RU2551246C1 - Adjustment method of test gas-turbine engine - Google Patents
Adjustment method of test gas-turbine engine Download PDFInfo
- Publication number
- RU2551246C1 RU2551246C1 RU2013149521/06A RU2013149521A RU2551246C1 RU 2551246 C1 RU2551246 C1 RU 2551246C1 RU 2013149521/06 A RU2013149521/06 A RU 2013149521/06A RU 2013149521 A RU2013149521 A RU 2013149521A RU 2551246 C1 RU2551246 C1 RU 2551246C1
- Authority
- RU
- Russia
- Prior art keywords
- test
- gas turbine
- engine
- turbine engine
- modes
- Prior art date
Links
Images
Landscapes
- Control Of Turbines (AREA)
- Testing Of Engines (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям.The invention relates to the field of aircraft engine manufacturing, namely to aircraft gas turbine engines.
Известен двухконтурный, двухвальный газотурбинный двигатель (ГТД), включающий турбокомпрессорные комплексы, один из которых содержит установленные на одном валу компрессор и турбину низкого давления, а другой содержит аналогично объединенные на другом валу, соосном с первым, компрессор и турбину высокого давления, промежуточный разделительный корпус между упомянутыми компрессорами, наружный и внутренние контуры, основную и форсажную камеры сгорания, камеру смешения газовоздушных потоков рабочего тела и регулируемое сопло (Н.Н. Сиротин и др. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. Москва: «Наука», 2011 г., стр.19-46, рис.1.24).Known double-circuit, twin-shaft gas turbine engine (GTE), including turbocompressor complexes, one of which contains a compressor and a low pressure turbine mounted on one shaft, and the other contains a compressor and a high pressure turbine, an intermediate separation housing, similarly combined on the other shaft, coaxial with the first between the aforementioned compressors, the external and internal circuits, the main and afterburner combustion chambers, a chamber for mixing gas-air flows of the working fluid and an adjustable nozzle (N.N. Siroti and others. Fundamentals of designing the production and operation of aircraft gas turbine engines and power plants in the CALS technology system.
Известен газотурбинный двигатель, который выполнен двухконтурным, содержит корпус, опертые на него компрессоры и турбины, охлаждаемую камеру сгорания, топливно-насосную группу, реактивные сопла, а также систему управления с командными и исполнительными органами (Конструкция и проектирование авиационных газотурбинных двигателей. Под редакцией Д.В. Хронина. М.: Машиностроение 1989, с.12-88).Known gas turbine engine, which is a dual-circuit, contains a housing supported by compressors and turbines, a cooled combustion chamber, a fuel pump group, jet nozzles, as well as a control system with command and executive bodies (Design and engineering of aircraft gas turbine engines. Edited by D .V. Chronin. M.: Mechanical Engineering 1989, p.12-88).
Известен способ испытания газотурбинного двигателя по определению ресурса и надежности работы, заключающийся в чередовании режимов при выполнении этапов длительностью, превышающей время полета. Двигатель испытывают поэтапно. Длительность безостановочной работы на стенде и чередование режимов устанавливают в зависимости от назначения двигателя (Л.С. Скубачевский. Испытание воздушно-реактивных двигателей. Москва: Машиностроение, 1972, с.13-15).There is a method of testing a gas turbine engine to determine the resource and reliability, which consists in the alternation of modes when performing stages lasting longer than the flight time. The engine is tested in stages. The duration of non-stop work at the stand and the alternation of modes are set depending on the purpose of the engine (L. S. Skubachevsky. Test of jet engines. Moscow: Mechanical Engineering, 1972, p.13-15).
Известен способ испытаний авиационных двигателей типа газотурбинных, включающий отработку заданных режимов, контроль параметров и оценку по ним ресурса и надежности работы двигателя. С целью сокращения времени испытаний при доводке двигателей 10-20% испытания проводят с температурой газа перед турбиной, превышающей максимальную рабочую температуру на 45-65°C (SU 1151075 A1, опубл. 10.08.2004).A known method of testing aircraft engines such as gas turbine, including the development of predetermined modes, control parameters and evaluate them resource and reliability of the engine. In order to reduce the test time during engine refinement of 10-20%, tests are carried out with the gas temperature in front of the turbine exceeding the maximum operating temperature by 45-65 ° C (SU 1151075 A1, publ. 10.08.2004).
Общими недостатками указанных известных технических решений являются повышенная трудо- и энергоемкость испытаний и недостаточно высокая оценка ресурса и надежности работы двигателя в широком диапазоне полетных режимов и условий эксплуатации вследствие неотработанности программы приведения конкретных результатов испытаний к результатам, отнесенным к стандартным условиям эксплуатации двигателя известными способами, которые не учитывают с достаточной корректностью изменение параметров и режимов работы двигателя. Это осложняет возможность приведения экспериментальных параметров испытаний к параметрам, максимально приближенным к реальной структуре и удельному соотношению режимов работы двигателя в процессе эксплуатации.Common disadvantages of these known technical solutions are the increased labor and energy intensity of tests and insufficiently high assessment of the resource and reliability of the engine in a wide range of flight modes and operating conditions due to the inadequacy of the program to bring specific test results to the results referred to standard engine operating conditions by known methods, which with sufficient accuracy, do not take into account changes in the parameters and operating modes of the engine. This complicates the possibility of bringing the experimental test parameters to parameters that are as close as possible to the real structure and the specific ratio of the engine operating modes during operation.
Задача изобретения заключается в разработке способа доводки опытного газотурбинного двигателя с улучшенными эксплуатационными характеристиками и повышенной достоверностью экспериментально проверенного ресурса и надежности двигателя в условиях, максимально приближенных к реальной структуре и удельному соотношению режимов работы двигателя в процессе эксплуатации.The objective of the invention is to develop a method for fine-tuning an experimental gas turbine engine with improved performance and increased reliability of an experimentally tested resource and engine reliability under conditions as close as possible to the real structure and specific ratio of engine operating conditions during operation.
Поставленная задача решается тем, что в способе доводки опытного газотурбинного двигателя согласно изобретению доводке подвергают опытный двигатель, выполненный двухконтурным, двухвальным, при этом доводку двигателя производят поэтапно, для чего разрабатывают программу и алгоритмы доводочных испытаний опытного ГТД; на каждом этапе подвергают испытаниям на соответствие заданным параметрам статистически репрезентативное количество, преимущественно от одного до пяти экземпляров, и проводят обследование состояния каждого испытанного из упомянутого количества экземпляров опытного двигателя; для анализа и оценки состояния при необходимости производят разборку с последующей возможной доработкой и/или заменой деталей любого из модулей и/или узлов опытного двигателя, обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым параметрам модуль, в том числе компрессор низкого давления (КНД) с входным направляющим аппаратом (ВНА), содержащим силовые радиальные стойки, состоящие из неподвижного полого и управляемого подвижного элементов и равномерно разнесенные в плоскости входного сечения с угловой частотой размещения стоек в диапазоне 3,0÷4,0 ед./рад, а также ротор с валом, содержащим, предпочтительно, не более четырех рабочих колес с системой лопаток; газогенератор, включающий сборочные узлы - промежуточный корпус, компрессор высокого давления, основную камеру сгорания и турбину высокого давления; последовательно расположенные за газогенератором, соосно установленные турбину низкого давления; смеситель; фронтовое устройство, форсажную камеру сгорания и соединенное с форсажной камерой сгорания всережимное реактивное сопло; а также установленный над основной камерой сгорания во внешнем контуре модуль воздухо-воздушный теплообменник, при необходимости обследуя любой не менее чем из шестидесяти трубчатых блок-модулей последнего, кроме того, обследуют и производят необходимую доводку коробки приводов двигательных агрегатов и объединяющих указанные модули электрическую, пневматическую, гидравлические - топливную и масляную системы, включая при необходимости замену датчиков, командных блоков, исполнительных механизмов и кабелей систем диагностики и автоматического управления двигателем; при этом на стадии доводки не менее чем один, предпочтительно, упомянутое репрезентативное количество экземпляров опытного ГТД подвергают испытанию по многоцикловой программе; указанная программа испытаний включает чередование режимов при выполнении этапов испытания длительностью работы ГТД, превышающей программное время полета, для чего сначала формируют типовые полетные циклы и определяют повреждаемость наиболее нагруженных деталей, исходя из этого определяют необходимое количество циклов нагружения при испытании, а затем формируют и производят полный объем испытаний, включающий выполнение последовательности испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим «малого газа», останов и цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов работы газотурбинного двигателя, в совокупности превышающем время полета в 5-6 раз; при этом различный размах диапазона изменения режимов работы ГТД реализуют, изменяя уровень перепада газа в конкретных режимах испытания от начального до наибольшего - максимального или полного форсированного режима работы ГТД путем переноса начальной точки отсчета при выполнении соответствующего режима, принимая последнюю в одном из режимов в положении, соответствующем уровню «малый газ», а в других режимах - в промежуточных или конечном положениях, соответствующих различным процентным долям или полному значению уровня газа максимального или полного форсированного режима, причем быстрый выход на максимальный или форсированный режимы на части испытательного цикла осуществляют в темпе приемистости с последующим сбросом, после чего выполняют последующие этапы испытаний и доводки ГТД в количестве, необходимом и достаточном для приведения двигателя в состояние, пригодное для передачи на предъявительские или государственные испытания.The problem is solved in that in the method of refining an experimental gas turbine engine according to the invention, an experimental engine is subjected to refinement, made by double-circuit, twin-shaft, while the engine is refined in stages, for which a program and algorithms for final testing of the experimental gas turbine engine are developed; at each stage, a statistically representative amount, mainly from one to five copies, is tested for compliance with the specified parameters, and the condition of each tested from the mentioned number of copies of the experimental engine is examined; for analysis and assessment of the condition, if necessary, disassemble, followed by possible refinement and / or replacement of parts of any of the modules and / or components of the experimental engine, inspect and, if necessary, replace any of the modules damaged in the tests or inadequate with the required parameters, including a low compressor pressure (KND) with an input guide vane (VNA) containing radial power racks consisting of a stationary hollow and controllable movable elements and uniformly spaced . The inlet section of bone with an angular frequency of placing racks in the range 3.0 ÷ 4.0 units / rad, and the rotor shaft, having, preferably, no more than four impellers with vanes system; a gas generator including assembly units — an intermediate casing, a high pressure compressor, a main combustion chamber and a high pressure turbine; sequentially located behind the gas generator, coaxially mounted low-pressure turbine; mixer; front-end device, afterburner combustion chamber and an all-mode jet nozzle connected to the afterburner; as well as an air-air heat exchanger module installed above the main combustion chamber in the external circuit, if necessary, inspecting any of at least sixty tubular block modules of the latter, in addition, they inspect and produce the necessary refinement of the drive box of the motor units and the electric, pneumatic unit of these modules hydraulic - fuel and oil systems, including, if necessary, replacing sensors, command blocks, actuators and cables of diagnostic systems and automatic matic motor control; at the same time, at the fine-tuning stage, at least one, preferably, the aforementioned representative number of copies of the experimental gas turbine engine is subjected to a multi-cycle test; the specified test program includes the alternation of modes during the test stages with a gas turbine engine operation duration exceeding the programmed flight time, for which the typical flight cycles are first formed and the damageability of the most loaded parts is determined, based on this, the required number of loading cycles is determined during the test, and then the full cycle is formed and produced scope of tests, including the execution of a sequence of test cycles - quick exit to maximum or full forced mode, fast resetting to the “low gas” mode, stopping and a long operation cycle with multiple alternating modes in the entire operating spectrum with a different range of variation in the operating modes of the gas turbine engine, which in aggregate exceeds the flight time by 5-6 times; at the same time, a different range of changes in the modes of operation of the gas turbine engine is realized by changing the level of the gas differential in specific test modes from the initial to the maximum - maximum or full forced operation of the gas turbine engine by transferring the initial reference point when the corresponding mode is performed, taking the latter in one of the modes in position corresponding to the “small gas” level, and in other modes - in intermediate or final positions corresponding to different percentages or the full value of the maxim gas level full or forced mode, moreover, a quick exit to the maximum or forced modes on part of the test cycle is carried out at the rate of acceleration followed by reset, after which the subsequent stages of testing and finalizing of the gas turbine engine are carried out in an amount necessary and sufficient to bring the engine into a condition suitable for transmission bearer or state trials.
В составе коммуникационных систем могут подвергать доводке воздушную систему, выделяя подсистемы охлаждения перегреваемых узлов, антиобледелительного обогрева ВНА двигателя и подсистемы наддува опор роторов компрессоров и турбин.As part of communication systems, they can refine the air system, highlighting the subsystems for cooling the overheated units, the anti-icing heating of the VNA engine and the pressurization subsystem for the bearings of the compressor and turbine rotors.
Часть испытательных циклов могут осуществлять без прогрева на режиме «малый газ» после запуска.Part of the test cycles can be carried out without warming up in the "low gas" mode after starting.
Испытательный цикл могут формировать на основе полетных циклов для боевого и учебного применения ГТД.The test cycle can be formed on the basis of flight cycles for combat and training GTE applications.
Доводке могут подвергать опытный двигатель, ВНА КНД которого содержит, предпочтительно, двадцать три радиальные стойки, соединяющие наружное и внутреннее кольца ВНА с возможностью передачи нагрузок от внешнего корпуса двигателя на переднюю опору, причем, по меньшей мере, часть стоек совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора КНД.They can be finished up with an experimental engine, the VNA of the low-pressure switch of which preferably contains twenty-three radial struts connecting the outer and inner rings of the VNA with the possibility of transferring loads from the external engine casing to the front support, and at least part of the struts is aligned with the channels of the oil system, placed in the stationary elements of the racks, with the ability to supply and drain oil, as well as venting the oil and pre-oil cavities of the front support of the low pressure rotor.
Доводке могут подвергать опытный ГТД, площадь фронтальной проекции входного проема Fвх.пр ВНА КНД которого, геометрически определяющая поперечное сечение входного устья воздухозаборного канала, ограниченного на большем радиусе внутренним контуром наружного кольца ВНА, а на меньшем радиусе внутренним контуром внутреннего кольца ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока и радиальных стоек, в 2,54÷2,72 раза и составляет 0,67÷0,77 от полной площади круга Fплн, ограниченного радиусом внутреннего контура наружного кольца ВНА в плоскости входного проема.The experimental gas turbine engine can be finished up, the frontal projection area of the input opening F inlet VNA VNK KND which geometrically determines the cross section of the inlet mouth of the air intake channel, bounded on a larger radius by the inner contour of the outer ring of the VNA, and on a smaller radius by the inner contour of the inner ring of the VNA, exceeding the total area of aerodynamic shading F z created by the frontal projection of the coca and radial struts is 2.54 ÷ 2.72 times and is 0.67 ÷ 0.77 of the total circle area F pln , limited radius of the inner contour of the outer ring of the BHA in the plane of the inlet opening.
Технический результат, обеспечиваемый приведенной совокупностью признаков, состоит в разработке способа доводки опытного газотурбинного двигателя, выполненного с улучшенными эксплуатационными характеристиками, а именно тягой, а также с повышенной надежностью двигателя в процессе эксплуатации. Повышение достоверности результатов испытаний, проводимых на этапе доводки опытных ГТД, достигается за счет разработанного в изобретении чередования режимов при выполнении этапов испытания, которые по длительности превышают программное время полета. При этом предварительно формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей и исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем формируют репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов. Это позволяет повысить корректность и расширить репрезентативность оценки ресурса и надежности работы двигателя на этапах создания и доводки и, как следствие, дальнейшего серийного промышленного производства и летной эксплуатации ГТД и обеспечивает повышенный ресурс двигателя в условиях, характерных для последующей реальной многорежимной работы ГТД в полетных условиях на высокоманевренных самолетах.The technical result provided by the given set of features consists in developing a method for fine-tuning an experimental gas turbine engine, made with improved performance characteristics, namely traction, as well as with increased engine reliability during operation. Improving the reliability of the test results carried out at the stage of finalizing the experimental gas turbine engine is achieved due to the alternation of modes developed in the invention when performing test phases that exceed the programmed flight time in duration. In this case, typical flight cycles are preliminarily formed, on the basis of which the damage to the most loaded parts is determined according to the program, and on the basis of this, the required number of loading cycles is determined during the test. The full scope of the tests is formed, including the quick change of cycles in the full register from the quick exit to the maximum or full forced mode to the complete stop of the engine and then a representative long-term operation cycle is formed with multiple alternating modes in the entire operating spectrum with a different range of modes. This makes it possible to increase the correctness and expand the representativeness of the assessment of the resource and reliability of the engine at the stages of creation and refinement and, as a result, the further serial production and flight operation of the gas turbine engine and provides an increased engine life in conditions typical of the subsequent real multi-mode operation of the gas turbine engine in flight conditions at highly maneuverable aircraft.
Сущность изобретения поясняется чертежами, где:The invention is illustrated by drawings, where:
на фиг.1 изображен газотурбинный двигатель, продольный разрез;figure 1 shows a gas turbine engine, a longitudinal section;
на фиг.2 - входной направляющий аппарат КНД, вид сверху.figure 2 - input guide apparatus KND, top view.
В способе доводки газотурбинного двигателя доводке подвергают опытный двигатель, выполненный двухконтурным, двухвальным. Доводку двигателя производят поэтапно, для чего разрабатывают программу и алгоритмы доводочных испытаний опытного ГТД. На каждом этапе подвергают испытаниям ГТД на соответствие заданным параметрам статистически репрезентативное количество, преимущественно от одного до пяти экземпляров двигателей, и проводят обследование состояния каждого испытанного из упомянутого количества экземпляров опытного двигателя. Для анализа и оценки состояния ГТД при необходимости производят разборку с последующей возможной доработкой и/или заменой деталей любого из модулей и/или узлов опытного двигателя. Обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым параметрам модуль.In the method of refining a gas turbine engine, a prototype engine made by double-circuit, twin-shaft is refined. The engine refinement is carried out in stages, for which they develop a program and algorithms for the final testing of an experimental gas turbine engine. At each stage, the gas turbine engine is tested for compliance with the specified parameters with a statistically representative amount, mainly from one to five engine instances, and a condition is examined for each of the tested instances of the experimental engine. To analyze and evaluate the state of a gas turbine engine, if necessary, disassemble with subsequent possible refinement and / or replacement of parts of any of the modules and / or units of the experimental engine. Inspect and, if necessary, replace any module damaged in the tests or inadequate with the required parameters, if modified.
ГТД содержит не менее восьми модулей - от компрессора 1 низкого давления до всережимного регулируемого реактивного сопла 2. КНД включает входной направляющий аппарат 3, а также ротор с валом 4, содержащим, предпочтительно, не более четырех рабочих колес 5 с системой лопаток 6. ВНА 3 содержит силовые радиальные стойки 7, состоящие из неподвижного полого и управляемого подвижного элементов. Радиальные стойки 7 равномерно разнесены в плоскости входного сечения с угловой частотой размещения стоек в диапазоне 3,0÷4,0 ед./рад.A gas turbine engine contains at least eight modules - from a low-
Газогенератор включает сборочные узлы, а именно промежуточный корпус 8, компрессор 9 высокого давления, основную камеру 10 сгорания и турбину 11 высокого давления. За газогенератором последовательно расположены и соосно установлены турбина 12 низкого давления, смеситель 13, фронтовое устройство 14, форсажная камера 15 сгорания и соединенное с форсажной камерой 15 сгорания всережимное реактивное сопло 2. Над основной камерой 10 сгорания во внешнем контуре ГТД установлен модуль воздухо-воздушный теплообменник 16, при необходимости обследуя любой не менее чем из шестидесяти трубчатых блок-модулей последнего. Кроме того, обследуют и производят необходимую доводку коробки приводов двигательных агрегатов (на чертежах не показано) и объединяющих указанные модули электрическую, пневматическую, гидравлические - топливную и масляную системы, включая при необходимости замену датчиков, командных блоков, исполнительных механизмов и кабелей систем диагностики и автоматического управления двигателем.The gas generator includes assemblies, namely an
На стадии доводки не менее чем один, предпочтительно упомянутое репрезентативное количество экземпляров опытного ГТД, подвергают испытанию по многоцикловой программе. Многоцикловая программа испытаний включает чередование режимов при выполнении этапов испытания длительностью работы ГТД, превышающей программное время полета. Сначала формируют типовые полетные циклы и определяют повреждаемость наиболее нагруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Затем формируют и производят полный объем испытаний, включающий выполнение последовательности испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим «малого газа», останов и цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов работы газотурбинного двигателя, в совокупности превышающем время полета в 5-6 раз. Различный размах диапазона изменения режимов работы ГТД реализуют, изменяя уровень перепада газа в конкретных режимах испытания от начального до наибольшего - максимального или полного форсированного режима работы ГТД путем переноса начальной точки отсчета при выполнении соответствующего режима, принимая последнюю в одном из режимов в положении, соответствующем уровню «малый газ». В других режимах - в промежуточных или конечном положениях, соответствующих различным процентным долям или полному значению уровня газа максимального или полного форсированного режима. Быстрый выход на максимальный или форсированный режимы на части испытательного цикла осуществляют в темпе приемистости с последующим сбросом.At the fine-tuning stage, at least one, preferably the aforementioned, representative number of experimental GTE specimens is tested in a multi-cycle program. The multi-cycle test program includes the alternation of modes during the execution of the test stages with a gas turbine operation duration exceeding the programmed flight time. First, typical flight cycles are formed and damage to the most loaded parts is determined. Based on this, the required number of loading cycles during the test is determined. Then the full scope of the tests is formed and performed, including the execution of the sequence of test cycles — quick exit to the maximum or full forced mode, quick reset to the “low gas” mode, stop and long-term operation cycle with repeated alternation of modes in the entire working spectrum with a different range of variation operating modes of a gas turbine engine, in total, exceeding the flight time by 5-6 times. A different range of changes in the operation modes of a gas turbine engine is realized by changing the level of the gas differential in specific test modes from the initial to the maximum - maximum or full forced operation of the gas turbine engine by transferring the initial reference point when performing the corresponding mode, assuming the latter in one of the modes in the position corresponding to the level "Small gas". In other modes - in intermediate or final positions corresponding to different percentages or the full value of the gas level of the maximum or full forced mode. A quick exit to the maximum or forced modes on the part of the test cycle is carried out at the rate of throttle response, followed by reset.
После этого выполняют последующие этапы испытаний и доводки ГТД в количестве, необходимом и достаточном для приведения двигателя в состояние, пригодное для передачи на предъявительские или государственные испытания.After that, the subsequent stages of testing and finalizing of the gas turbine engine are performed in the quantity necessary and sufficient to bring the engine into a condition suitable for transmission to bearer or state tests.
В составе коммуникационных систем подвергают доводке воздушную систему, выделяя подсистемы охлаждения перегреваемых узлов, антиобледелительного обогрева ВНА двигателя и подсистемы наддува опор роторов компрессоров и турбин.As part of communication systems, the air system is refined, highlighting the subsystems for cooling the overheated units, the anti-icing heating of the VNA engine and the pressurization subsystem for the bearings of the compressor and turbine rotors.
Часть испытательных циклов осуществляют без прогрева на режиме «малый газ» после запуска.Part of the test cycles is carried out without warming up in the "low gas" mode after starting.
Испытательный цикл формируют на основе полетных циклов для боевого и учебного применения ГТД.The test cycle is formed on the basis of flight cycles for combat and training use of gas turbine engines.
Доводке подвергают опытный двигатель, ВНА 3 КНД 1 которого содержит, предпочтительно, двадцать три радиальные стойки 7, соединяющие наружное и внутреннее кольца 17 и 18 соответственно ВНА 3 с возможностью передачи нагрузок от внешнего корпуса 19 двигателя на переднюю опору. По меньшей мере, часть стоек 7 совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора КНД.The experimental engine is refined, VNA 3
Доводке подвергают опытный ГТД, площадь фронтальной проекции входного проема Fвх.пр ВНА 3 КНД 1 которого, геометрически определяющая поперечное сечение входного устья воздухозаборного канала 20, ограниченного на большем радиусе внутренним контуром наружного кольца 17 ВНА 3, а на меньшем радиусе внутренним контуром внутреннего кольца 18 ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока 21 и радиальных стоек 7, в 2,54÷2,72 раза и составляет 0,67÷0,77 от полной площади круга Fплн, ограниченного радиусом внутреннего контура наружного кольца 17 ВНА в плоскости входного проема.The experimental gas turbine engine is subjected to refinement, the frontal projection area of the inlet opening F inlet VNA 3
Пример реализации испытания опытного газотурбинного двигателя по многоцикловой программеAn example of the implementation of testing an experimental gas turbine engine according to a multi-cycle program
Испытанию подвергают ГТД с проектным ресурсом 500 часов общей наработки до первого капитального ремонта. В указанном ресурсе задана наработка 20 час на максимальном режиме, из них 5 час на полном форсированном режиме. Формируют типовые полетные циклы (ТПЦ) и устанавливают заданное время работы двигателя 1 ч, эквивалентное полетному времени летательного аппарата (ЛА) по принятому ТПЦ. На основании ТПЦ расчетным путем определяют повреждаемость наиболее нагруженных деталей. Исходя из этого определяют необходимое эквивалентное по повреждаемости количество циклов при испытаниях. В данном варианте принимают следующий состав нагрузочных испытательных циклов - выполнение 700 (400+300) запусков с выходом соответственно на максимальный и форсированные режимы, а также 400 приемистостей от режима «малый газ» (МГ) до максимального (Макс) и 300 с режима 0,8 Макс. до форсированного (Фор) режима.A gas turbine engine with a design life of 500 hours of total running time is tested, before the first overhaul. In the indicated resource, the operating time is set to 20 hours at maximum mode, of which 5 hours at full forced mode. Typical flight cycles (TFCs) are formed and a predetermined engine operating time of 1 h is set, which is equivalent to the flight time of an aircraft (LA) according to the adopted TOC. Based on the fuel processing center, the damage to the most loaded parts is determined by calculation. On the basis of this, the required equivalent damage number of cycles during the tests is determined. In this embodiment, the following set of load test cycles is taken - performing 700 (400 + 300) starts with reaching the maximum and forced modes, respectively, as well as 400 pick-ups from the “low gas” (MG) mode to the maximum (Max) and 300 from
Устанавливают коэффициент запаса на требуемое количество испытательных нагрузочных циклов и времени наработки K=1, 2.Set the safety factor for the required number of test load cycles and running hours K = 1, 2.
Формируют полный объем ресурсных испытаний и разрабатывают программу проведения испытаний:Form the full scope of life tests and develop a test program:
1. Общую наработку при проведении ресурсных испытаний принимают 500*1,2=600 ч, из них наработку на максимальном режиме принимают (20-5)*1,2=18 ч, а на форсированном режиме 5*1,2=6 ч.1. The total operating time during the life tests is 500 * 1.2 = 600 hours, of which the maximum operating time is (20-5) * 1.2 = 18 hours, and in the forced
2. Принимают продолжительность этапа испытаний 5 ч и определяют количество пятичасовых этапов 600:5=120.2. Take the duration of the
3. Устанавливают количество запусков с учетом коэффициента запаса 700*1,2=840, а также от МГ до Макс 400*1,2=480 и от 0,8 Макс до Фор 300*1,2=360.3. Set the number of starts taking into account the safety factor of 700 * 1.2 = 840, as well as from MG to Max 400 * 1.2 = 480 and from 0.8 Max to Fore 300 * 1.2 = 360.
4. Каждый пятичасовой этап включает 840:120=7, приемистостей от режима МГ до Макс 480:120=4 и приемистостей с режима 0,8 Макс до Фор 360:120=3, а также наработку на максимальном и форсированном режимах 18*60:120=9 мин, 360:120=3 мин.4. Each five-hour stage includes 840: 120 = 7, pick-ups from the MG mode to Max 480: 120 = 4 and pick-ups from the 0.8 Max mode to For 360: 120 = 3, as well as the operating time at maximum and forced
5. Устанавливают последовательность испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим МГ и останов. Затем предусматривают цикл длительной работы с многократным чередованием нагрузочных циклов с размахом диапазонов изменения режимов от МГ до Макс и 0,8 Макс до Фор в пределах установленного выше объема испытательных этапов.5. Set the sequence of test cycles - quick exit to maximum or full forced mode, quick reset to MG mode and stop. Then, a long-term operation cycle is provided with multiple alternation of load cycles with a range of regime change ranges from MG to Max and 0.8 Max to For within the range of the test stages established above.
Выполняют испытания ГТД по указанной программе. Затем проводят дефектацию двигателя и анализ результатов испытаний, по которым принимают решение о признании двигателя выдержавшим испытания.GTE tests are performed according to the specified program. Then the engine is faulted and the test results are analyzed, according to which a decision is made to recognize the engine as tested.
Claims (5)
4 Способ доводки опытного газотурбинного двигателя по п.1, отличающийся тем, что испытательный цикл формируют на основе полетных циклов для боевого и учебного применения ГТД.3. The refinement method of the experimental gas turbine engine according to claim 1, characterized in that part of the test cycles is carried out without heating in the "small gas" mode after starting.
4 The refinement method of the experimental gas turbine engine according to claim 1, characterized in that the test cycle is formed on the basis of flight cycles for combat and training use of a gas turbine engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013149521/06A RU2551246C1 (en) | 2013-11-07 | 2013-11-07 | Adjustment method of test gas-turbine engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013149521/06A RU2551246C1 (en) | 2013-11-07 | 2013-11-07 | Adjustment method of test gas-turbine engine |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013149521A RU2013149521A (en) | 2015-05-20 |
RU2551246C1 true RU2551246C1 (en) | 2015-05-20 |
Family
ID=53283619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013149521/06A RU2551246C1 (en) | 2013-11-07 | 2013-11-07 | Adjustment method of test gas-turbine engine |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2551246C1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105784380A (en) * | 2016-04-19 | 2016-07-20 | 上海交通大学 | Aero-engine gas compressor rotor blade systematic fault detection method |
CN115217635A (en) * | 2022-07-28 | 2022-10-21 | 南京航空航天大学 | Turbofan engine full-envelope self-adaptive acceleration control method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2210066C1 (en) * | 2001-12-27 | 2003-08-10 | Государственное унитарное предприятие Тушинское машиностроительное конструкторское бюро "Союз" - дочернее предприятие Федерального государственного унитарного предприятия Российской самолётостроительной корпорации "МиГ" | Method of testing gas turbine engines with due account of season when tests are carried out |
SU1151075A1 (en) * | 1983-05-24 | 2004-08-10 | В.О. Боровик | METHOD OF TESTING A GAS TURBINE ENGINE |
US7020595B1 (en) * | 1999-11-26 | 2006-03-28 | General Electric Company | Methods and apparatus for model based diagnostics |
RU2308014C2 (en) * | 2005-08-16 | 2007-10-10 | Открытое акционерное общество Конструкторское-производственное предприятие "Авиамотор" | Method of operating the engine |
RU2393451C1 (en) * | 2008-12-26 | 2010-06-27 | Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" | Method of operating aircraft engine based on technical state thereof |
-
2013
- 2013-11-07 RU RU2013149521/06A patent/RU2551246C1/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1151075A1 (en) * | 1983-05-24 | 2004-08-10 | В.О. Боровик | METHOD OF TESTING A GAS TURBINE ENGINE |
US7020595B1 (en) * | 1999-11-26 | 2006-03-28 | General Electric Company | Methods and apparatus for model based diagnostics |
RU2210066C1 (en) * | 2001-12-27 | 2003-08-10 | Государственное унитарное предприятие Тушинское машиностроительное конструкторское бюро "Союз" - дочернее предприятие Федерального государственного унитарного предприятия Российской самолётостроительной корпорации "МиГ" | Method of testing gas turbine engines with due account of season when tests are carried out |
RU2308014C2 (en) * | 2005-08-16 | 2007-10-10 | Открытое акционерное общество Конструкторское-производственное предприятие "Авиамотор" | Method of operating the engine |
RU2393451C1 (en) * | 2008-12-26 | 2010-06-27 | Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" | Method of operating aircraft engine based on technical state thereof |
Non-Patent Citations (1)
Title |
---|
СКУБАЧЕВСКИЙ Л.С. Испытание воздушно-реактивных двигателей, Москва, Машиностроение, 1972, с.13-15. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105784380A (en) * | 2016-04-19 | 2016-07-20 | 上海交通大学 | Aero-engine gas compressor rotor blade systematic fault detection method |
CN115217635A (en) * | 2022-07-28 | 2022-10-21 | 南京航空航天大学 | Turbofan engine full-envelope self-adaptive acceleration control method |
Also Published As
Publication number | Publication date |
---|---|
RU2013149521A (en) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2551015C1 (en) | Method of operational development of experimental jet turbine engine | |
RU2551246C1 (en) | Adjustment method of test gas-turbine engine | |
RU2544686C1 (en) | Adjustment method of test gas-turbine engine | |
RU2551249C1 (en) | Method of operational development of experimental jet turbine engine | |
RU2555928C2 (en) | Jet turbine engine | |
RU2551013C1 (en) | Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method | |
RU2551019C1 (en) | Adjustment method of test turbo-jet engine | |
RU2544634C1 (en) | Adjustment method of test gas-turbine engine | |
RU2551007C1 (en) | Method of operational development of experimental gas-turbine engine | |
RU2551003C1 (en) | Method of operational development of experimental gas-turbine engine | |
RU2544412C1 (en) | Method of operational development of experimental turbojet engine | |
RU2544419C1 (en) | Method of operational development of experimental gas-turbine engine | |
RU2551142C1 (en) | Method of gas turbine engine batch manufacturing and gas turbine engine manufactured according to this method | |
RU2550999C1 (en) | Method of operational development of experimental jet turbine engine | |
RU2555940C2 (en) | Method of mass production of gas turbine engine and gas turbine engine made using this method | |
RU2545110C1 (en) | Gas-turbine engine | |
RU2544638C1 (en) | Gas turbine engine | |
RU2555935C2 (en) | Method of mass production of gas turbine engine and gas turbine engine made using this method | |
RU144426U1 (en) | GAS TURBINE ENGINE | |
RU2551247C1 (en) | Jet turbine engine | |
RU2544636C1 (en) | Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method | |
RU2555931C2 (en) | Jet turbine engine | |
RU142961U1 (en) | TURBOJET | |
RU144425U1 (en) | TURBOJET | |
RU2551915C1 (en) | Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner |