RU2549556C1 - Способ диагностирования аварийного состояния резервуара - Google Patents

Способ диагностирования аварийного состояния резервуара Download PDF

Info

Publication number
RU2549556C1
RU2549556C1 RU2013157884/28A RU2013157884A RU2549556C1 RU 2549556 C1 RU2549556 C1 RU 2549556C1 RU 2013157884/28 A RU2013157884/28 A RU 2013157884/28A RU 2013157884 A RU2013157884 A RU 2013157884A RU 2549556 C1 RU2549556 C1 RU 2549556C1
Authority
RU
Russia
Prior art keywords
potential
electrode
working electrode
pitting
open circuit
Prior art date
Application number
RU2013157884/28A
Other languages
English (en)
Inventor
Рустем Алиевич Кайдриков
Борис Леонидович Журавлев
Светлана Станиславовна Виноградова
Анна Николаевна Макарова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВПО "КНИТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВПО "КНИТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВПО "КНИТУ")
Priority to RU2013157884/28A priority Critical patent/RU2549556C1/ru
Application granted granted Critical
Publication of RU2549556C1 publication Critical patent/RU2549556C1/ru

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

Изобретение относится к химической промышленности и может быть использовано для опережающего мониторинга состояния резервуаров, подверженных воздействию питтинговой коррозии. Способ диагностирования аварийного состояния резервуара в коррозионной среде включает размещение в ней электродной системы, содержащей исследуемый рабочий электрод, вспомогательный электрод и электрод сравнения, последовательное определение потенциала исследуемого рабочего электрода в разомкнутой цепи, потенциала питтингообразования, запаса питтингостойкости по потенциалу как разности между потенциалом питтингообразования и потенциалом разомкнутой цепи. В электродную систему дополнительно вводят контрольный рабочий электрод и определяют его потенциал в разомкнутой цепи. Затем выбирают пороговое значение потенциала исследуемого рабочего электрода. Контрольный рабочий электрод подсоединяют к потенциостату в качестве электрода сравнения. Исследуемый рабочий электрод периодически поляризуют при нулевом значении и при выбранном пороговом значении потенциала, изменяя продолжительность периода поляризации, и регистрируют силу тока и количество электричества, прошедшее через электродную систему. Об аварийном состоянии резервуара судят по наличию питтинговой коррозии на исследуемом рабочем электроде в период поляризации, а именно по появлению флуктуации тока с определенной амплитудой в период поляризации, которую количественно оценивают по значению количества электричества, прошедшего через электродную систему. Техническим результатом является повышение точности диагностирования аварийного состояния резервуара за счет определения количественной оценки питтинговой коррозии в условиях, близких к реальным. 1 табл.

Description

Изобретение относится к химической промышленности и может быть использовано для диагностирования аварийного состояния резервуаров, изготовленных из нержавеющих сталей, эксплуатируемых в технологических средах, содержащих галоидные ионы, в условиях возможного возникновения питтинговой коррозии.
Способ диагностирования аварийного состояния резервуара в коррозионной среде включает размещение в ней электродной системы, содержащей исследуемый рабочий электрод, вспомогательный электрод и электрод сравнения. Затем последовательно определяют потенциал исследуемого рабочего электрода в разомкнутой цепи, потенциал питтингообразования, запас питтингостойкости по потенциалу как разности между потенциалом питтингообразования и потенциалом разомкнутой цепи. В электродную систему дополнительно вводят контрольный рабочий электрод, определяют его потенциал в разомкнутой цепи и выбирают пороговое значение потенциала исследуемого рабочего электрода. Затем контрольный рабочий электрод подсоединяют к потенциостату в качестве электрода сравнения, после чего исследуемый рабочий электрод периодически поляризуют при нулевом значении и при выбранном пороговом значении потенциала, изменяя продолжительность периода поляризации, регистрируют силу тока и количество электричества, прошедшее через электродную систему. Об аварийном состоянии резервуара судят по наличию питтинговой коррозии на исследуемом рабочем электроде в период поляризации по появлению флуктуации тока с определенной амплитудой, которую количественно оценивают по значению количества электричества, прошедшего через электродную систему.
Наиболее близким по совокупности существенных признаков является способ диагностирования аварийного состояния резервуара в коррозионной среде, включающий размещение в ней электродной системы, состоящей из рабочего, вспомогательного электродов и электрода сравнения. Последовательно определяют потенциал рабочего электрода в разомкнутой цепи, потенциал питтингообразования, запас питтингостойкости по потенциалу как разность между потенциалом питтингообразования и потенциалом разомкнутой цепи и определяют пороговое значение потенциала рабочего электрода в пределах запаса питтингостойкости по потенциалу, затем рабочий электрод выдерживают при пороговом значении потенциала, после чего потенциал рабочего электрода разворачивают от порогового значения потенциала до потенциала разомкнутой цепи и в обратном направлении, при этом регистрируют значения силы тока и потенциала, при определенном значении потенциала сравнивают величину силы тока прямого и обратного направления и при превышении величины силы тока прямого направления над величиной силы тока обратного направления судят об аварийном состоянии резервуара, см. RU Патент №238235, МПК7 G01N 17/02, 2010.
Недостатками известного способа является то, что в условиях возникновения питтинговой коррозии в процессе эксплуатации резервуаров меняются значения потенциала рабочего электрода в разомкнутой цепи, потенциал питтингообразования и значения запаса питтингостойкости, возникают проблемы выбора продолжительности периода поляризации, что снижает точность определения питтинговой коррозии и не дает возможность получить ее количественную оценку.
Технической задачей является повышение точности способа диагностирования аварийного состояния резервуара и получение количественной оценки воздействия питтинговой коррозии.
Техническая задача решается способом диагностирования аварийного состояния резервуара в коррозионной среде, включающим размещение в ней электродной системы, содержащей исследуемый рабочий электрод, вспомогательный электрод и электрод сравнения, путем последовательного определения потенциала исследуемого рабочего электрода в разомкнутой цепи, потенциала питтингообразования, запаса питтингостойкости по потенциалу как разности между потенциалом питтингообразования и потенциалом разомкнутой цепи, в котором в электродную систему дополнительно вводят контрольный рабочий электрод и определяют его потенциал в разомкнутой цепи, затем выбирают пороговое значение потенциала исследуемого рабочего электрода, а контрольный рабочий электрод подсоединяют к потенциостату в качестве электрода сравнения, после чего исследуемый рабочий электрод периодически поляризуют при нулевом значении и при выбранном пороговом значении потенциала, изменяя продолжительность периода поляризации, регистрируют силу тока и количество электричества, прошедшее через электродную систему, при этом об аварийном состоянии резервуара судят по наличию питтинговой коррозии на исследуемом рабочем электроде в период поляризации по появлению флуктуации тока с определенной амплитудой в период поляризации, которую количественно оценивают по значению количества электричества, прошедшего через электродную систему.
Решение технической задачи позволяет повысить точность диагностирования аварийного состояния резервуара за счет определения количественной оценки питтинговой коррозии в условиях, близких к реальным.
Заявляемый способ осуществляют следующим образом. Исследуемый и контрольный рабочие электроды изготавливают из одного и того же материала - одинаковой марки стали, а вспомогательный электрод - из более благородного металла, например платины. Подготовку рабочего электрода к исследованиям осуществляют в соответствии с ГОСТ 9.912-89. Электродную систему, состоящую из исследуемого и контрольного рабочих электродов, вспомогательного электрода и электрода сравнения, размещают в коррозионной среде, содержащей галоидные ионы. Затем в соответствии с ГОСТ 9.912-89 определяют потенциалы рабочих электродов в разомкнутой цепи Ecor, потенциал питтингообразования Eb и вычисляют разность между ними ΔEb (запас питтингостойкости по потенциалу). Выбирают пороговое значение потенциала рабочего электрода Emin b при условии 30 мВ ≤ Emin b < Eb, величина которого зависит от степени опасности последствий перфорации стенок резервуара в результате питтинговой коррозии. Далее контрольный рабочий электрод подсоединяют к потенциостату в качестве электрода сравнения и выдерживают исследуемый рабочий электрод при нулевом значении потенциала, измеряя силу тока, продолжительность выдержки определяется моментом достижения заранее выбранного минимального значения плотности тока, например, j равная 0,5 мкА/см2, после чего циклически поляризуют исследуемый рабочий электрод посредством потенциостата на заданную величину запаса питтингостойкости, например ΔE (75-400 мВ), при этом изменяют с определенным шагом продолжительность периода поляризации, например, продолжительность периода поляризации от 10 до 120 с, и одновременно измеряют количество электричества, прошедшее через систему в период поляризации, и регистрируют значения силы тока в ее цепи, об аварийном состоянии резервуара судят по наличию питтинговой коррозии на исследуемом рабочем электроде по появлению в период поляризации флуктуации тока с заранее определенной амплитудой, после окончания каждого из периодов поляризации исследуемый электрод выдерживают при нулевом потенциале, при этом регистрируют значения силы тока в его цепи, продолжительность выдержки определяется моментом достижения заранее выбранного минимального значения плотности тока, например, j равная 0,5 мкА/см2.
Данное изобретение иллюстрируют следующие примеры конкретного выполнения.
Пример 1. Проводят диагностирование аварийного состояния резервуара, изготовленного из стали марки 12Х18Н10Т, в растворе, содержащем хлорид натрия (5,85 г/л NaCl). В качестве вспомогательного электрода берут платиновый электрод. Далее электродную систему, состоящую из 2-х рабочих электродов, электрода сравнения (ХСЭ) и вспомогательного электрода, помещают в коррозионную среду, содержащую галоидные ионы (5,85 г/л NaCl). В соответствии с ГОСТ 9.912-89 последовательно измеряют потенциал исследуемого рабочего электрода в разомкнутой цепи E c o r и с с л
Figure 00000001
(160 мВ), потенциал питтингообразования Eb (460 мВ) и вычисляют разность между ними ΔEb (460-160 равно 300 мВ). При этом в электродную систему дополнительно вводят второй контрольный рабочий электрод, изготовленный из того же металла, что и исследуемый рабочий электрод с рабочей поверхностью 10 см2 , и определяют потенциал контрольного рабочего электрода в разомкнутой цепи E c o r к о н т р
Figure 00000002
(165 мВ). Выбирают пороговое значение потенциала исследуемого рабочего электрода (75 мВ) при условии 30 мВ ≤ 75 мВ < 300 мВ. Затем контрольный рабочий электрод подсоединяют к потенциостату в качестве электрода сравнения и выдерживают при нулевом значении потенциала до минимального значения плотности тока (j равная 0,5 мкА/см2 при S, равной 10 см2, сила тока I равна 5 мкА), после чего периодически поляризуют исследуемый рабочий электрод посредством потенциостата на заданную величину запаса питтингостойкости ΔE (75 мВ), изменяя с определенным шагом продолжительность периодов поляризации (τ 10; 30; 60; 90; 120 с), одновременно регистрируют значения силы тока в цепи, которое не превышает в первом цикле поляризации 5 мкА, и измеряют количество электричества (q1 равно 22,265 мкКл; q2 равно 19,507 мкКл; q3 равно 22,663 мкКл; q4 равно 30,856 мкКл; q5 равно 37,231 мкКл), прошедшее через электродную систему, по окончании каждого периода поляризации потенциал исследуемого рабочего электрода в течение заданного периода времени (τ равное 10 с) поддерживается равным потенциалу контрольного рабочего электрода, при этом посредством потенциостата регистрируют значения силы тока в его цепи. Отсутствие флуктуации тока в период поляризации и небольшое значение q указывает на отсутствие питтинговой коррозии на исследуемом рабочем электроде, тем самым свидетельствует о безопасности коррозионного состояния резервуара.
Пример 2 аналогичен Примеру 1. Проводят диагностирование аварийного состояния резервуара, изготовленного из стали марки 12Х18Н10Т, в растворе, содержащем хлорид натрия (5,85 г/л NaCl). В соответствии с ГОСТ 9.912-89 последовательно измеряют потенциал исследуемого рабочего электрода в разомкнутой цепи E c o r и с с л
Figure 00000003
(170 мВ), E c o r к о н т р
Figure 00000004
(180 мВ), потенциал питтингообразования Eb (470 мВ) и вычисляют разность между ними ΔEb (470-170 равно 300 мВ). Выбирают значение потенциала исследуемого рабочего электрода при условии 30 мВ ≤ 400 мВ > 300 мВ. Тем самым имитируют изменение потенциала в процессе воздействия агрессивной среды. Исследуемый рабочий электрод периодически поляризуют посредством потенциостата на выбранное значение потенциала ΔE (400 мВ), изменяя продолжительность периода поляризации (τ 10; 30; 60; 90; 120 с), и одновременно регистрируют значения силы тока в цепи, которое уже во втором цикле поляризации превышает 5 мкА, и измеряют количество электричества (q1 равно 359,82 мкКл; q2 равно 694,23 мкКл; q3 равно 2717,1 мкКл; q4 равно 15805 мкКл; q5 равно 51026 мкКл), прошедшее через систему, по окончании каждого периода поляризации потенциал исследуемого рабочего электрода в течение заданного периода времени (τ равное 10 с) поддерживается равным потенциалу контрольного рабочего электрода, при этом посредством потенциостата регистрируют значения силы тока в его цепи. Появление флуктуации тока в период поляризации и большое значение q свидетельствует о начале питтинговой коррозии на исследуемом рабочем электроде, тем самым указывает на опасность коррозионного состояния резервуара.
Сравнивая Пример 1 и Пример 2 видно, что значения количества, электричества затрачиваемого в периоды поляризации при наличии (q1 равно 359,82 мкКл; q2 равно 694,23 мкКл; q3 равно 2717,1 мкКл; q4 равно 15805 мкКл; q5 равно 51026 мкКл) и отсутствии питтингов (q1 равно 22,265 мкКл; q2 равно 19,507 мкКл; q3 равно 22,663 мкКл; q4 равно 30,856 мкКл; q5 равно 37,231 мкКл,) отличаются больше чем на порядок и, кроме того, при наличии питтингов скорость нарастания количества электричества с увеличением продолжительности поляризации растет значительно быстрее, чем в случае отсутствия питтингов. Информация о количестве электричества, затраченного в период поляризации, показывает степень воздействия питтинговой коррозии на исследуемый электрод.
Пример 3. Проводят диагностирование аварийного состояния резервуара, изготовленного из стали марки 12Х18Н10Т в растворе, содержащем хлорид натрия (5,85 г/л NaCl). В качестве вспомогательного электрода берут платиновый электрод. Далее электродную систему, состоящую из рабочего электрода, электрода сравнения (ХСЭ) и вспомогательного электрода, помещают в коррозионную среду, содержащую галоидные ионы (5,85 г/л NaCl). Последовательно определяют потенциал исследуемого рабочего электрода в разомкнутой цепи E c o r и с с л
Figure 00000005
(150 мВ), потенциал питтингообразования Eb (460 мВ) и запаса питтингостойкости по потенциалу (310 мВ) и выбирают пороговое значение потенциала контрольного рабочего электрода (75 мВ) при условии 30 мВ ≤ 75 мВ < 310 мВ аналогично Примеру 1. Затем рабочий электрод выдерживают при пороговом значении потенциала (75 мВ) в течение определенного времени τ, равного 10 минутам. После чего потенциал рабочего электрода (75 мВ) разворачивают от порогового значения потенциала (75 мВ) до потенциала разомкнутой цепи (150 мВ) и в обратном направлении (от 150 мВ до 75 мВ) с заданной постоянной скоростью развертки (150-75/25 равно 3 мВ/сек), при этом регистрируют значения силы тока и потенциала. Величина силы тока прямого направления, например, при выбранном потенциале 150 мВ, составляет (-0,013 мА), что меньше величины силы тока обратного направления (0,020 мА), и это свидетельствует об отсутствии питтинговой коррозии на исследуемом электроде, что указывает на безопасность коррозионного состояния резервуара.
Пример 4 аналогичен Примеру 3. Проводят диагностирование аварийного состояния резервуара, изготовленного из стали марки 12Х18Н10Т, в растворе, содержащем хлорид натрия (5,85 г/л NaCl). Превышение величины силы тока прямого направления (0,078 мА) над величиной силы тока обратного направления (0,019 мА), например, при выбранном потенциале 200 мВ, свидетельствует о необходимости принятия мер по обеспечению безопасности состояния резервуара. Табл.
Пример 5. Проводят диагностирование аварийного состояния резервуара, изготовленного из стали марки 12Х18Н10Т, в растворе, содержащем хлорид натрия (5,85 г/л NaCl). В качестве вспомогательного электрода берут платиновый электрод. Далее электродную систему, состоящую из рабочего электрода, электрода сравнения (хлорид серебряный электрод сравнения - ХСЭ) и вспомогательного электрода, помещают в коррозионную среду, содержащую галоидные ионы (5,85 г/л NaCl). В соответствии с ГОСТ 9.912-89 последовательно измеряют потенциал исследуемого рабочего электрода в разомкнутой цепи E c o r и с с л
Figure 00000005
(160 мВ), потенциал питтингообразования Eb (460 мВ) и вычисляют разность между ними ΔEb (460-160 = равно 300 мВ). В пределах запаса питтингостойкости (300 мВ) выбирают пороговое значение потенциала исследуемого рабочего электрода (75 мВ) при условии 30 мВ ≤ 75 мВ < 300 мВ и поддерживают потенциал в периоды поляризации равным 235 мВ относительно ХСЭ.
В процессе исследования при изменении условий эксплуатации, например появление в коррозионной среде дополнительного окислителя K3Fe(CN)6 (добавление в раствор с концентрацией 5,85 г/л NaCl 6 мл раствора, содержащего 4 г/л K3Fe(CN)6), потенциал исследуемого рабочего электрода в разомкнутой цепи поддерживается 300 мВ (ХСЭ). При проведении диагностирования аварийного состояния резервуара по прототипу потенциал в периоды поляризации поддерживается 235 мВ относительно ХСЭ, что на 65 мВ отрицательнее потенциала исследуемого рабочего электрода в разомкнутой цепи, т.е. исследуемый рабочий электрод будет подвергаться не анодной, а катодной поляризации.
При проведении испытаний по заявляемому способу потенциал исследуемого рабочего электрода в разомкнутой цепи изменяется синхронно с потенциалом контрольного рабочего электрода в разомкнутой цепи, потенциал исследуемого электрода поддерживается на 75 мВ положительное потенциала рабочего электрода в разомкнутой цепи, т.е. исследуемый рабочий электрод будет подвергаться анодной поляризации, что обеспечивает создание условий, близких к реальным.
Результаты диагностирования аварийного состояния резервуара сведены в таблицу 1.
Таблица 1.
Figure 00000006
Ecor1, Ecor2 - потенциалы исследуемого и контрольного рабочих электродов в разомкнутой цепи, соответственно, мВ;
Eb - потенциал питтингообразования, мВ;
ΔEb - запас питтингостойкости по потенциалу, мВ
Emin b - пороговое значение потенциала исследуемого рабочего электрода, мВ;
τ - время поляризации, мин;
V - скорость развертки потенциала, мВ/с;
q - количество электричества, прошедшее через электродную систему, мкКл.
Как видно из примеров конкретного выполнения (см. таблицу), результат диагностирования состояния резервуара, изготовленного из стали марки 12Х18Н10Т, в коррозионной среде, содержащей галоидные ионы, по заявляемому объекту показал, что в условиях, близких к реальным, например, значение количества электричества, равное 37,231 мкКл, показывает отсутствие питтинговой коррозии, а значение количества электричества, равное 51026 мкКл, прошедшее через электродную систему, показывает развитие питтинговой коррозии во времени.
Таким образом, по сравнению с прототипом совокупность признаков заявляемого объекта позволяет повысить точность диагностирования аварийного состояния резервуара за счет определения количественной оценки питтинговой коррозии в условиях, близких к реальным.

Claims (1)

  1. Способ диагностирования аварийного состояния резервуара в коррозионной среде, включающий размещение в ней электродной системы, содержащей исследуемый рабочий электрод, вспомогательный электрод и электрод сравнения, путем последовательного определения потенциала исследуемого рабочего электрода в разомкнутой цепи, потенциала питтингообразования, запаса питтингостойкости по потенциалу как разности между потенциалом питтингообразования и потенциалом разомкнутой цепи, отличающийся тем, что в электродную систему дополнительно вводят контрольный рабочий электрод и определяют его потенциал в разомкнутой цепи, затем выбирают пороговое значение потенциала исследуемого рабочего электрода, а контрольный рабочий электрод подсоединяют к потенциостату в качестве электрода сравнения, после чего исследуемый рабочий электрод периодически поляризуют при нулевом значении и при выбранном пороговом значении потенциала, изменяя продолжительность периода поляризации, и регистрируют силу тока и количество электричества, прошедшее через электродную систему, при этом об аварийном состоянии резервуара судят по наличию питтинговой коррозии на исследуемом рабочем электроде в период поляризации по появлению флуктуации тока с определенной амплитудой в период поляризации, которую количественно оценивают по значению количества электричества, прошедшего через электродную систему.
RU2013157884/28A 2013-12-25 2013-12-25 Способ диагностирования аварийного состояния резервуара RU2549556C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013157884/28A RU2549556C1 (ru) 2013-12-25 2013-12-25 Способ диагностирования аварийного состояния резервуара

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013157884/28A RU2549556C1 (ru) 2013-12-25 2013-12-25 Способ диагностирования аварийного состояния резервуара

Publications (1)

Publication Number Publication Date
RU2549556C1 true RU2549556C1 (ru) 2015-04-27

Family

ID=53289786

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013157884/28A RU2549556C1 (ru) 2013-12-25 2013-12-25 Способ диагностирования аварийного состояния резервуара

Country Status (1)

Country Link
RU (1) RU2549556C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA036906B1 (ru) * 2017-12-19 2021-01-13 Общество с ограниченной ответственностью "Баромембранная технология" (ООО "БМТ") Способ и устройство для непрерывного контроля питтинговой коррозии внутренних стенок металлических конструкций

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2032893C1 (ru) * 1991-04-25 1995-04-10 Сергей Ханцасович Петерайтис Способ диагностирования коррозионного состояния конструкций из биметалла в условиях эксплуатации
RU2320977C2 (ru) * 2003-02-14 2008-03-27 Саипем С.А. Способ испытания криогенного резервуара, предусматривающий катодную защиту
RU2382352C1 (ru) * 2008-12-23 2010-02-20 Государственное образовательное учреждение высшего профессионального образования "Казанский государственный технологический университет" Способ диагностирования аварийного состояния резервуаров

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2032893C1 (ru) * 1991-04-25 1995-04-10 Сергей Ханцасович Петерайтис Способ диагностирования коррозионного состояния конструкций из биметалла в условиях эксплуатации
RU2320977C2 (ru) * 2003-02-14 2008-03-27 Саипем С.А. Способ испытания криогенного резервуара, предусматривающий катодную защиту
RU2382352C1 (ru) * 2008-12-23 2010-02-20 Государственное образовательное учреждение высшего профессионального образования "Казанский государственный технологический университет" Способ диагностирования аварийного состояния резервуаров

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA036906B1 (ru) * 2017-12-19 2021-01-13 Общество с ограниченной ответственностью "Баромембранная технология" (ООО "БМТ") Способ и устройство для непрерывного контроля питтинговой коррозии внутренних стенок металлических конструкций

Similar Documents

Publication Publication Date Title
Stuart et al. Determining unknown concentrations of nanoparticles: the particle-impact electrochemistry of nickel and silver
EP3475689B1 (en) Alkalinity sensor
US6280603B1 (en) Electrochemical noise technique for corrosion
Karavai et al. Localized electrochemical study of corrosion inhibition in microdefects on coated AZ31 magnesium alloy
JP2007532887A (ja) 複数電極アレイ・センサを用いた局所腐食度を測定する改良された方法
Finšgar et al. Bismuth-tin-film electrodes for Zn (II), Cd (II), and Pb (II) trace analysis
Lamaka et al. In-situ visualization of local corrosion by Scanning Ion-selective Electrode Technique (SIET)
US4056445A (en) Determination of corrosion rates by an electrochemical method
Mirceski et al. Characterizing electrode reactions by multisampling the current in square-wave voltammetry
CN112136039B (zh) 水样本的碱度测量
Abbas et al. No more conventional reference electrode: Transition time for determining chloride ion concentration
JPS638423B2 (ru)
JP2023142443A5 (ru)
Laborda et al. Application of double pulse theory for hemispherical microelectrodes to the experimental study of slow charge transfer processes
RU2532592C1 (ru) Способ определения сплошности полимерного покрытия и устройство для его осуществления
JP2008292408A (ja) ステンレス鋼のすきま腐食発生の時間的評価方法
RU2549556C1 (ru) Способ диагностирования аварийного состояния резервуара
US3436320A (en) Method and apparatus for determination of redox current in redox solutions
RU2533344C1 (ru) Устройство для электрохимического исследования коррозии металлов
Surovtsev et al. Determination of heavy metals in aqueous ecosystems by the method of inversion chronopotentiometry
Guo et al. A bespoke reagent free amperometric chloride sensor for drinking water
US2870067A (en) Process for fluoride detection
US3428532A (en) Method for identifying metals and alloys
Guziejewski et al. Electrode kinetics from a single experiment: multi-amplitude analysis in square-wave chronoamperometry
US3631338A (en) Method and apparatus for determining galvanic corrosion by polarization techniques

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201226