RU2544636C1 - Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method - Google Patents

Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method Download PDF

Info

Publication number
RU2544636C1
RU2544636C1 RU2013149536/06A RU2013149536A RU2544636C1 RU 2544636 C1 RU2544636 C1 RU 2544636C1 RU 2013149536/06 A RU2013149536/06 A RU 2013149536/06A RU 2013149536 A RU2013149536 A RU 2013149536A RU 2544636 C1 RU2544636 C1 RU 2544636C1
Authority
RU
Russia
Prior art keywords
engine
gas
gas turbine
turbine engine
compressor
Prior art date
Application number
RU2013149536/06A
Other languages
Russian (ru)
Inventor
Александр Викторович Артюхов
Дмитрий Юрьевич Еричев
Игорь Александрович Кондрашов
Виктор Викторович Куприк
Ирик Усманович Манапов
Евгений Ювенальевич Марчуков
Константин Сергеевич Поляков
Сергей Анатольевич Симонов
Николай Павлович Селиванов
Сергей Андреевич Фёдоров
Original Assignee
Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо") filed Critical Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо")
Priority to RU2013149536/06A priority Critical patent/RU2544636C1/en
Application granted granted Critical
Publication of RU2544636C1 publication Critical patent/RU2544636C1/en

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

FIELD: engines and pumps.
SUBSTANCE: invention relates to aircraft engine building, namely to aircraft gas-turbine engines. A batch production method of a gas-turbine engine involves manufacture of parts and completing of assembly units, components and assemblies of modules and systems of the engine. The engine is assembled module-by-module and made as two-stroke and two-shaft. An intermediate housing; a gas generator including a high-pressure compressor, the main combustion chamber and a high-pressure turbine is installed on a process jig. A low-pressure compressor is installed in front of the intermediate housing, and behind the gas generator there in- series and coaxially installed is a low-pressure turbine, a mixer, the front device, an afterburner and an all-mode jet nozzle. After assembly is completed, the engine is tested for gas-dynamic stability of operation of the compressor. The test bench is provided with an inlet aerodynamic device with a remotely controlled extension-type interceptor that crosses an air flow in an adjustable manner. The interceptor includes a calibrated scale of interceptor positions, which has a fixed critical point separating the engine by 2-5% from transition to surging. When necessary, tests are repeated for a certain set of modes as per regulations, which correspond to real operation mode of GTE under flight conditions.
EFFECT: simplification of a technology and reduction of labour costs and power consumption for a GTE test process at an industrial batch production stage at enlargement of reliable determination of boundaries of the allowable thrust variation range.
12 cl, 4 dwg

Description

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям.The invention relates to the field of aircraft engine manufacturing, namely to aircraft gas turbine engines.

Известен двухконтурный, двухвальный газотурбинный двигатель (ГТД), включающий турбокомпрессорные комплексы, один из которых содержит установленные на одном валу компрессор и турбину низкого давления, а другой содержит аналогично объединенные на другом валу, соосном с первым, компрессор и турбину высокого давления, промежуточный разделительный корпус между упомянутыми компрессорами, наружный и внутренние контуры, основную и форсажную камеры сгорания, камеру смешения газовоздушных потоков рабочего тела и регулируемое сопло (Н.Н. Сиротин и др. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. М.: Наука, 2011 г., стр.19-46, рис.1.24).Known double-circuit, twin-shaft gas turbine engine (GTE), including turbocompressor complexes, one of which contains a compressor and a low pressure turbine mounted on one shaft, and the other contains a compressor and a high pressure turbine, an intermediate separation housing, similarly combined on the other shaft, coaxial with the first between the aforementioned compressors, the external and internal circuits, the main and afterburner combustion chambers, a chamber for mixing gas-air flows of the working fluid and an adjustable nozzle (N.N. Siroti and others. Fundamentals of designing the production and operation of aircraft gas turbine engines and power plants in the CALS technology system. Book 1. M .: Nauka, 2011, pp. 19-46, Fig. 1.24).

Известен газотурбинный двигатель, который выполнен двухконтурным, содержит корпус, опертые на него компрессоры и турбины, охлаждаемую камеру сгорания, топливно-насосную группу, реактивные сопла, а также систему управления с командными и исполнительными органами (Конструкция и проектирование авиационных газотурбинных двигателей. Под редакцией Д.В. Хронина. М.: Машиностроение 1989. с.12-88).Known gas turbine engine, which is a dual-circuit, contains a housing supported by compressors and turbines, a cooled combustion chamber, a fuel pump group, jet nozzles, as well as a control system with command and executive bodies (Design and engineering of aircraft gas turbine engines. Edited by D .V. Chronin. M.: Mechanical Engineering 1989.p.12-88).

Известен способ разработки и испытаний авиационных двигателей типа газотурбинных, включающий отработку заданных режимов, контроль параметров и оценку по ним ресурса и надежности работы двигателя. С целью сокращения времени испытаний при доводке двигателей 10-20% испытания проводят с температурой газа перед турбиной, превышающей максимальную рабочую температуру на 45-65°C (SU 1151075 A1, опубл. 10.08.2004).A known method of development and testing of aircraft engines such as gas turbine, including the development of predetermined modes, parameter control and assessment of resource and reliability of the engine. In order to reduce the test time during engine refinement of 10-20%, tests are carried out with the gas temperature in front of the turbine exceeding the maximum operating temperature by 45-65 ° C (SU 1151075 A1, publ. 10.08.2004).

Известен способ испытаний газотурбинного реактивного двигателя, заключающийся в создании на входе в двигатель неравномерности потока воздуха путем установления сеток во входном канале для определения границы устойчивой работы компрессора. Для введения компрессора двигателя в помпаж требуется набор сеток, которые устанавливаются во входной канал поочередно последовательно, ступенчато увеличивая неравномерность, что приводит к увеличению количества запусков, затрат энергии и времени для установки сеток во входной канал и проведения испытаний (Ю.А. Литвинов, В.О. Боровик. Характеристики и эксплуатационные свойства авиационных газотурбинных двигателей. М.: Машиностроение, 1979, 288 с, стр.13-15).A known method of testing a gas turbine jet engine, which consists in creating at the entrance to the engine uneven air flow by establishing grids in the inlet channel to determine the boundary of the stable operation of the compressor. To introduce an engine compressor into the surge, a set of grids is required, which are installed sequentially in the input channel sequentially, stepwise increasing the unevenness, which leads to an increase in the number of starts, energy consumption and time for installing the grids in the input channel and testing (Yu.A. Litvinov, V .O. Borovik. Characteristics and operational properties of aircraft gas turbine engines. M.: Mashinostroenie, 1979, 288 p. 13-15).

Известен стенд для испытания турбокомпрессора двигателя внутреннего сгорания, который дополнительно оборудован регулируемым нагревателем, вторым рекуперативным теплообменником, теплообменником-охладителем и регулируемым интерцептором, выполненным в виде корпуса с центральным каналом для прохода газа и расположенными по образующей корпуса сквозными отверстиями, соединенными с атмосферой через управляемые клапаны. Регулируемый интерцептор установлен на входе в компрессор испытуемого турбокомпрессора (RU 2199727 C1, 27.12.2004).A known bench for testing a turbocharger of an internal combustion engine, which is additionally equipped with an adjustable heater, a second recuperative heat exchanger, a heat exchanger-cooler and an adjustable interceptor, made in the form of a housing with a central channel for gas passage and through holes located along the generatrix of the housing, connected to the atmosphere through controlled valves . An adjustable interceptor is installed at the compressor inlet of the turbocharger under test (RU 2199727 C1, 12/27/2004).

Недостатками указанных известных технических решений являются повышенная трудо- и энергоемкость испытаний, выполняемых известными способами, и, как следствие, недостаточно высокая надежность оценки важнейших параметров двигателя в широком диапазоне режимов и условий эксплуатации. Наиболее существенным из указанных недостатков является необходимость многократного останова двигателя в процессе испытаний и многократной замены интерцепторов с различной аэродинамической прозрачностью, создающих ту или иную степень аэродинамических помех и снижения или увеличения потока воздуха, поступающего в испытуемый двигатель. Известная технология испытаний приводит к необходимости многократных запусков двигателя в процессе испытания и связана с пережогом топлива и непроизводительными затратами времени и труда испытателей.The disadvantages of these known technical solutions are the increased labor and energy intensity of tests performed by known methods, and, as a result, the reliability of the assessment of the most important engine parameters in a wide range of operating conditions and conditions is not high enough. The most significant of these drawbacks is the need for multiple engine shutdown during testing and multiple replacement of interceptors with different aerodynamic transparency, creating one degree or another of aerodynamic interference and reducing or increasing the flow of air entering the test engine. Known test technology leads to the need for multiple engine starts during the test and is associated with burnout of fuel and unproductive time and labor of testers.

Задача группы изобретений, связанных единым творческим замыслом, заключается в разработке способа серийного производства газотурбинного двигателя и выполненного заявляемым способом ГТД, совокупность технических решений которых обеспечивает возможность оптимального регулирования допустимой тяги в полном диапазоне газодинамической устойчивости работы компрессора без вхождения двигателя в помпаж, а также в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ГТД на этапе серийного промышленного производства при повышении достоверности определения границ допустимого диапазона варьирования тяги.The task of the group of inventions related by a single creative idea is to develop a method for the mass production of a gas turbine engine and a gas turbine engine made by the claimed method, the combination of technical solutions of which allows optimal regulation of the permissible thrust in the full range of gas-dynamic stability of the compressor without the engine entering the surge, and also in simplification technologies and reduction of labor costs and energy consumption of the gas turbine engine test process at the stage of serial industrial production dstva while increasing reliability of determining the boundaries of the acceptable range of variation of thrust.

Поставленная задача решается тем, что в способе серийного производства газотурбинного двигателя согласно изобретению, изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя; собирают модули в количестве не менее восьми - от компрессора низкого давления (КНД) до всережимного регулируемого реактивного сопла; в процессе изготовления КНД собирают статор, в котором устанавливают входной, не более трех промежуточных направляющих аппаратов и выходной спрямляющий аппарат, а также собирают ротор, включая вал, на котором устанавливают и жестко соединяют дисками не более четырех рабочих колес с системой лопаток, при этом формируют кольцевые участки внутренней поверхности воздухозаборного канала проточной части КНД из профилированных в направлении потока воздуха элементов лопаток рабочих колес и направляющих аппаратов КНД; собирают, предпочтительно, помодульно двигатель, который выполняют двухконтурным, двухвальным, при этом устанавливают на технологическом стапеле промежуточный корпус; газогенератор, включая компрессор высокого давления (КВД), имеющий статор, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД, основную камеру сгорания и турбину высокого давления (ТВД); затем перед промежуточным корпусом устанавливают КНД, а за газогенератором последовательно соосно устанавливают турбину низкого давления (ТНД), смеситель, фронтовое устройство, форсажную камеру сгорания и всережимное реактивное сопло; кроме того, в процессе изготовления КНД входной направляющий аппарат (ВНА) оснащают аэродинамически прозрачной силовой решеткой из радиальных стоек, которые устанавливают равномерно распределение по кругу входного сечения ВНА и с аэродинамическим затенением, создаваемым упомянутой решеткой совместно с фронтальным коком ВНА, составляющим менее 30% от полной площади входного круга, очерченного внешним радиусом проточной части ВНА; причем после сборки производят испытания двигателя, по меньшей мере, на определение газодинамической устойчивости (ГДУ) работы серийного ГТД, для этого произвольно отбирают не менее чем один, для репрезентативности предпочтительно три-пять ГТД из серийно произведенной партии, испытуемый двигатель размещают на стенде с входным аэродинамическим устройством, которое снабжено регулируемо пересекающим воздушный поток, преимущественно дистанционно управляемым выдвижным интерцептором с отградуированной шкалой положений интерцептора в потоке подаваемого в двигатель воздуха, имеющей фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж; повторяют испытания на определенном по регламенту наборе режимов, соответствующих режимам, характерным для последующей реальной работы ГТД в полетных условиях; экспериментально подтверждают область газодинамической устойчивости работы и, по меньшей мере, в режиме с наименьшим запасом газодинамической устойчивости выполняют встречную приемистость по регламенту: выдержка на максимальном режиме, сброс частоты вращения путем установки рычага управления двигателем в положение «малый газ», и при достижении значения частоты вращения, соответствующего значению отрабатываемой неравномерности, выполняют приемистость двигателя на максимальный режим путем перевода рычага управления двигателем в положение «максимальные обороты» и определяют запасы газодинамической устойчивости компрессора двигателя.The problem is solved in that in the method for mass production of a gas turbine engine according to the invention, parts are made and assembly units, elements and units of engine modules and systems are completed; modules are assembled in an amount of at least eight - from a low-pressure compressor (LPC) to an all-mode adjustable jet nozzle; in the process of manufacturing KND, a stator is assembled, in which an input, not more than three intermediate guide vanes and an output straightener are installed, and also a rotor is assembled, including a shaft, on which no more than four impellers are mounted and rigidly connected by disks to the blade system, and annular sections of the inner surface of the intake channel of the KND flowing section from elements of the impeller vanes and KND guiding devices profiled in the direction of the air flow; preferably, modularly, an engine is assembled, which is performed by a double-circuit, two-shaft, while an intermediate case is mounted on the technological slipway; a gas generator, including a high pressure compressor (HPC) having a stator, as well as a rotor with a shaft and a system of impellers equipped with blades, the number of which is at least twice the number of the mentioned KND impellers, the main combustion chamber and high pressure turbine (HPD) ; then, in front of the intermediate casing, low pressure valves are installed, and behind the gas generator, a low pressure turbine (low pressure turbine), mixer, front-end device, afterburner, and an all-mode jet nozzle are sequentially coaxially installed; in addition, in the process of manufacturing KND, the input guide vane (VNA) is equipped with an aerodynamically transparent power grid of radial struts, which establish a uniform distribution around the inlet section of the VNA and with aerodynamic shading created by the said grill together with the frontal VNA coke, which is less than 30% of the total area of the input circle, outlined by the external radius of the flow part of the VNA; moreover, after assembly, the engine is tested at least to determine the gas-dynamic stability (GDU) of the operation of a serial gas turbine engine, for this purpose at least one is randomly selected, for representativeness it is preferably three to five gas turbine engines from a serial batch, the test engine is placed on a stand with an input aerodynamic device, which is equipped with adjustable crosses the air flow, mainly remotely controlled by a retractable interceptor with a graduated scale of the position of the interceptor in the current of air supplied to the engine having a fixed critical point separating the engine by 2-5% from the transition to surge; repeat the tests on a set of modes defined by the regulations corresponding to the modes characteristic of the subsequent real work of the gas turbine engine in flight conditions; experimentally confirm the area of gas-dynamic stability of operation and, at least in the mode with the least margin of gas-dynamic stability, perform counter-throttle response according to the regulations: holding at maximum speed, resetting the speed by setting the engine control lever to the "low gas" position, and when the frequency value is reached rotation corresponding to the value of the developed unevenness, perform engine throttle response to maximum mode by translating the engine control lever into Proposition "maximum speed" and define reserves dynamic stability of the engine compressor.

При монтаже ось регулируемого реактивного сопла могут выполнять отклоненной вниз от нейтрального положения оси двигателя на угол, составляющий (2°÷3°30′).During installation, the axis of the adjustable jet nozzle can be executed deviated down from the neutral position of the engine axis by an angle of (2 ° ÷ 3 ° 30 ′).

Промежуточный корпус могут наделять функцией силового узла двигателя с возможностью восприятия суммарных осевых и радиальных нагрузок от компрессоров и турбин с последующей передачей на внешние силовые элементы и устанавливают между КНД и КВД, разделяя поступающий из КНД воздух на два потока - наружный и внутренний контуры, при этом в наружном контуре вокруг корпуса основной камеры сгорания собирают не менее чем из шестидесяти трубчатых блок-модулей кольцевой воздухо-воздушный теплообменник, а над промежуточным корпусом на внешнем корпусе двигателя устанавливают коробку приводов двигательных агрегатов.The intermediate housing can be endowed with the function of a power unit of the engine with the possibility of perceiving the total axial and radial loads from compressors and turbines with subsequent transmission to external power elements and is installed between the low pressure switch and the high pressure switch, dividing the air coming from the low pressure switch into two flows - external and internal circuits, while in the outer circuit around the body of the main combustion chamber, an annular air-air heat exchanger is assembled from at least sixty tubular block modules, and above the intermediate casing on the outer Engine sensor body mounted box drive motor units.

Статор КВД могут выполнять содержащим входной направляющий аппарат, не более восьми промежуточных направляющих аппаратов и выходной спрямляющий аппарат.The stator of the HPC can be performed comprising an input guide vane, no more than eight intermediate guide vanes and an output rectifier.

Радиальные стойки ВНА могут устанавливать равномерно распределенно по кругу входного сечения ВНА, преимущественно в плоскости, нормальной к оси двигателя, с угловой частотой (3,0÷4,0) ед./рад.VNA radial struts can be installed evenly distributed around the VNA input section, mainly in the plane normal to the axis of the engine, with an angular frequency (3.0 ÷ 4.0) units / rad.

Входной направляющий аппарат компрессора низкого давления могут оснащать, предпочтительно, двадцатью тремя радиальными стойками, соединяющими наружное и внутреннее кольца ВНА с возможностью передачи нагрузок от внешнего корпуса двигателя на переднюю опору, причем радиальные стойки выполняют состоящими из неподвижного полого и управляемого подвижного элементов, при этом, по меньшей мере, часть радиальных стоек совмещают с каналами масляной системы, размещенными в неподвижных элементах стоек с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора компрессора низкого давления.The inlet guide apparatus of the low-pressure compressor can preferably be equipped with twenty-three radial racks connecting the outer and inner BHA rings with the possibility of transferring loads from the external engine casing to the front support, and the radial racks are made up of a fixed hollow and controllable movable elements, while at least part of the radial racks are combined with the channels of the oil system, located in the stationary elements of the racks with the possibility of supply and removal of oil, and the same venting of oil and pre-oil cavities of the front support of the rotor of the low pressure compressor.

В процессе монтажа, предпочтительно, разъемно могут объединять КНД с ТНД по валу ротора с возможностью передачи компрессору крутящего момента от указанной турбины, а КВД аналогично объединяют с ТВД с образованием общего вала ротора КВД-ТВД с возможностью получения крутящего момента компрессором высокого давления от указанной турбины высокого давления.During the installation process, it is preferable that the KND with the low pressure pump on the rotor shaft can be detachably combined with the possibility of transmitting torque to the compressor from the specified turbine, and the KVD is likewise combined with the high pressure fuel pump with the formation of the common KVD-TVD rotor shaft with the possibility of receiving high pressure from the specified turbine high pressure.

Вал ротора КВД-ТВД могут выполнять с большим диаметром и более коротким, чем объединенный вал КНД-ТНД, по меньшей мере, на совокупную осевую длину промежуточного корпуса, основной камеры сгорания и ТНД и устанавливают с коаксиальным охватом последнего с возможностью автономного вращения указанных валов.The rotor shaft KVD-TVD can be made with a larger diameter and shorter than the combined shaft KND-TND, at least for the total axial length of the intermediate housing, the main combustion chamber and the high pressure pump and set with coaxial coverage of the latter with the possibility of independent rotation of these shafts.

Корпусы наружного и внутреннего контуров двигателя могут монтировать фрагментами с возможностью частичного совмещения с монтажом воздушной, электрической, гидравлических систем и системы управления, при этом в воздушной системе выделяют подсистемы охлаждения перегреваемых узлов, а также антиобледенительного обогрева ВНА КНД, подсистемы наддува опор роторов компрессоров и турбин.Enclosures of the external and internal circuits of the engine can be mounted in fragments with the possibility of partial combination with the installation of air, electric, hydraulic systems and a control system, while the air system distinguishes the cooling subsystems of overheated units, as well as the anti-icing heating VNA KND, the pressurization support subsystem for compressors and turbines .

Подсистему антиобледенительного обогрева ВНА могут сообщать с КВД каналом забора подогретого воздуха с возможностью забора последнего из полости, расположенной не менее чем за седьмым рабочим колесом указанного компрессора.The VNA anti-icing heating subsystem can be communicated with the HPC by the heated air intake channel with the possibility of taking the latter from the cavity located at least behind the seventh impeller of the specified compressor.

При испытаниях экспериментально могут подтверждать область газодинамической устойчивости работы двигателя, в том числе для режима с наименьшим запасом ГДУ при встречной приемистости, проверенной по регламенту: выдержка на максимальном режиме, сброс частоты вращения путем установки рычага управления двигателем в положение «малый газ» и в фазах частоты вращения, соответствующего значениям промежуточных неравномерностей с проверкой приемистости двигателя на максимальный режим при установке рычага управления двигателем в положение «максимальные обороты» с результирующим определением запасов газодинамической устойчивости компрессора двигателя.During the tests, they can experimentally confirm the area of gas-dynamic stability of the engine, including for the regime with the smallest reserve of the GDU with on-board throttle response, checked according to the regulations: shutter speed at maximum speed, resetting the speed by setting the engine control lever to the "low gas" position and in phases frequency of rotation corresponding to the values of intermediate irregularities with a check of engine throttle response to maximum mode when the engine control lever is set to " Maximum Feed turnovers' with a resultant determination of dynamic stability inventory engine compressor.

Поставленная задача в части газотурбинного двигателя решается тем, что газотурбинный двигатель согласно изобретению выполнен описанным выше способом.The problem in part of the gas turbine engine is solved by the fact that the gas turbine engine according to the invention is made as described above.

Технический результат, обеспечиваемый группой изобретений, связанных единым творческим замыслом, состоит в разработке способа серийного производства газотурбинного двигателя и совокупности модулей с обеспечиваемыми в изобретении параметрами выполненного заявляемым способом ГТД с улучшенными эксплуатационными характеристиками и более надежным определением границ возможного варьирования тяги в пределах допустимого диапазона газодинамической устойчивости работы компрессора.The technical result provided by the group of inventions related by a single creative idea is to develop a method for the mass production of a gas turbine engine and a set of modules with the parameters provided by the invention of a gas turbine engine with improved performance characteristics and more reliable determination of the limits of possible thrust variation within the allowable range of gas-dynamic stability compressor operation.

Это достигается за счет применения в двигателе разработанной в изобретении совокупности основных модулей с параметрами и техническими решениями регулирования подачи воздуха без введения двигатель в помпаж, которые проверены предложенной в изобретении системой испытаний на газодинамическую устойчивость компрессора с упрощенной технологией и сокращением трудо- и энергоемкости испытаний. Предложенная система построена на применении выдвижного интерцептора с регулированием подачи воздуха без останова процесса испытания, а также разработанной градуированной шкалы выдвижения интерцептора в воздушный поток, поступающий в двигатель. Выдвижной интерцептор обеспечивает создание процентно выверенного снижения поступления воздуха и создаваемой неравномерности потока до граничного значения, при котором сохраняется газодинамическая устойчивость. Технология испытания на этапе серийного производства по настоящему изобретению обеспечивает возможность надежного определения экспериментально подтверждаемого запаса газодинамической устойчивости. Применение изобретения открывает возможность обеспечить по предложенной системе работу двигателя в допустимом диапазоне ГДУ на новом, более высоком уровне надежности и эксплуатации с лучшим качеством.This is achieved through the use in the engine of a set of basic modules developed in the invention with parameters and technical solutions for regulating air supply without introducing the engine into the surge, which are verified by the compressor gas dynamic stability test system proposed in the invention with simplified technology and reduction of labor and energy consumption of tests. The proposed system is based on the use of a retractable interceptor with air supply regulation without stopping the test process, as well as the developed graduated scale for extending the interceptor into the air flow entering the engine. A retractable interceptor provides the creation of a percentage-adjusted reduction in air intake and created uneven flow to a boundary value at which gas-dynamic stability is maintained. The test technology at the stage of mass production of the present invention provides the ability to reliably determine the experimentally confirmed margin of gas-dynamic stability. The application of the invention opens up the possibility of ensuring the engine operation according to the proposed system in the permissible range of the GDU at a new, higher level of reliability and operation with better quality.

Сущность изобретения поясняется чертежами, где:The invention is illustrated by drawings, where:

на фиг.1 изображен газотурбинный двигатель, продольный разрез;figure 1 shows a gas turbine engine, a longitudinal section;

на фиг.2 - входное устройство аэродинамической установки для испытаний двигателя, снабженной интерцептором, вид сбоку;figure 2 - input device of an aerodynamic installation for testing an engine equipped with an interceptor, side view;

на фиг.3 - разрез по А-А на фиг.2, где Hи - высота интерцептора, Dкан - диаметр канала входного устройства;Figure 3 - a section along A-A in Figure 2, and where H - the height of the spoiler, D kan - the diameter of the channel of the input device;

на фиг.4 - входной направляющий аппарат компрессора низкого давления, вид сверху.figure 4 - input guide apparatus of the low-pressure compressor, top view.

В способе серийного производства газотурбинного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Затем собирают модули в количестве не менее восьми - от компрессора 1 низкого давления до всережимного регулируемого реактивного сопла 2. В процессе изготовления КНД 1 собирают статор, в котором устанавливают входной направляющий аппарат 3, не более трех промежуточных направляющих аппаратов 4, и выходной спрямляющий аппарат 5. Также собирают ротор, включая вал 6, на котором устанавливают и жестко соединяют дисками не более четырех рабочих колес 7 с системой лопаток 8. При этом из профилированных в направлении потока воздуха элементов лопаток 8 рабочих колес 7 и лопаток промежуточных направляющих аппаратов 4 формируют кольцевые участки внутренней поверхности воздухозаборного канала 9 проточной части КНД 1.In the method of mass production of a gas turbine engine, parts are made and assembly units, elements and units of engine modules and systems are completed. Then, at least eight modules are assembled - from the low-pressure compressor 1 to the variable-speed adjustable jet nozzle 2. In the process of manufacturing KND 1, a stator is assembled, in which an input guide device 3, no more than three intermediate guide devices 4, and an output straightener 5 are installed A rotor is also assembled, including a shaft 6, on which no more than four impellers 7 are mounted and rigidly connected by disks to a system of blades 8. Moreover, from the bladed elements 8 profiled in the direction of air flow the impellers 7 and the blades of the intermediate guide vanes 4 form the annular sections of the inner surface of the air intake channel 9 of the flow part of the KND 1.

Собирают, предпочтительно, помодульно двигатель. ТДР выполняют двухконтурным, двухвальным. При этом устанавливают на технологическом стапеле промежуточный корпус 10, образующий газогенератор компрессор 11 высокого давления, а также основную камеру 12 сгорания и турбину 13 высокого давления. Компрессор 11 высокого давления включает статор, а также ротор с валом 14 и системой оснащенных лопатками 15 рабочих колес 16. Число рабочих колес 16 КВД 11 не менее чем в два раза превышает число рабочих колес 7 КНД 1. Перед промежуточным корпусом 10 устанавливают КНД 1, а за газогенератором последовательно соосно устанавливают турбину 17 низкого давления, смеситель 18, фронтовое устройство 19, форсажную камеру 20 сгорания и всережимное реактивное сопло 2.The engine is preferably assembled modularly. TDR perform double-circuit, two-shaft. In this case, an intermediate casing 10 is installed on the technological slipway, forming a high pressure compressor 11 as a gas generator, as well as a main combustion chamber 12 and a high pressure turbine 13. The high-pressure compressor 11 includes a stator, as well as a rotor with a shaft 14 and a system of impellers 16 equipped with vanes 15. The number of impellers 16 of the high pressure switch 11 is at least twice the number of impellers 7 of the low pressure valve 1. Before the intermediate housing 10, the low pressure valve 1 is installed, and behind the gas generator, a low pressure turbine 17, a mixer 18, a frontal device 19, an afterburner 20 of the combustion and an all-mode jet nozzle 2 are sequentially coaxially mounted.

В процессе изготовления КНД 1 входной направляющий аппарат 3 оснащают аэродинамически прозрачной силовой решеткой из радиальных стоек 21. Радиальными стойками 21 соединяют наружное и внутреннее кольца 22 и 23 соответственно ВНА 3 с возможностью передачи нагрузок от внешнего корпуса 24 двигателя на переднюю опору. Радиальные стойки 21 устанавливают равномерно распределенно по кругу входного сечения ВНА 3, преимущественно в плоскости, нормальной к оси двигателя, с угловой частотой (3,0÷4,0) ед./рад и с аэродинамическим затенением, создаваемым упомянутой решеткой совместно с фронтальным коком 25 ВНА, составляющим менее 30% от полной площади входного круга, очерченного внешним радиусом проточной части ВНА 3.In the process of manufacturing KND 1, the input guide apparatus 3 is equipped with an aerodynamically transparent power grid of radial struts 21. Radial racks 21 connect the outer and inner rings 22 and 23, respectively, of the VNA 3 with the possibility of transferring loads from the outer casing 24 of the engine to the front support. Radial struts 21 are installed uniformly distributed around the inlet section of the BHA 3, mainly in the plane normal to the axis of the engine, with an angular frequency (3.0 ÷ 4.0) units / rad and with aerodynamic shading created by the above-mentioned grill together with the frontal coke 25 VNA, comprising less than 30% of the total area of the input circle, outlined by the external radius of the flow part of the VNA 3.

После сборки производят испытания двигателя, по меньшей мере, на определение газодинамической устойчивости работы серийного ГТД. Для этого произвольно отбирают не менее чем один, для репрезентативности предпочтительно три-пять ГТД из серийно произведенной партии. Испытуемый двигатель размещают на стенде с входным аэродинамическим устройством 26. Устройство 26 снабжено регулируемо пересекающим воздушный поток, преимущественно дистанционно управляемым выдвижным интерцептором 27 с отградуированной шкалой положений интерцептора в потоке подаваемого в двигатель воздуха, имеющей фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. Повторяют испытания на определенном по регламенту наборе режимов, соответствующих режимам, характерным для последующей реальной работы ГТД в полетных условиях. Экспериментально подтверждают область газодинамической устойчивости работы и, по меньшей мере, в режиме с наименьшим запасом газодинамической устойчивости выполняют встречную приемистость по регламенту: выдержка на максимальном режиме, сброс частоты вращения путем установки рычага управления двигателем в положение «малый газ». При достижении значения частоты вращения, соответствующего значению отрабатываемой неравномерности, выполняют приемистость двигателя на максимальный режим путем перевода рычага управления двигателем в положение «максимальные обороты» и определяют запасы газодинамической устойчивости компрессора двигателя.After assembly, the engine is tested at least to determine the gas-dynamic stability of the serial gas turbine engine. For this, at least one is randomly selected, for representativeness, preferably three to five gas turbine engines from a batch produced. The test engine is placed on a bench with an aerodynamic inlet device 26. The device 26 is equipped with an adjustable air flow that is predominantly remotely controlled by a retractable interceptor 27 with a graduated scale of the position of the interceptor in the air supply to the engine, having a fixed critical point separating the engine by 2-5% from transition to surge. The tests are repeated on a set of modes defined by the regulations corresponding to the modes characteristic of the subsequent real work of the gas turbine engine in flight conditions. Experimentally confirm the area of gas-dynamic stability of work and, at least in the mode with the smallest margin of gas-dynamic stability, they perform counter throttle response according to the regulations: shutter speed at maximum speed, resetting the speed by setting the engine control lever to the "low gas" position. Upon reaching the value of the rotational speed corresponding to the value of the worked out non-uniformity, engine throttle response is performed to the maximum mode by shifting the engine control lever to the “maximum speed” position and determining the gas-dynamic stability reserves of the engine compressor.

При монтаже ось регулируемого реактивного сопла 2 выполняют отклоненной вниз от нейтрального положения оси двигателя на угол, составляющий (2°÷3°30′).During installation, the axis of the adjustable jet nozzle 2 is executed deflected down from the neutral position of the axis of the engine at an angle of (2 ° ÷ 3 ° 30 ′).

Промежуточный корпус 10 наделяют функцией силового узла двигателя с возможностью восприятия суммарных осевых и радиальных нагрузок от компрессоров 1, 11 и турбин 13, 17 с последующей передачей на внешние силовые элементы и устанавливают между КПД 1 и КВД 11, разделяя поступающий из КНД воздух на два потока - наружный и внутренний контуры 28 и 29 соответственно. В наружном контуре 28 вокруг корпуса основной камеры 12 сгорания собирают не менее чем из шестидесяти трубчатых блок-модулей кольцевой воздухо-воздушный теплообменник 30. Над промежуточным корпусом 10 на внешнем корпусе 24 двигателя устанавливают коробку приводов двигательных агрегатов (на чертежах не показано).The intermediate housing 10 is endowed with the function of a power unit of the engine with the possibility of perceiving the total axial and radial loads from the compressors 1, 11 and turbines 13, 17 with subsequent transmission to external power elements and is installed between the efficiency 1 and the HPC 11, dividing the air coming from the LPC into two streams - outer and inner circuits 28 and 29, respectively. An annular air-air heat exchanger 30 is assembled in an outer loop 28 around the body of the main combustion chamber 12 from at least sixty tubular block modules. A drive box of motor units is mounted on the outer case 24 on the outer case 24 of the engine (not shown).

Статор КВД 11 выполняют содержащим входной направляющий аппарат 31, не более восьми промежуточных направляющих аппаратов 32 и выходной спрямляющий аппарат 33.The stator KVD 11 is carried out comprising an input guide apparatus 31, no more than eight intermediate guide vanes 32 and an output rectifier 33.

Входной направляющий аппарат 3 КНД 1 содержит предпочтительно двадцать три радиальные стойки 21, состоящие из неподвижного полого и управляемого подвижного элементов. По меньшей мере, часть радиальных стоек 21 совмещают с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора КНД1.The input guide device 3 KND 1 preferably contains twenty-three radial racks 21, consisting of a stationary hollow and controlled movable elements. At least part of the radial struts 21 are combined with channels of the oil system located in the stationary elements of the racks, with the possibility of supplying and discharging oil, as well as venting the oil and pre-oil cavities of the front support of the KND1 rotor.

В процессе монтажа предпочтительно разъемно объединяют КНД 1 с ТНД 17 по валу 6 ротора с возможностью передачи компрессору 1 крутящего момента от указанной турбины 17. КВД 11 аналогично объединяют с ТВД 13 с образованием общего вала 14 ротора КВД-ТВД с возможностью получения крутящего момента компрессором 11 высокого давления от турбины 13 высокого давления.During installation, it is preferable to detach KND 1 with HPD 17 along the rotor shaft 6 with the possibility of transmitting to the compressor 1 torque from the specified turbine 17. KVD 11 similarly combine with the theater 13 to form a common shaft 14 of the KVD-TVD rotor with the possibility of obtaining torque by the compressor 11 high pressure from the turbine 13 high pressure.

При этом вал 6 ротора КВД-ТВД выполняют с большим диаметром и более коротким, чем объединенный вал 14 КНД-ТНД, по меньшей мере, на совокупную осевую длину промежуточного корпуса 10, основной камеры 12 сгорания и ТНД 17 и устанавливают с коаксиальным охватом последнего с возможностью автономного вращения указанных валов 6 и 14.The shaft 6 of the rotor KVD-TVD is made with a larger diameter and shorter than the combined shaft 14 KND-TND, at least the total axial length of the intermediate housing 10, the main combustion chamber 12 and the pressure pump 17 and set with a coaxial coverage of the latter with the possibility of autonomous rotation of these shafts 6 and 14.

Корпусы наружного и внутреннего контуров двигателя монтируют фрагментами с возможностью частичного совмещения с монтажом воздушной, электрической, гидравлических систем и системы управления. В воздушной системе выделяют подсистемы охлаждения перегреваемых узлов, а также антиобледенительного обогрева входного направляющего аппарата 3 КНД 1, подсистемы наддува опор роторов компрессоров и турбин.Enclosures of the external and internal circuits of the engine are mounted in fragments with the possibility of partial combination with the installation of air, electric, hydraulic systems and control systems. In the air system, the cooling subsystems of the overheated units are distinguished, as well as the anti-icing heating of the inlet guide apparatus 3 KND 1, the pressurization subsystem of the supports of the compressor rotors and turbines.

Подсистему антиобледенительного обогрева ВНА 3 сообщают с КВД 11 каналом забора подогретого воздуха (на чертежах не показано) с возможностью забора последнего из полости, расположенной не менее чем за седьмым рабочим колесом 16 КВД 11.The VNA 3 anti-icing heating subsystem is communicated with the HPA 11 with a heated air intake channel (not shown in the drawings) with the possibility of taking the latter from the cavity located at least behind the seventh impeller 16 of the HPA 11.

При испытаниях экспериментально подтверждают область газодинамической устойчивости работы двигателя, в том числе для режима с наименьшим запасом ГДУ при встречной приемистости, проверенной по регламенту: выдержка на максимальном режиме, сброс частоты вращения путем установки рычага управления двигателем в положение «малый газ» и в фазах частоты вращения, соответствующего значениям промежуточных неравномерностей с проверкой приемистости двигателя на максимальный режим при установке рычага управления двигателем в положение «максимальные обороты» с результирующим определением запасов газодинамической устойчивости компрессора двигателя.When testing experimentally confirm the area of gas-dynamic stability of the engine, including for the regime with the smallest margin GDU with counter throttle response checked according to the regulations: shutter speed at maximum speed, resetting the speed by setting the engine control lever to the "low gas" position and in the frequency phases rotation corresponding to the values of intermediate irregularities with checking engine throttle response to maximum mode when the engine control lever is set to “max “high revolutions” with the resulting determination of the reserves of gas-dynamic stability of the engine compressor.

Газотурбинный двигатель выполнен описанным выше способом производства.The gas turbine engine is made by the production method described above.

Пример реализации испытания газотурбинного двигателя.An example of a gas turbine engine test.

На стадии серийного производства после сборки ТДР испытанию подвергают двухконтурный двигатель с минимальной проектной газодинамической устойчивостью на частоте вращения ротора 0,8 Макс, где Макс - максимальные допустимые обороты ротора данного двигателя.At the stage of mass production after the assembly of the TDR, a double-circuit engine with a minimum design gas-dynamic stability at a rotor speed of 0.8 Max is tested, where Max is the maximum permissible rotor speed of this engine.

Устанавливают двигатель на испытательном стенде и сообщают с входным аэродинамическим устройством 26 через фланец 34. Устройство 26 снабжено регулируемо-управляемым выдвижным интерцептором 27, установленным с возможностью пересечения подаваемого в двигатель воздушного потока. Интерцептор 27 выполнен с возможностью создания неравномерности и регулирования количества поступающего в двигатель воздуха в интервале от 0 до 100% путем нулевого, промежуточного или полного перекрытия площади рабочего сечения входного аэродинамического устройства 26. Для этого интерцептор 27 снабжен электроприводом, содержащим приводной шток 35 с гидроцилиндром 36, и шкалой выдвижения интерцептора 27, отградуированной с шагом в 1% от площади входного сечения воздушного потока, подаваемого в двигатель.Install the engine on the test bench and communicate with the inlet aerodynamic device 26 through the flange 34. The device 26 is equipped with an adjustable-controlled retractable interceptor 27, installed with the possibility of crossing the air flow supplied to the engine. The interceptor 27 is configured to create unevenness and control the amount of air entering the engine in the range from 0 to 100% by zero, intermediate or complete overlap of the working cross-sectional area of the inlet aerodynamic device 26. For this, the interceptor 27 is equipped with an electric drive containing a drive rod 35 with a hydraulic cylinder 36 , and the extension scale of the interceptor 27, graduated in increments of 1% of the inlet cross-sectional area of the air flow supplied to the engine.

Выводят испытуемый ГТД на режимы вращения ротора от «малого газа» (МГ) до Макс с шагом изменения оборотов от режима к режиму 0,05 Макс и с последовательной итерацией к границе потери газодинамической устойчивости. Для этого на каждом из режимов последовательно выдвигают интерцептор 27 в сечение воздушного потока с шагом (1-5)% от площади указанного сечения, доводя до признаков появления помпажа. В результате данного этапа испытания определяют граничное значение частоты вращения ротора с минимальным запасом газодинамической устойчивости, составляющее 0,8 Макс при выдвижении интерцептора 27 на 73%.The tested gas turbine engine is brought to the rotor rotation modes from “small gas” (MG) to Max with a step of changing revolutions from mode to 0.05 Max mode and with a sequential iteration to the boundary of loss of gas-dynamic stability. To do this, on each of the modes, the interceptor 27 is successively extended into the air flow section with a step of (1-5)% of the area of the specified section, bringing to the appearance of surge. As a result of this test stage, the boundary value of the rotor speed with a minimum margin of gas-dynamic stability is determined, which is 0.8 Max when the interceptor 27 is extended by 73%.

Затем путем обратного перемещения интерцептора 27 в интервале до 7% от максимального положения, при котором произошел срыв в помпаж с потерей газодинамической устойчивости устанавливают, что при смещении интерцептора 27 на 5% признаки помпажа отсутствуют, двигатель работает устойчиво.Then, by the reverse movement of the interceptor 27 in the range up to 7% of the maximum position at which a surge occurred with loss of gas-dynamic stability, it is established that there is no sign of surge when the interceptor 27 is shifted by 5%, the engine is running stably.

Проводят анализ результатов испытаний, принимая во внимание, что результирующие испытания выполнены без срыва в помпаж при максимальном введении интерцептора 27 на оборотах ротора, создающих минимальный запас устойчивости, устанавливают границу газодинамической устойчивости работы данного типа ГТД в полном диапазоне рабочих оборотов ротора двигателя.An analysis of the test results is carried out, taking into account that the resulting tests were performed without disruption in surging with the maximum introduction of the interceptor 27 at the rotor speed, creating a minimum margin of stability, the gas-dynamic stability of this type of gas turbine engine is established in the full range of engine rotor revolutions.

Claims (12)

1. Способ серийного производства газотурбинного двигателя (ГТД), характеризующийся тем, что изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя; собирают модули в количестве не менее восьми - от компрессора низкого давления (КНД) до всережимного регулируемого реактивного сопла; в процессе изготовления КНД собирают статор, в котором устанавливают входной, не более трех промежуточных направляющих аппаратов и выходной спрямляющий аппарат, а также собирают ротор, включая вал, на котором устанавливают и жестко соединяют дисками не более четырех рабочих колес с системой лопаток, при этом формируют кольцевые участки внутренней поверхности воздухозаборного канала проточной части КНД из профилированных в направлении потока воздуха элементов лопаток рабочих колес и направляющих аппаратов КНД; собирают помодульно двигатель, который выполняют двухконтурным, двухвальным, при этом устанавливают на технологическом стапеле промежуточный корпус; газогенератор, включая компрессор высокого давления (КВД), имеющий статор, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД, основную камеру сгорания и турбину высокого давления (ТВД); затем перед промежуточным корпусом устанавливают КНД, а за газогенератором последовательно соосно устанавливают турбину низкого давления (ТНД), смеситель, фронтовое устройство, форсажную камеру сгорания и всережимное реактивное сопло; кроме того, в процессе изготовления КНД входной направляющий аппарат (ВНА) оснащают аэродинамически прозрачной силовой решеткой из радиальных стоек, которые устанавливают равномерно распределение по кругу входного сечения ВНА и с аэродинамическим затенением, создаваемым упомянутой решеткой совместно с фронтальным коком ВНА, составляющим менее 30% от полной площади входного круга, очерченного внешним радиусом проточной части ВНА; причем после сборки производят испытания двигателя на определение газодинамической устойчивости (ГДУ) работы серийного ГТД, для этого произвольно отбирают не менее чем один, для репрезентативности три-пять ГТД из серийно произведенной партии, испытуемый двигатель размещают на стенде с входным аэродинамическим устройством, которое снабжено регулируемо пересекающим воздушный поток, преимущественно дистанционно управляемым выдвижным интерцептором с отградуированной шкалой положений интерцептора в потоке подаваемого в двигатель воздуха, имеющей фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж; повторяют испытания на определенном по регламенту наборе режимов, соответствующих режимам, характерным для последующей реальной работы ГТД в полетных условиях; экспериментально подтверждают область газодинамической устойчивости работы и, по меньшей мере, в режиме с наименьшим запасом газодинамической устойчивости выполняют встречную приемистость по регламенту: выдержка на максимальном режиме, сброс частоты вращения путем установки рычага управления двигателем в положение «малый газ», и при достижении значения частоты вращения, соответствующего значению отрабатываемой неравномерности, выполняют приемистость двигателя на максимальный режим путем перевода рычага управления двигателем в положение «максимальные обороты» и определяют запасы газодинамической устойчивости компрессора двигателя.1. The method of mass production of a gas turbine engine (GTE), characterized in that they manufacture parts and complete assembly units, elements and units of engine modules and systems; modules are assembled in an amount of at least eight - from a low-pressure compressor (LPC) to an all-mode adjustable jet nozzle; in the process of manufacturing KND, a stator is assembled, in which an input, not more than three intermediate guide vanes and an output straightener are installed, and also a rotor is assembled, including a shaft, on which no more than four impellers are mounted and rigidly connected by disks to the blade system, and annular sections of the inner surface of the intake channel of the KND flowing section from elements of the impeller vanes and KND guiding devices profiled in the direction of the air flow; they assemble an engine module-by-module, which is performed by a double-circuit, two-shaft, while an intermediate case is mounted on a technological slipway; a gas generator, including a high pressure compressor (HPC) having a stator, as well as a rotor with a shaft and a system of impellers equipped with blades, the number of which is at least twice the number of the mentioned KND impellers, the main combustion chamber and high pressure turbine (HPD) ; then, in front of the intermediate casing, low pressure valves are installed, and behind the gas generator, a low pressure turbine (low pressure turbine), mixer, front-end device, afterburner, and an all-mode jet nozzle are sequentially coaxially installed; in addition, in the process of manufacturing KND, the input guide vane (VNA) is equipped with an aerodynamically transparent power grid of radial struts, which establish a uniform distribution around the inlet section of the VNA and with aerodynamic shading created by the said grill together with the frontal VNA coke, which is less than 30% of the total area of the input circle, outlined by the external radius of the flow part of the VNA; moreover, after assembly, the engine is tested for gas-dynamic stability (GDU) operation of a serial gas turbine engine, for this purpose at least one is randomly selected, for representativeness three to five gas turbine engines from a batch produced, the test engine is placed on a bench with an aerodynamic inlet device that is equipped with an adjustable crossing the air stream, mainly remotely controlled by a retractable interceptor with a graduated scale of the position of the interceptor in the air flow to the engine an ear having a fixed critical point separating the engine by 2-5% from the transition to surge; repeat the tests on a set of modes defined by the regulations corresponding to the modes characteristic of the subsequent real work of the gas turbine engine in flight conditions; experimentally confirm the area of gas-dynamic stability of operation and, at least in the mode with the least margin of gas-dynamic stability, perform counter-throttle response according to the regulations: holding at maximum speed, resetting the speed by setting the engine control lever to the "low gas" position, and when the frequency value is reached rotation corresponding to the value of the developed unevenness, perform engine throttle response to maximum mode by translating the engine control lever into Proposition "maximum speed" and define reserves dynamic stability of the engine compressor. 2. Способ серийного производства газотурбинного двигателя по п.1, отличающийся тем, что при монтаже ось регулируемого реактивного сопла выполняют отклоненной вниз от нейтрального положения оси двигателя на угол, составляющий (2°÷3°30′).2. The method of mass production of a gas turbine engine according to claim 1, characterized in that during installation, the axis of the adjustable jet nozzle is angled (2 ° ÷ 3 ° 30 ′), which is deviated downward from the neutral position of the engine axis. 3. Способ серийного производства газотурбинного двигателя по п.1, отличающийся тем, что промежуточный корпус наделяют функцией силового узла двигателя с возможностью восприятия суммарных осевых и радиальных нагрузок от компрессоров и турбин с последующей передачей на внешние силовые элементы и устанавливают между КНД и КВД, разделяя поступающий из КНД воздух на два потока - наружный и внутренний контуры, при этом в наружном контуре вокруг корпуса основной камеры сгорания собирают не менее чем из шестидесяти трубчатых блок-модулей кольцевой воздухо-воздушный теплообменник, а над промежуточным корпусом на внешнем корпусе двигателя устанавливают коробку приводов двигательных агрегатов.3. The method of mass production of a gas turbine engine according to claim 1, characterized in that the intermediate casing is endowed with the function of a power unit of the engine with the possibility of perceiving the total axial and radial loads from compressors and turbines with subsequent transmission to external power elements and installed between the low-pressure and high-pressure pumps, sharing air coming from the low pressure switch into two flows - the external and internal circuits, while at least sixty tubular block modules are collected in the outer circuit around the main combustion chamber body howling air-air heat exchanger, and above the intermediate casing on the outer casing of the engine set the drive box of the motor units. 4. Способ серийного производства газотурбинного двигателя по п.1, отличающийся тем, что статор КВД выполняют содержащим входной направляющий аппарат, не более восьми промежуточных направляющих аппаратов и выходной спрямляющий аппарат.4. The method of mass production of a gas turbine engine according to claim 1, characterized in that the HPC stator is made up of an input guide device, no more than eight intermediate guide devices and an output straightener. 5. Способ серийного производства газотурбинного двигателя по п.1, отличающийся тем, что радиальные стойки ВНА устанавливают равномерно распределенно по кругу входного сечения ВНА в плоскости, нормальной к оси двигателя, с угловой частотой (3,0÷4,0) ед./рад.5. The method of mass production of a gas turbine engine according to claim 1, characterized in that the radial struts of the BHA are installed uniformly distributed around the inlet section of the BHA in a plane normal to the axis of the engine with an angular frequency (3.0 ÷ 4.0) units / glad. 6. Способ серийного производства газотурбинного двигателя по п.1, отличающийся тем, что входной направляющий аппарат компрессора низкого давления оснащают двадцатью тремя радиальными стойками, соединяющими наружное и внутреннее кольца ВНА с возможностью передачи нагрузок от внешнего корпуса двигателя на переднюю опору, причем радиальные стойки выполняют состоящими из неподвижного полого и управляемого подвижного элементов, при этом часть радиальных стоек совмещают с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора компрессора низкого давления.6. The method of mass production of a gas turbine engine according to claim 1, characterized in that the inlet guide apparatus of the low pressure compressor is equipped with twenty-three radial racks connecting the outer and inner rings of the BHA with the possibility of transferring loads from the outer engine casing to the front support, and the radial racks perform consisting of a fixed hollow and controllable movable elements, while part of the radial racks are combined with the channels of the oil system located in the stationary elements of the st nuts, to supply and discharge oil as well as oil and venting predmaslyanyh cavities front low pressure compressor rotor bearing. 7. Способ серийного производства газотурбинного двигателя по п.1, отличающийся тем, что в процессе монтажа разъемно объединяют КНД с ТНД по валу ротора с возможностью передачи компрессору крутящего момента от указанной турбины, а КВД аналогично объединяют с ТВД с образованием общего вала ротора КВД-ТВД с возможностью получения крутящего момента компрессором высокого давления от указанной турбины высокого давления.7. The method of mass production of a gas turbine engine according to claim 1, characterized in that during the installation process, the low pressure pump and the low pressure pump along the rotor shaft can be transferred to the compressor with the possibility of transmitting torque to the compressor from the specified turbine, and the high-pressure turbine is similarly combined with the high-pressure turbine with the formation of a common rotor shaft A theater with the possibility of obtaining torque by a high-pressure compressor from the specified high-pressure turbine. 8. Способ серийного производства газотурбинного двигателя по п.7, отличающийся тем, что вал ротора КВД-ТВД выполняют с большим диаметром и более коротким, чем объединенный вал КНД-ТНД, на совокупную осевую длину промежуточного корпуса, основной камеры сгорания и ТНД и устанавливают с коаксиальным охватом последнего с возможностью автономного вращения указанных валов.8. The method of mass production of a gas turbine engine according to claim 7, characterized in that the rotor shaft of the HPH-TVD is performed with a larger diameter and shorter than the combined shaft of the HPH-HPP, on the total axial length of the intermediate housing, the main combustion chamber and the HPH and set with coaxial coverage of the latter with the possibility of autonomous rotation of these shafts. 9. Способ серийного производства газотурбинного двигателя по п.3, отличающийся тем, что корпусы наружного и внутреннего контуров двигателя монтируют фрагментами с возможностью частичного совмещения с монтажом воздушной, электрической, гидравлических систем и системы управления, при этом в воздушной системе выделяют подсистемы охлаждения перегреваемых узлов, а также антиобледенительного обогрева ВНА КНД, подсистемы наддува опор роторов компрессоров и турбин.9. The method of mass production of a gas turbine engine according to claim 3, characterized in that the cases of the external and internal circuits of the engine are mounted in fragments with the possibility of partial combination with the installation of air, electrical, hydraulic systems and a control system, while the cooling system allocates cooling subsystems for overheated nodes as well as the anti-icing heating of the high-pressure switch of the low pressure switch, the pressurization subsystem of the bearings of the rotors of compressors and turbines. 10. Способ серийного производства газотурбинного двигателя по п.9, отличающийся тем, что подсистему антиобледенительного обогрева ВНА сообщают с КВД каналом забора подогретого воздуха с возможностью забора последнего из полости, расположенной не менее чем за седьмым рабочим колесом указанного компрессора.10. The method of mass production of a gas turbine engine according to claim 9, characterized in that the subsurface anti-icing heating VNA is communicated with the HPC by a heated air intake channel with the possibility of taking the latter out of the cavity located at least behind the seventh impeller of said compressor. 11. Способ серийного производства газотурбинного двигателя по п.1, отличающийся тем, что при испытаниях экспериментально подтверждают область газодинамической устойчивости работы двигателя, в том числе для режима с наименьшим запасом ГДУ при встречной приемистости, проверенной по регламенту: выдержка на максимальном режиме, сброс частоты вращения путем установки рычага управления двигателем в положение «малый газ» и в фазах частоты вращения, соответствующего значениям промежуточных неравномерностей с проверкой приемистости двигателя на максимальный режим при установке рычага управления двигателем в положение «максимальные обороты» с результирующим определением запасов газодинамической устойчивости компрессора двигателя.11. The method of mass production of a gas turbine engine according to claim 1, characterized in that during testing experimentally confirm the area of gas-dynamic stability of the engine, including for the regime with the smallest margin of the GDU with counter throttle response checked according to the regulations: shutter speed at maximum, frequency reset rotation by setting the engine control lever to the “low gas” position and in the phases of the rotation frequency corresponding to the values of intermediate irregularities with a check of engine throttle response the maximum mode when the engine control lever in the position "maximum speed" with the resultant determination stocks dynamic stability of the engine compressor. 12. Газотурбинный двигатель, характеризующийся тем, что выполнен по любому из пп.1-11. 12. A gas turbine engine, characterized in that it is made according to any one of claims 1 to 11.
RU2013149536/06A 2013-11-07 2013-11-07 Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method RU2544636C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013149536/06A RU2544636C1 (en) 2013-11-07 2013-11-07 Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013149536/06A RU2544636C1 (en) 2013-11-07 2013-11-07 Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method

Publications (1)

Publication Number Publication Date
RU2544636C1 true RU2544636C1 (en) 2015-03-20

Family

ID=53290720

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013149536/06A RU2544636C1 (en) 2013-11-07 2013-11-07 Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method

Country Status (1)

Country Link
RU (1) RU2544636C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116399605A (en) * 2023-05-10 2023-07-07 中国航发沈阳发动机研究所 Afterburner pneumatic characteristic simulation device for testing whole turbine of aero-engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2199727C2 (en) * 2001-04-25 2003-02-27 Самарский институт инженеров железнодорожного транспорта Internal combustion engine turbocompressor test bed
SU1151075A1 (en) * 1983-05-24 2004-08-10 В.О. Боровик METHOD OF TESTING A GAS TURBINE ENGINE
RU2243530C1 (en) * 2003-06-02 2004-12-27 Самарская государственная академия путей сообщения Test stand for internal combustion engine turbocompressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1151075A1 (en) * 1983-05-24 2004-08-10 В.О. Боровик METHOD OF TESTING A GAS TURBINE ENGINE
RU2199727C2 (en) * 2001-04-25 2003-02-27 Самарский институт инженеров железнодорожного транспорта Internal combustion engine turbocompressor test bed
RU2243530C1 (en) * 2003-06-02 2004-12-27 Самарская государственная академия путей сообщения Test stand for internal combustion engine turbocompressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЛИТВИНОВ Ю.А. и др Характеристики и эксплуатационные свойства авиационных газотурбинных двигателей, Москва, Машиностроение, 1979,с.13-15. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116399605A (en) * 2023-05-10 2023-07-07 中国航发沈阳发动机研究所 Afterburner pneumatic characteristic simulation device for testing whole turbine of aero-engine
CN116399605B (en) * 2023-05-10 2024-06-07 中国航发沈阳发动机研究所 Afterburner pneumatic characteristic simulation device for testing whole turbine of aero-engine

Similar Documents

Publication Publication Date Title
RU2544410C1 (en) Method of turbojet batch manufacturing and turbojet manufactured according to this method
RU2555928C2 (en) Jet turbine engine
RU2544686C1 (en) Adjustment method of test gas-turbine engine
RU2551249C1 (en) Method of operational development of experimental jet turbine engine
RU2544636C1 (en) Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method
RU2551013C1 (en) Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method
RU2555939C2 (en) Jet turbine engine
RU2544634C1 (en) Adjustment method of test gas-turbine engine
RU2551142C1 (en) Method of gas turbine engine batch manufacturing and gas turbine engine manufactured according to this method
RU2545110C1 (en) Gas-turbine engine
RU2545111C1 (en) Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method
RU2544412C1 (en) Method of operational development of experimental turbojet engine
RU2551246C1 (en) Adjustment method of test gas-turbine engine
RU142807U1 (en) TURBOJET
RU2544407C1 (en) Method of turbojet batch manufacturing and turbojet manufactured according to this method
RU144419U1 (en) TURBOJET
RU2555935C2 (en) Method of mass production of gas turbine engine and gas turbine engine made using this method
RU2555933C2 (en) Gas-turbine engine
RU142812U1 (en) Turbojet engine test bench for turbojet AT dynamic stability, aerodynamic devices INPUT stands for testing of turbojet AT dynamic stability and aerodynamic devices spoilers INPUT stands for testing of turbojet AT dynamic stability
RU2555940C2 (en) Method of mass production of gas turbine engine and gas turbine engine made using this method
RU2551915C1 (en) Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method
RU142810U1 (en) GAS TURBINE ENGINE
RU2544409C1 (en) Method of turbojet batch manufacturing and turbojet manufactured according to this method
RU144433U1 (en) GAS TURBINE ENGINE
RU2544639C1 (en) Method of batch production of turbo-jet engine, and turbo-jet engine made by means of this method

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner