RU2547852C1 - Способ получения конструкционной алюмооксидной керамики - Google Patents

Способ получения конструкционной алюмооксидной керамики Download PDF

Info

Publication number
RU2547852C1
RU2547852C1 RU2013149984/03A RU2013149984A RU2547852C1 RU 2547852 C1 RU2547852 C1 RU 2547852C1 RU 2013149984/03 A RU2013149984/03 A RU 2013149984/03A RU 2013149984 A RU2013149984 A RU 2013149984A RU 2547852 C1 RU2547852 C1 RU 2547852C1
Authority
RU
Russia
Prior art keywords
alloy
air
aluminum
vol
minutes
Prior art date
Application number
RU2013149984/03A
Other languages
English (en)
Other versions
RU2013149984A (ru
Inventor
Александр Владимирович Иванов
Дмитрий Алексеевич Иванов
Валерий Иванович Кошкин
Асиф Юсифович Омаров
Анатолий Дмитриевич Шляпин
Сергей Дмитриевич Шляпин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет"
Priority to RU2013149984/03A priority Critical patent/RU2547852C1/ru
Application granted granted Critical
Publication of RU2547852C1 publication Critical patent/RU2547852C1/ru
Publication of RU2013149984A publication Critical patent/RU2013149984A/ru

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Изобретение относится к технологии конструкционной керамики и может быть использовано для изготовления износостойких изделий, используемых в качестве подшипников, нитеводителей, водителей для проволоки, шаровых клапанов в устройствах для перекачки суспензий, а также в качестве деталей бумагоделательных машин. Для получения керамики обрабатывают водным раствором едкого натра совместно сплав Al-Si (10-14 мас.%) и сплав Al-Mg (4-8 мас.%), взятые в виде опилок с размерами частиц 0,05-0,5 мм при отношении массы Al-Si сплава к массе Al-Mg сплава от 0,5 до 1,5. Из маточного раствора выделяют осадок и промывают его водой до величины рН среды 8,5-9,5. Осадок высушивают и подвергают термообработке на воздухе при температуре 1350-1450°C в течение 30-60 минут. Из полученного спека готовят шихту, прессуют заготовки под давлением 200-500 МПа и спекают на воздухе при температуре 1500-1550°C в течение 10-30 минут. Фазовый состав керамики представлен α-Al2O3 (45-50 об.%), Al2MgO4 (30-40 об.%) и NaAlSiO4 (15-20 об.%). Открытая пористость полученного материала - 0,5-3%, плотность - 3,30-3,50 г/см3, микротвердость по Виккерсу - 32-47 ГПа (при нагрузке на индентор 1Н), интенсивность износа в условиях сухого трения скольжением составляет 10-5-5·10-5 г/м. Технический результат изобретения - увеличение износостойкости, плотности и твёрдости материала. 5 з.п. ф-лы, 1 табл., 3 пр.

Description

Изобретение относится к технологии керамических материалов конструкционного назначения и может быть использовано для изготовления износостойких изделий, используемых в качестве подшипников, нитеводителей, водителей для проволоки, шаровых клапанов в устройствах для перекачки суспензий, а также в качестве деталей бумагоделательных машин.
К таким материалам предъявляется требование по сочетанию высокой твердости, прочности, химической стойкости и малому износу поверхностного рабочего слоя в условиях эксплуатации.
Известен способ получения конструкционной алюмооксидной керамики, используемый для изготовления износостойких изделий [1], включающий формование сырой заготовки, удаление из нее органической связки с последующей установкой в графитовую пресс-форму, горячее прессование (при температуре 0,5-0,7 от температуры плавления Al2O3), выемку изделия из формы и его алмазную обработку.
Недостатком данного способа является неудовлетворительная износостойкость получаемого материала вследствие выкрашивания наиболее крупных зерен (образовавшихся вследствие рекристаллизации) с поверхности рабочего слоя при взаимодействии с твердым контртелом в результате действия сдвиговых напряжений.
Наиболее близким к заявляемому по технической сущности и достигаемому эффекту является способ получения конструкционной алюмооксидной керамики [2] (принятый за прототип), включающий обработку алюминиевого сплава (Al-Si10-14 мас.%) водным раствором едкого натра при теплоотводе из реакционного объема хладагентом, выделение из маточного раствора образовавшегося осадка (гидроксида алюминия с включениями метасиликата натрия), его промывку водой (до величины рН среды 8-9), сушку, термообработку на воздухе (1280-1350°C, 1-3 ч), приготовление из полученного продукта шихты, прессование и спекание на воздухе отпрессованных заготовок (1450-1500°C, 1-2 ч).
Согласно данному способу получают алюмооксидный материал, содержащий нефелин (25-27 об.%), равномерно распределенный по поверхности зерен α-Al2O3 в виде тонких прослоек, толщина которых относится к микронному диапазону размеров.
Износостойкость такого материала повышается благодаря снижению коэффициента трения вследствие наличия тонких прослоек нефелина, кроме того, возможна релаксация возникающих напряжений на таких прослойках.
Однако, износостойкость материала, полученного по способу-прототипу, является недостаточной из-за его относительно невысокой плотности и твердости, определяемых содержанием нефелиновой фазы.
Технической задачей данного изобретения является увеличение износостойкости, плотности и твердости получаемого материала.
Для решения технической задачи изобретения в способе получения конструкционной алюмооксидной керамики, включающем обработку алюминиевого сплава водным раствором едкого натра при теплоотводе из реакционного объема хладагентом, выделение из маточного раствора образовавшегося осадка, его промывку, сушку, термообработку на воздухе, приготовление из полученного продукта шихты, прессование и спекание отпрессованных заготовок на воздухе, водным раствором едкого натра обрабатывают совместно сплав алюминия с кремнием, содержащимся в количестве 10-14 мас.%, и сплав алюминия с магнием, содержащимся в количестве 4-8 мас.%, при отношении массы алюминий-кремниевого сплава к массе алюминий-магниевого сплава от 0,5 до 1,5.
Кроме того, согласно заявленному способу водным раствором едкого натра обрабатывают совместно сплавы алюминия с кремнием и алюминия с магнием, взятые в виде опилок с размерами частиц 0,05-0,5 мм; промывку осадка ведут до величины рН среды 8,5-9,5; термообработку осадка на воздухе проводят при температуре 1350-1450°C в течение 30-60 минут; прессование заготовок проводят под давлением 200-500 МПа; спекание заготовок на воздухе проводят при температуре 1500-1550°C в течение 10-30 минут.
Для получения материала по заявленному способу в качестве исходного сырья использовали алюминий-кремниевый и алюминий-магниевый сплавы.
В результате их совместной обработки водным раствором едкого натра протекает следующая химическая реакция:
Figure 00000001
Продуктами реакции являются: осадок - смесь сложного алюмомагниевого гидроксида переменного стехиометрического состава (x=0,5-1; y=0,5-1; n=2,5-3) с метасиликатом натрия, раствор алюмината натрия и водород (состав осадка был установлен методом рентгенофазового и петрографического анализа).
Осадок выделяли из маточного раствора, промывали, высушивали, термообрабатывали на воздухе (1350-1450°C) до образования α-Al2O3, алюмомагнезиальной шпинели кубической сингонии и нефелина согласно химическим реакциям:
Figure 00000002
Figure 00000003
При этом синтез нефелина происходил в результате взаимодействия в системе «жидкость - твердое»: метасиликат натрия (Тпл=1089°C) расплавлялся, покрывая зерна оксида алюминия и алюмомагнезиальной шпинели, и насыщался ионами алюминия с образованием расплава нефелина (Тпл=1275°C).
После термообработки получали порошковый спек, который измельчали и использовали для приготовления шихты с последующим ее прессованием и спеканием на воздухе полученных сырых заготовок.
В соответствии с заявленным способом количество кремния (С1) и магния (С2) в их сплавах с алюминием, а также отношение массы алюминий-кремниевого сплава к массе алюминий-магниевого сплава (X) определяют возможность достижения комплекса свойств спеченного материала, указанного в технической задаче изобретения.
Увеличение C1 более 14 мас.% и снижение С2 менее 4 мас.% приводило к уменьшению микротвердости материала, а снижение C1 менее 10 мас.% и увеличение С2 более 8% приводило к уменьшению его плотности.
При уменьшении X менее 0,5 происходило понижение плотности и износостойкости материала, а увеличение X более 1,5 приводило к падению его микротвердости.
Увеличение размера частиц (d) опилок сплавов, используемых для проведения реакции (1), более 0,5 мм нецелесообразно, поскольку при этом возрастает доля крупных зерен в составе порошкового спека и спеченного материала, что снижает его износостойкость вследствие «вырыва» преимущественно таких зерен с поверхности рабочего слоя.
Снижение d менее 0,05 мм приводило к формированию в составе осадка крупных агломератов из субмикронных частиц, наличие которых обеспечивало образование крупных межагломератных пор в спеченном материале и резкое снижение его плотности.
Увеличение рН - среды осадка после его отмывки более 9,5 невозможно, так как при этом наблюдается образование алюминатных фаз, существенно снижающих плотность и микротвердость получаемого материала.
Снижение рН менее 8,5 невозможно вследствие весьма высокой удельной поверхности образующегося осадка (по реакции 1), удерживающего, в результате повышенной адсорбционной способности, определенное количество щелочных ионов (их удаление возможно с использованием специальных химических методов и невозможно путем отмывки водой).
Снижение температуры (T1) и времени (τ1) термообработки осадка на воздухе менее 1350°C и 30 минут, соответственно, невозможно вследствие того, что в объеме спека не завершаются полностью процессы синтеза основных фаз (α-Al2O3, Al2MgO4 и NaAlSiO4).
Увеличение Т1 и τ1 более 1450°C и 60 минут, соответственно, нецелесообразно, поскольку в этом случае наблюдается существенное увеличение размеров частиц синтезируемых кристаллических фаз вследствие рекристаллизации. Это препятствует получению однородной мелкозернистой структуры в спеченном материале, обеспечивающей высокие показатели плотности и износостойкости.
Снижение давления прессования (Р) менее 200 МПа приводило к уменьшению плотности получаемого материала, а увеличение Р более 500 МПа нецелесообразно, поскольку возможно проявление эффекта «перепрессовочных трещин» в сырце.
Уменьшение температуры (Т2) и времени (τ2) спекания на воздухе отпрессованных заготовок менее 1500°C и 10 минут, соответственно, не обеспечивало достижения высокой плотности материала, а увеличение Т2 и τ2 более 1550°C и 30 минут, соответственно, приводило к значительной рекристаллизации и понижению износостойкости.
Примеры реализации заявленного способа
Пример 1. 100 грамм сплава алюминия с кремнием (количество кремния C1=10 мас.%) и 200 грамм сплава алюминия с магнием (количество магния С2=4 мас.%) в виде опилок (средний размер частиц d=0,5 мм) загружали в стеклянную колбу из термостойкого стекла, помещенную в воду, выполняющую функцию хладагента (отношение массы Al-Si сплава к массе Al-Mg сплава Х=0,5).
Температуру хладагента поддерживали постоянной (T1=20°C) при помощи термостата с точностью ±2°C.
В эту колбу приливали 1000 см3 20% водного раствора NaOH для полного растворения опилок (объем раствора щелочи выбирали с избытком), которое достигалось благодаря протеканию экзотермической реакции (1) при непрерывном перемешивании стеклянной пропеллерной мешалкой.
После завершения химической реакции (1) из маточного раствора методом вакуумной фильтрации выделяли осадок и промывали его водой путем многократной декантации. Конечное значение рН, зафиксированное для отмытого осадка, было равным 8,5.
Осадок высушивали на воздухе до нулевой влажности при температуре 60°C. После этого его помещали в корундовую емкость и термообрабатывали на воздухе при температуре (T1), равной 1450°C, в течение времени (τ1), равного 30 минутам.
Полученный спек измельчали в мельнице САНД-4 путем ударно-истирающего воздействия корундовых помольных тел и вводили в него 10% водный раствор поливинилового спирта (ПВС) в количестве 9 мас.% в пересчете на сухой остаток.
Высушенная смесь представляла собой шихту, из которой прессовали образцы (сырец), прикладывая давление (Р), равное 500 МПа.
После выжига из сырца временной органической связки - ПВС (350°C, 3 часа, воздушная среда), его спекали на воздухе при температуре (Т2) 1500°C в течение времени (τ2), равного 30 минутам.
Согласно данным РФА фазовый состав керамики представлен: α-Al2O3 (45 об.%), Al2MgO4 (40 об.%), NaAlSiO4 (15 об.%).
Пример 2. Вид и последовательность технологических операций совпадают с описанными в примере 1.
100 грамм сплава алюминия с кремнием (C1=12 мас.%) и 100 грамм сплава алюминия с магнием (С2=6 мас.%); (Х=1) в виде опилок (средний размер частиц d=0,27 мм) загружали в стеклянную колбу из термостойкого стекла, помещенную в воду, выполняющую функцию хладагента.
Для полного растворения опилок согласно реакции (1) в колбу приливали 1000 см3 20% водного раствора NaOH при непрерывном перемешивании стеклянной пропеллерной мешалкой.
После завершения химической реакции (1) из маточного раствора методом вакуумной фильтрации выделяли осадок и промывали его водой путем многократной декантации. Конечное значение рН, зафиксированное для отмытого осадка, было равным 9,0.
Осадок высушивали на воздухе до нулевой влажности при температуре 60°C. После этого его помещали в корундовую емкость и термообрабатывали на воздухе (T1=1400°C, τ1=45 минут).
Для изготовления шихты полученный спек измельчали и вводили в него 10% водный раствор поливинилового спирта (ПВС) в количестве 9 мас.% в пересчете на сухой остаток.
Из шихты прессовали образцы (сырец), прикладывая давление (Р), равное 350 МПа.
После выжига из сырца временной органической связки - ПВС (350°C, 3 часа, воздушная среда), его спекали на воздухе (Т2=1525°C, τ2=20 минут).
Согласно данным РФ А фазовый состав керамики представлен: α-Al2O3 (47 об.%), Al2MgO4 (35 об.%), NaAlSiO4 (18 об.%).
Пример 3. Вид и последовательность технологических операций совпадают с описанными в примерах 1 и 2.
150 грамм сплава алюминия с кремнием (C1=14 мас.%) и 100 грамм сплава алюминия с магнием (С2=8 мас.%); (Х=1,5) в виде опилок (средний размер частиц d=0,05 мм) загружали в стеклянную колбу из термостойкого стекла, помещенную в воду, выполняющую функцию хладагента.
Для полного растворения опилок, согласно реакции (1), в колбу приливали 1000 см3 20% водного раствора NaOH при непрерывном перемешивании стеклянной пропеллерной мешалкой.
После завершения химической реакции (1) из маточного раствора методом вакуумной фильтрации выделяли осадок и промывали его водой путем многократной декантации. Конечное значение рН, зафиксированное для отмытого осадка, было равным 9,5.
Осадок высушивали на воздухе до нулевой влажности при температуре 60°C. После этого его помещали в корундовую емкость и термообрабатывали на воздухе (T1=1350°C, τ1=60 минут).
Для изготовления шихты полученный спек измельчали и вводили в него 10% водный раствор поливинилового спирта (ПВС) в количестве 9 мас.% в пересчете на сухой остаток.
Из шихты прессовали образцы (сырец), прикладывая давление (Р), равное 200 МПа.
После выжига из сырца временной органической связки - ПВС (350°C, 3 часа, воздушная среда), его спекали на воздухе (Т2=1550°C, τ2=10 минут).
Согласно данным РФА фазовый состав керамики представлен: α-Al2O3 (50 об.%), Al2MgO4 (30 об.%), NaAlSiO4 (20 об.%).
Результаты испытаний материала, полученного в соответствии с заявленным способом, в сравнении с материалом, изготовленным по способу-прототипу, приведены в таблице.
Открытую пористость определяли методом гидростатического взвешивания [3]. Плотность и общую пористость рассчитывали: ρ=m/V (m - масса образца, V - его объем), Поб=(1-ρ/γ)·100, где γ - истинная плотность, равная 3,99 г/см3.
Микротвердость по Виккерсу [3] определяли на приборе ПМТ-3, нагрузка на индентор составляла 1Н.
Интенсивность износа I=Δm/S (Δm - потеря массы испытуемого образца на дистанции скольжения S, равной 2000 м) в условиях сухого трения скольжением по схеме «палец-диск» (шар диаметром 6,5 мм из стали ШХ-15 - керамика) определяли на машине трения при окружной скорости 0,1 м/с и приложенной нагрузке 1Н.
Из приведенных данных видно, что керамика, полученная по предложенному способу, имеет большую плотность, микротвердость и износостойкость по сравнению с материалом, изготовленным по способу-прототипу (плотность выше в 1,2 раза, микротвердость больше в 2-2,4 раза, износостойкость больше на порядок.).
В данном техническом решении достижение положительного эффекта обеспечивается однородным распределением зерен по размерам в структуре спеченного материала (размер зерен α-Al2O3 - 50-70 мкм, Al2MgO4 - 10-30 мкм) и образованием порового пространства, состоящего из мелких округлых закрытых пор (1-5 мкм), равномерно распределенных в объеме изделия. Нефелин покрывает зерна корунда и шпинели, выполняя функцию связующей промежуточной фазы в виде тонких (микронных и субмикронных) прослоек.
Однородный зерновой состав в структуре керамики обеспечивает равномерное распределение напряжений в поверхностном слое при нагружении, а наличие тонких нефелиновых прослоек, обладающих повышенной деформативной способностью, позволяло увеличить сопротивление разрушению. При этом мелкие округлые поры исполняют роль микрообъемов, на которых достигается локализация зародышевых микротрещин.
Кроме того, содержание нефелина (15-20 об.%) делает возможным понижение коэффициента трения в трибосопряжении, а содержание шпинели (30-40 об.%) приводит к повышению микротвердости и торможению рекристаллизационного роста зерен корунда.
Таким образом, техническая задача данного изобретения выполнена - достигнуто увеличение плотности, микротвердости и износостойкости материала.
Источники информации
1. Гогоци Ю.Г. Конструкционная керамика: получение, свойства, применение. Киев, общество «Знание», 1990, 20 с.
2. Патент РФ №2453517, опубл. 20.06. 2012, бюл. №17. Способ получения конструкционной алюмооксидной керамики; С04В 35/11, 35/26, C01F 7/42 (прототип).
3. Практикум по технологии керамики / под ред. И.Я. Гузмана. М: ООО РИФ «Стройматериалы», 2005, 336 с.
Figure 00000004

Claims (6)

1. Способ получения конструкционной алюмооксидной керамики, включающий обработку алюминиевого сплава водным раствором едкого натра при теплоотводе из реакционного объема хладагентом, выделение из маточного раствора образовавшегося осадка, его промывку, сушку, термообработку на воздухе, приготовление из полученного продукта шихты, прессование и спекание отпрессованных заготовок на воздухе, отличающийся тем, что водным раствором едкого натра обрабатывают совместно сплав алюминия с кремнием, содержащимся в количестве 10-14 мас.%, и сплав алюминия с магнием, содержащимся в количестве 4-8 мас.% при отношении массы алюминий-кремниевого сплава к массе алюминий-магниевого сплава от 0,5 до 1,5.
2. Способ по п.1, отличающийся тем, что водным раствором едкого натра совместно обрабатывают сплавы алюминия с кремнием и алюминия с магнием, взятые в виде опилок с размерами частиц 0,05-0,5 мм.
3. Способ по п.1, отличающийся тем, что промывку осадка ведут до величины рН среды 8,5-9,5.
4. Способ по п.1, отличающийся тем, что термообработку осадка на воздухе проводят при температуре 1350-1450°C в течение 30-60 минут.
5. Способ по п.1, отличающийся тем, что прессование заготовок проводят под давлением 200-500 МПа.
6. Способ по п.1, отличающийся тем, что спекание заготовок на воздухе проводят при температуре 1500-1550°C в течение 10-30 минут.
RU2013149984/03A 2013-11-11 2013-11-11 Способ получения конструкционной алюмооксидной керамики RU2547852C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013149984/03A RU2547852C1 (ru) 2013-11-11 2013-11-11 Способ получения конструкционной алюмооксидной керамики

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013149984/03A RU2547852C1 (ru) 2013-11-11 2013-11-11 Способ получения конструкционной алюмооксидной керамики

Publications (2)

Publication Number Publication Date
RU2547852C1 true RU2547852C1 (ru) 2015-04-10
RU2013149984A RU2013149984A (ru) 2015-05-20

Family

ID=53283713

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013149984/03A RU2547852C1 (ru) 2013-11-11 2013-11-11 Способ получения конструкционной алюмооксидной керамики

Country Status (1)

Country Link
RU (1) RU2547852C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU393293A1 (ru) * 1970-12-28 1973-08-10
DE19520614C1 (de) * 1995-06-06 1996-11-07 Starck H C Gmbh Co Kg Mikrokristalline Sinterschleifkörner auf Basis von a-AI¶2¶O¶3¶ mit hohem Verschleißwiderstand, Verfahren zu seiner Herstellung sowie dessen Verwendung
RU2083530C1 (ru) * 1995-03-23 1997-07-10 Конаковский фаянсовый завод Акционерного общества "Фаянс" Шихта для изготовления мелющих тел
US5843859A (en) * 1990-05-29 1998-12-01 Claussen; Nils Reaction-formed moulded ceramic body containing mullite, its production and its use
RU2453517C1 (ru) * 2010-12-09 2012-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет" (ФГБОУ ВПО "МГИУ") Способ получения конструкционной алюмооксидной керамики

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU393293A1 (ru) * 1970-12-28 1973-08-10
US5843859A (en) * 1990-05-29 1998-12-01 Claussen; Nils Reaction-formed moulded ceramic body containing mullite, its production and its use
RU2083530C1 (ru) * 1995-03-23 1997-07-10 Конаковский фаянсовый завод Акционерного общества "Фаянс" Шихта для изготовления мелющих тел
DE19520614C1 (de) * 1995-06-06 1996-11-07 Starck H C Gmbh Co Kg Mikrokristalline Sinterschleifkörner auf Basis von a-AI¶2¶O¶3¶ mit hohem Verschleißwiderstand, Verfahren zu seiner Herstellung sowie dessen Verwendung
RU2453517C1 (ru) * 2010-12-09 2012-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет" (ФГБОУ ВПО "МГИУ") Способ получения конструкционной алюмооксидной керамики

Also Published As

Publication number Publication date
RU2013149984A (ru) 2015-05-20

Similar Documents

Publication Publication Date Title
Ganesh et al. Influence of processing route on microstructure and mechanical properties of MgAl2O4 spinel
RU2453517C1 (ru) Способ получения конструкционной алюмооксидной керамики
Badiee et al. Effect of nano-titania addition on the properties of high-alumina low-cement self-flowing refractory castables
Bella et al. Preparation of mullite-alumina composite by reaction sintering between Algerian kaolin and amorphous aluminum hydroxide
Behera et al. Effect of different alumina sources on phase formation and densification of single-phase mullite ceramic–Reference clay alumina system
Pinto et al. Binder effect on ZnAl2O4-containing high-alumina refractory castables
Sule et al. Effect of temperature on mullite synthesis from attrition-milled pyrophyllite and α-alumina by spark plasma sintering
JP6278476B2 (ja) アルミナを含むセラミック組成物
RU2461530C1 (ru) СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА Al2O3-Al
Anjali et al. Low temperature in-situ reaction sintering of zircon: alumina composites trough spark plasma sintering
RU2547852C1 (ru) Способ получения конструкционной алюмооксидной керамики
CN115321961A (zh) 一种高纯度致密六铝酸钙系耐火材料及其制备方法
Liu et al. Effect of Y 2 O 3 doping on the high-temperature properties of magnesia aluminate spinel refractories
RU2522487C2 (ru) Способ получения конструкционной алюмооксидной керамики
Huang et al. Preparation of an aluminium titanate-25 vol% mullite composite by sintering of gel-coated powders
Nath et al. Effect of mechanical activation on cordierite synthesis through solid-state sintering method
RU2584992C1 (ru) Способ получения алюмооксидной конструкционной керамики
RU2799462C1 (ru) Способ получения композиционного материала Al2O3-Al
Ctibor et al. Formation of mullite and mullite-corundum composites from kaolin using spark plasma sintering
RU2545270C1 (ru) Способ получения конструкционной алюмооксидной керамики
Maitreekeaw et al. Calcium titanate ceramics obtained by combustion synthesis and two-step sintering
RU2581183C1 (ru) Способ получения алюмооксидной конструкционной керамики
JP2001526175A (ja) 熱ショック抵抗性の改良された稠密耐火物
RU2319678C1 (ru) СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА Al2O3-Al
Sciti et al. Improvements Offered by Coprecipitation of Sintering Additives on Ultra‐Fine SiC Materials

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20161114

PD4A Correction of name of patent owner
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20170427

MM4A The patent is invalid due to non-payment of fees

Effective date: 20201112