RU2548325C1 - Теплообменник - Google Patents

Теплообменник Download PDF

Info

Publication number
RU2548325C1
RU2548325C1 RU2013156803/06A RU2013156803A RU2548325C1 RU 2548325 C1 RU2548325 C1 RU 2548325C1 RU 2013156803/06 A RU2013156803/06 A RU 2013156803/06A RU 2013156803 A RU2013156803 A RU 2013156803A RU 2548325 C1 RU2548325 C1 RU 2548325C1
Authority
RU
Russia
Prior art keywords
heat
heating
annular groove
coolant
expanding
Prior art date
Application number
RU2013156803/06A
Other languages
English (en)
Inventor
Николай Сергеевич Кобелев
Сергей Геннадьевич Емельянов
Татьяна Васильевна Алябьева
Владимир Николаевич Кобелев
Алексей Александрович Таран
Original Assignee
Федеральное государственное бюджетное учреждение высшего профессионального образования "Юго-Западный государственный универститет" (ЮЗГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение высшего профессионального образования "Юго-Западный государственный универститет" (ЮЗГУ) filed Critical Федеральное государственное бюджетное учреждение высшего профессионального образования "Юго-Западный государственный универститет" (ЮЗГУ)
Priority to RU2013156803/06A priority Critical patent/RU2548325C1/ru
Application granted granted Critical
Publication of RU2548325C1 publication Critical patent/RU2548325C1/ru

Links

Images

Landscapes

  • Air Supply (AREA)

Abstract

Изобретение относится к теплотехнике и может быть использовано в теплообменных аппаратах, преимущественно в кожухотрубных воздухоподогревателях котельных агрегатов. Изобретение заключается в том, что теплообменник содержит теплообменную поверхность, которую с наружной стороны покрывают теплоизолирующим и теплоаккумулирующим тонковолокнистым материалом в виде пучков вытянутых тонких волокон из базальта, расположенных вертикально от устройства для подачи теплоносителя с отверстиями до расширяющегося патрубка ввода нагревающего теплоносителя. Технический результат - снижение энергозатрат при эксплуатации теплообменника, особенно при отрицательных температурах окружающей среды, путем устранения потерь тепла с теплообменной поверхности. 3 ил.

Description

Изобретение относится к теплообменным аппаратам, преимущественно к кожухотрубным воздухоподогревателям котельных агрегатов.
Известен теплообменник (см. патент РФ на полезную модель №75884, МПК F28D 3/00, F28F 13/12, 2008), содержащий теплообменную поверхность, устройство для подачи теплоносителя с отверстиями, в которых расположены сопла с жестко закрепленными внутри завихрителями в виде четырех полос, развернутых по ходу сопла на 90° и имеющих лотки, соединенные с кольцевой канавкой и установленным в нижней ее части устройством для удаления загрязнений, отличающийся тем, что кольцевая канавка выполнена из биметалла, при этом материал биметалла на внутренней поверхности кольцевой канавки имеет коэффициент теплопроводности, в 2,0-2,5 раза превышающий коэффициент теплопроводности материала на внешней поверхности кольцевой канавки.
Недостатком является энергоемкость эксплуатации в качестве воздухоподогревателей котельных агрегатов в темное время суток, когда необходимо осуществлять дежурное освещение помещения, в котором расположен теплообменник, что требует наличие источника электрической энергии, а это в целом удорожает процесс подогрева воздуха окружающей среды, нагнетаемого вентилятором, например в топку котельного агрегата.
Известен теплообменник (см. патент РФ №2484405, МПК F28D 3/00, F28F 13/12, опубл. 10.06.2013, бюл. №16), содержащий теплообменную поверхность, устройство для подачи теплоносителя с отверстиями, в которых расположены сопла с жестко закрепленными внутри завихрителями в виде четырех полос, развернутых по ходу сопла на 90° и имеющих лотки, соединенные с кольцевой канавкой и установленным в нижней ее части устройством для удаления загрязнений, причем кольцевая канавка выполнена из биметалла, при этом материал биметалла на внутренней поверхности кольцевой канавки имеет коэффициент теплопроводности, в 2,0-2,5 раза превышающий коэффициент теплопроводности материала на внешней поверхности кольцевой канавки, при этом теплообменная поверхность включает расширяющийся патрубок ввода нагревающего теплоносителя и трубчатую решетку, между которыми расположен термоэлектрический генератор, выполненный в виде корпуса с проходным каналом для нагревающего теплоносителя и комплектом дифференциальных термопар, при этом вход проходного канала для нагревающего теплоносителя соединен с входом расширяющегося патрубка ввода нагревающего теплоносителя теплообменной поверхности, а его выход соединен с выходом расширяющегося патрубка ввода нагревающего теплоносителя перед трубчатой решеткой, кроме того, «горячие» концы комплекта дифференциальных термопар термоэлектрического генератора расположены внутри проходного канала для нагревающего теплоносителя, а их «холодные» концы закреплены на поверхности корпуса термоэлектрического генератора вдали от проходного канала для нагревающего теплоносителя.
Недостатком являются энергозатраты, обусловленные теплопотерями в окружающую среду наружной теплообменной поверхностью, что требует дополнительной работы вентилятора, обеспечивающего подачу теплоносителя в теплообменник для последующего поступления с заданной температурой в топку котельного агрегата.
Технической задачей предлагаемого изобретения является снижение энергозатрат при эксплуатации теплообменника, особенно при отрицательных температурах окружающей среды, путем устранения потерь тепла с теплообменной поверхности за счет покрытия ее наружной стороны теплоизолирующим и теплоаккумулирующим тонковолокнистым материалом в виде пучков вытянутых тонких волокон из базальта, расположенных вертикально от устройства для подачи теплоносителя с отверстиями до расширяющегося патрубка ввода нагревающего теплоносителя.
Технический результат по снижению энергоемкости теплообменника достигается тем, что теплообменник содержит теплообменную поверхность, устройство для подачи теплоносителя с отверстиями, в которых расположены сопла с жестко закрепленными внутри завихрителями в виде четырех полос, развернутых по ходу сопла на 90° и имеющих лотки, соединенные с кольцевой канавкой и установленным в нижней ее части устройством для удаления загрязнений, причем кольцевая канавка выполнена из биметалла, при этом материал биметалла на внутренней поверхности кольцевой канавки имеет коэффициент теплопроводности, в 2,0-2,5 раза превышающий коэффициент теплопроводности материала на внешней поверхности кольцевой канавки, при этом теплообменная поверхность включает расширяющийся патрубок ввода нагревающего теплоносителя и трубчатую решетку, между которыми расположен термоэлектрический генератор, выполненный в виде корпуса с проходным каналом для нагревающего теплоносителя и комплектом дифференциальных термопар, при этом вход проходного канала для нагревающего теплоносителя соединен с входом расширяющегося патрубка ввода нагревающего теплоносителя теплообменной поверхности, а его выход соединен с выходом расширяющегося патрубка ввода нагревающего теплоносителя перед трубчатой решеткой, кроме того, «горячие» концы комплекта дифференциальных термопар термоэлектрического генератора расположены внутри проходного канала для нагревающего теплоносителя, а их «холодные» концы закреплены на поверхности корпуса термоэлектрического генератора вдали от проходного канала для нагревающего теплоносителя, при этом теплообменная поверхность с наружной стороны покрыта теплоизолирующим и теплоаккумулирующим тонковолокнистым материалом в виде пучков вытянутых тонких волокон из базальта, расположенных вертикально от устройства для подачи теплоносителя с отверстиями до расширяющегося патрубка ввода нагревающего теплоносителя.
На фиг.1 изображен теплообменник, общий вид, на фиг.2 - завихритель суживающегося сопла с лотками на каждой из четырех полос, на фиг.3 - поперечный разрез кольцевой канавки.
Теплообменник содержит теплообменную поверхность 1, устройство 2 для подачи теплоносителя с отверстиями, в которых расположены сопла 3 с жестко закрепленными внутри завихрителями 4 в виде четырех полос, развернутых по ходу сопла 3 на 90° и имеющих лотки 5, соединенные с входным отверстием 6 с кольцевой канавкой 7 и установленным в ее нижней части устройством удаления загрязнений 8.
Кольцевая канавка 7 выполнена из биметалла, при этом материал биметалла на внутренней 9 поверхности кольцевой канавки 7 имеет коэффициент теплопроводности, превышающий в 2,0-2,5 раза коэффициент теплопроводности материала биметалла внешней 10 поверхности кольцевой канавки 7.
Теплообменная поверхность 1 включает расширяющийся патрубок 11 ввода нагревающего теплоносителя и трубчатую решетку 12, между которыми расположен теплоэлектрический генератор 13, выполненный в виде корпуса 14 с проходным каналом 15 для нагревающего теплоносителя, который своим входом 16 соединен с входом 17 расширяющегося патрубка 11 ввода нагревающего теплоносителя теплообменной поверхности 1, а его выход 18 соединен с выходом 19 расширяющегося патрубка 11 ввода нагревающего теплоносителя перед трубчатой решеткой 12, и комплекта дифференциальных термопар 20. «Горячие» концы 21 комплекта дифференциальных термопар 20 теплоэлектрического генератора 13 расположены внутри проходного канала 15 для нагревающего теплоносителя, а «холодные» их концы 22 укреплены на поверхности 23 корпуса 14 теплоэлектрического генератора 13 вдали от проходного канала 15 для нагревающего теплоносителя.
Теплообменная поверхность 1 с наружной стороны 24 покрыта теплоизолирующим и теплоаккумулирующим тонковолокнистым материалом 25 в виде пучков вытянутых тонких волокон из базальта 26, расположенных вертикально от устройства 2 для подачи теплоносителя с отверстиями до расширяющегося патрубка 11 ввода нагревающего теплоносителя.
Теплообменник работает следующим образом.
При поступлении нагревающего теплоносителя, например отработанных газов котельных агрегатов с температурой от 140°С и выше, на вход 17 расширяющегося патрубка 11 он разделяется на два потока: один направляется к входу 16 проходного канала 15 для нагревающего теплоносителя корпуса 14 теплоэлектрического генератора 13, а другой (основной) - к трубчатой решетке 12 и далее к пучку труб теплообменной поверхности 1 для передачи тепла нагреваемому теплоносителю, т.е. воздуху из окружающей среды, для нагрева при поступлении в топку котельного агрегата. В результате перемещение отработанных газов внутри трубок теплообменной поверхности 1 теплота теплопроводностью передается воздуху, являющемуся нагреваемым теплоносителем.
По мере передачи тепла нагреваемому теплоносителю часть теплоты теплопроводностью отдается по толщине корпуса теплообменника и далее конвекцией воздуху среды, окружающей теплообменник, то есть наблюдаются тепловые потери процесса теплообмена между нагревающим и нагреваемым теплоносителями, что резко снижает эффективность работы теплообменного аппарата.
Для устранения потерь теплоты наружная сторона 24 теплообменной поверхности 1 покрыта теплоизолирующим и теплоаккумулирующим тонковолокнистым материалом 25 в виде пучков вытянутых тонких волокон из базальта 26 и теплота конвективного теплообмена (см., например, Исаченко В.П. и др. Теплопередача. М.: Энергия, 1981. 417 с.) от наружной стороны 24 теплообменной поверхности 1 передается пучкам вытянутых тонких волокон из базальта 26. Расположение тонковолокнистого материала 25 в виде пучков вытянутых тонких волокон из базальта 26 вертикально обеспечивает не только теплоизоляцию теплообменной поверхности 1 от окружающей среды, т.е. устраняет тепловые потери отработанных газов котельных агрегатов, но и аккумулирует их тепло (см., например, Волокнистые материалы из базальтов Украины. Киев: Техника. 1971, 76 с.), начиная от расширяющегося патрубка 11 до устройства 2 подачи теплоносителя с отверстиями. В результате достигаются энергосберегающие условия нагрева воздуха по всей теплообменной поверхности 1 с равномерной теплоотдачей от отработанных газов на всем пути их движения от расширяющегося патрубка 11 до устройства 2 подачи теплоносителя с отверстиями, что позволяет во время длительной эксплуатации теплообменника поддерживать оптимальные условия подогрева воздуха.
Одновременно отработанные газы котельных агрегатов от входа 16 перемещаются по проходному каналу 15, где контактируют с «горячими» концами 21 комплекта дифференциальных термопар 20 теплоэлектрического генератора 13, и далее через выход 18 поступают на вход 19 расширяющегося патрубка 11 ввода нагревающего теплоносителя перед трубчатой решеткой 12.
Данное техническое решение соединением входа 16 и выхода 18 проходного канала 15 для нагревающего теплоносителя соответственно с входом 17 и выходом 19 расширяющегося патрубка 11 позволяет, используя скоростной напор вводимого нагревающего теплоносителя, без дополнительных энергозатрат преодолевать аэродинамическое сопротивление проходного канала 15 при перемещении потока отработанных газов, направляемых в корпус 14 теплоэлектрического генератора 13.
«Холодные» концы 22 комплекта дифференциальных термопар 20 контактируют с воздухом окружающей среды, имеющим температуру до 20°С в зависимости от условий эксплуатации котельных агрегатов. При выполнении комплекта дифференциальных термопар 20, например из хромель-копеля, температурный перепад (около 100°С) дает возможность на каждой термопаре получать термо-ЭДС до 6,96 мВ (см., например, Иванова Г.М. Теплотехнические измерения и приборы. М.: Энергоатомиздат, 1984. 230 с.). А это позволяет получить напряжение на выходе термоэлектрического генератора 13 в пределах 12÷36 В (см., например, Технические основы теплотехники. Теплотехнический эксперимент. Справочник / Под общ. ред. В.М. Зорина. М.: Энергоатомиздат, 1980. 560 с.), что вполне достаточно для питания дежурного освещения помещения, в котором расположен теплообменник. А это в конечном итоге позволяет снизить энергозатраты на нагрев воздуха окружающей среды при длительной эксплуатации теплообменника.
Теплоноситель, например воздух из окружающей среды, в которой практически всегда наблюдается наличие во взвешенном состоянии мелких твердых частиц и каплеобразных загрязнений, нагнетается вентилятором (не показано) и поступает на входное устройство 2 и далее к соплам 3. В суживающихся соплах 3 поток ускоряется, перемещаясь по полосам завихрителя 4, закручивается и в виде двух струй подается на теплообменную поверхность 1. Твердые частицы и каплеобразные загрязнения, поступая на полосы завихрителя 4, за счет центробежных сил смещаются в лотки 5, здесь сталкиваются, слипаются, коагулируют и, укрупняясь, перемещаются по внутренней полости лотков 5 и входному отверстию 6 устройства 2, где выполнена смесь, состоящая из каплеобразной влаги и смоченных твердых частиц, перемещаются из лотков 5 в кольцевую канавку 7, где в результате контакта на внутренней ее поверхности 9 образуется слой загрязнений, изменяющийся по толщине в направления к нижней части, здесь размещено устройство удаления загрязнений 8. Интенсивность роста слоя загрязнений на внутренней поверхности 9 кольцевой канавки 7 определяется концентрацией твердых частиц, смоченных пылеобразной влагой и обладающих высокой степенью слипаемости с материалом внутренней поверхности 9. При толщине загрязнений, превышающей глубину кольцевой канавки 7, особенно ближе к ее нижней части, наблюдается постоянный срыв и витание каплеобразных и твердых частиц под воздействием непрерывно поступающего потока теплоносителя, т.е. воздуха, и, как следствие данного явления, концентрация загрязнений в объеме суживающихся сопел 3 резко возрастает, и часть их бомбардирует теплообменную поверхность, снижая эксплуатационные показатели теплообменников за счет увеличения частоты замены пучка труб в период работы.
Выполнение кольцевой канавки 7 из биметалла при наличии разности температур между температурой воздуха окружающей среды, примерно равной температуре наружной поверхности устройства 2, соответственно, наружной поверхности 10 кольцевой канавки 7, и температурой воздуха, перемещающегося по завихрителям 4 (см., например, Вихревой эффект и его применение в технике. А.П.Меркулов. М.: 1969, 387 с.), соответственно, внутренней поверхности 9 кольцевой канавки 7 приводит к образованию термовибраций, которые практически устраняют налипание смоченных каплеобразной влагой твердых частиц на внутренней поверхности 9 кольцевой канавки 7. Т.к. температурный напор, как показала практика эксплуатации кожухотрубных воздухонагревателей котельных агрегатов, колеблется от 10 до 15°С, то предлагается в составе биметалла использовать материал внутренней поверхности 9 кольцевой канавки 7 с коэффициентом теплопроводности, превышающим в 2,0-2,5 раза коэффициент теплопроводности материала наружной поверхности 10. В результате градиент температур, получаемый по условиям эксплуатации, поддерживает стабильную термовибрацию (см., например, Дмитриев А.Н. Биметаллы. Пермь, 1991, 416 с.), обеспечивающую постоянное стряхивание налипающих твердых и каплеобразных загрязнений с внутренней поверхности 9 кольцевой канавки 7 в устройство удаления загрязнений 8, и, как следствие, устраняется возможность образования утолщенного слоя загрязнений и, соответственно, срыва его с внутренней поверхности 9 кольцевой канавки 7 и последующая бомбардировка теплообменной поверхности.
Оригинальность предлагаемого технического решения заключается в том, что снижение энергозатрат при нагреве воздуха отработанными газами котельных агрегатов при длительной эксплуатации, особенно при отрицательных температурах окружающей среды, достигается покрытием наружной стороны теплообменной поверхности теплоизолирующим и теплоаккумулирующим тонковолокнистым материалом в виде пучков вытянутых тонких волокон из базальта, расположенных вертикально от устройства для подачи теплоносителя - воздуха до расширяющегося патрубка ввода нагревающего теплоносителя - отработанных газов.

Claims (1)

  1. Теплообменник, содержащий теплообменную поверхность, устройство для подачи теплоносителя с отверстиями, в которых расположены сопла с жестко закрепленными внутри завихрителями в виде четырех полос, развернутых по ходу сопла на 90° и имеющих лотки, соединенные с кольцевой канавкой и установленным в нижней ее части устройством для удаления загрязнений, причем кольцевая канавка выполнена из биметалла, при этом материал биметалла на внутренней поверхности кольцевой канавки имеет коэффициент теплопроводности, в 2,0-2,5 раза превышающий коэффициент теплопроводности материала на внешней поверхности кольцевой канавки, при этом теплообменная поверхность включает расширяющийся патрубок ввода нагревающего теплоносителя и трубчатую решетку, между которыми расположен термоэлектрический генератор, выполненный в виде корпуса с проходным каналом для нагревающего теплоносителя и комплектом дифференциальных термопар, при этом вход проходного канала для нагревающего теплоносителя соединен с входом расширяющегося патрубка ввода нагревающего теплоносителя теплообменной поверхности, а его выход соединен с выходом расширяющегося патрубка ввода нагревающего теплоносителя перед трубчатой решеткой, кроме того, «горячие» концы комплекта дифференциальных термопар термоэлектрического генератора расположены внутри проходного канала для нагревающего теплоносителя, а их «холодные» концы закреплены на поверхности корпуса термоэлектрического генератора вдали от проходного канала для нагревающего теплоносителя, отличающийся тем, что теплообменная поверхность с наружной стороны покрыта теплоизолирующим и теплоаккумулирующим тонковолокнистым материалом в виде пучков вытянутых тонких волокон из базальта, расположенных вертикально от устройства для подачи теплоносителя с отверстиями до расширяющегося патрубка ввода нагревающего теплоносителя.
RU2013156803/06A 2013-12-21 2013-12-21 Теплообменник RU2548325C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013156803/06A RU2548325C1 (ru) 2013-12-21 2013-12-21 Теплообменник

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013156803/06A RU2548325C1 (ru) 2013-12-21 2013-12-21 Теплообменник

Publications (1)

Publication Number Publication Date
RU2548325C1 true RU2548325C1 (ru) 2015-04-20

Family

ID=53289268

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013156803/06A RU2548325C1 (ru) 2013-12-21 2013-12-21 Теплообменник

Country Status (1)

Country Link
RU (1) RU2548325C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647346C2 (ru) * 2015-10-19 2018-03-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ защиты от средств фиксации теплового излучения и устройство защиты от средств фиксации теплового излучения

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3643668A1 (de) * 1986-11-12 1988-05-26 Karl Heinz Vahlbrauk Vorrichtung zum speichern und/oder uebertragen von waerme
RU75884U1 (ru) * 2008-03-28 2008-08-27 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" Теплообменник
RU2484405C1 (ru) * 2011-09-23 2013-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Теплообменник

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3643668A1 (de) * 1986-11-12 1988-05-26 Karl Heinz Vahlbrauk Vorrichtung zum speichern und/oder uebertragen von waerme
RU75884U1 (ru) * 2008-03-28 2008-08-27 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" Теплообменник
RU2484405C1 (ru) * 2011-09-23 2013-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Теплообменник

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647346C2 (ru) * 2015-10-19 2018-03-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ защиты от средств фиксации теплового излучения и устройство защиты от средств фиксации теплового излучения

Similar Documents

Publication Publication Date Title
US7856949B2 (en) Heat pipes and use of heat pipes in furnace exhaust
RU2548325C1 (ru) Теплообменник
RU2484405C1 (ru) Теплообменник
Chabane et al. Effect of artificial roughness on heat transfer in a solar air heater
Alam et al. Heat transfer enhancement due to V-shaped perforated blocks in a solar air heater duct
CN201141735Y (zh) 一种复合防冻空气冷却器
RU2646276C1 (ru) Котел отопительный газовый
RU75884U1 (ru) Теплообменник
CN205425417U (zh) 一种高效除尘管式加热炉
CN202902784U (zh) 烘干设备
CN205425421U (zh) 高效管式均匀加热炉
Susanto et al. Characteristics of air flow and heat transfer in serpentine condenser pipes with attached convection plates in open channel
CN205448306U (zh) 一种新型除尘管式高效加热炉
CN205425416U (zh) 一种高效除尘管式均匀加热炉
CN205299936U (zh) 一种燃气热风炉
CN205425807U (zh) 一种新型除尘管式加热炉
CN105276814A (zh) 一种新型除尘管式高效加热炉
CN219674248U (zh) 一种烘干炉燃烧塔及烘干炉
RU95805U1 (ru) Теплогенератор
CN205373403U (zh) 高效均匀加热管式加热炉
CN217560377U (zh) 一种加热窑的热量再利用系统
RU157656U1 (ru) Горизонтальный поверхностный теплообменник
RU2338987C1 (ru) Вихревой теплообменник
CN103363699B (zh) 一种气体对撞式加热装置及加热方法
UA146457U (uk) Вентиляційно-нагрівальний пристрій

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151222