) Способ дальнего обнаружения и распознавания малозаметных воздушных целей
Yildirim Self-defense of large aircraft
RU2534157C1 (ru) Практическая управляемая ракета
RU2808733C1 (ru) Система боевых беспилотных летательных аппаратов
Zohuri et al. Stealth Technology
Agarwal et al. Drone Technologies: State‐of‐the‐Art, Challenges, and Future Scope
Wolf et al. Team Valkyrie AIAA 2020-2021 Graduate Team Missile Design
RU2734267C1 (ru) Стационарный комплекс обнаружения и поражения малогабаритных беспилотных летательных аппаратов
Erdemli et al. General use of UAS in EW environment--EW concepts and tactics for single or multiple UAS over the net-centric battlefield
Zhang et al. Research on penetration effectiveness of multiple unmanned aerial vehicles coordinated formation
Chen et al. Electromagnetic threat faced by mobile launch rocket and simulation construction of test electromagnetic environment
RU2639374C1 (ru) Самолёт дальнего радиолокационного обнаружения
Bookstaber et al. Unmanned Combat Aerial Vehicles: What Men Do In Aircraft and Why Machines Can Do It Better
Petrović et al. Unmanned aerial systems as a revolutionary tool in modern armed conflicts

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171231