RU2546964C1 - Статор электрической машины с жидкостным охлаждением проточным хладагентом - Google Patents
Статор электрической машины с жидкостным охлаждением проточным хладагентом Download PDFInfo
- Publication number
- RU2546964C1 RU2546964C1 RU2013143348/07A RU2013143348A RU2546964C1 RU 2546964 C1 RU2546964 C1 RU 2546964C1 RU 2013143348/07 A RU2013143348/07 A RU 2013143348/07A RU 2013143348 A RU2013143348 A RU 2013143348A RU 2546964 C1 RU2546964 C1 RU 2546964C1
- Authority
- RU
- Russia
- Prior art keywords
- heat
- heat pipes
- outer walls
- cavity
- jacket
- Prior art date
Links
Images
Landscapes
- Motor Or Generator Cooling System (AREA)
Abstract
Изобретение относится к области электротехники и электромашиностроения, в частности, к охлаждению электрических машин. Статор электрической машины содержит корпус, рубашку с каналами для проточного хладагента, магнитопровод с рабочей обмоткой, охлаждение лобовых частей которой осуществляется посредством расположенных между слоями либо над слоями лобовых частей обмотки теплоотводящих элементов в виде цилиндров с ребрами на наружной поверхности, отходящими в радиальном направлении и контактирующими с рубашкой. Каждый из цилиндров теплоотводящих элементов выполнен с полостью между его внутренней и внешней стенками, а в качестве ребер использованы присоединенные торцевыми концами к внешним стенкам цилиндров тепловые трубы, плотно примыкающие своими торцевыми конденсационными концами к рубашке с каналами для проточного хладагента. Полость между внутренней и внешней стенками цилиндров и полость тепловых труб сообщаются между собой и составляют герметичную систему, заполненную рабочей жидкостью тепловых труб. Техническим результатом является повышение надежности. 3 ил.
Description
Изобретение относится к области электротехники и электромашиностроения, в частности к охлаждению электрических машин, и касается особенностей конструктивного выполнения их статора с жидкостным охлаждением. Изобретение может быть использовано при создании электрических машин с интенсивным охлаждением статора.
Известна электрическая машина с охлаждением статора, Науменко В.И. Конструирование источников и преобразователей электроэнергии: Учебное пособие. - М.: МАИ, 1986, с. 39. Для приближения проточного хладагента к местам тепловыделения в данной электрической машине применены кольцеобразные пустотелые теплоотводы, внутренние полости которых соединены с каналами корпуса для проточного хладагента. Существенным недостатком предложенной конструкции является ее невысокая надежность из-за возможности разгерметизации и утечки хладагента из гидравлического тракта на границе между сердечником и теплоотводом. Кроме того, дополнительные системы, применяемые для отвода хладагента из внутренней полости электрической машины, ухудшают ее массогабаритные показатели.
Наиболее близким к предлагаемой конструкции статора электрической машины с жидкостным охлаждением проточным хладагентом по техническому решению является электрическая машина с интенсивным охлаждением статора, представленная в авторском свидетельстве №313258 «Электрическая машина», МПК H02K 9/22, опубл. 31.08.1971 г. Бюлл. №26. Для передачи тепла от лобовых частей секций рабочей обмотки к охлаждаемому проточным хладагентом корпусу в данном техническом решении применены кольцевые теплоотводы, размещенные между слоями лобовых частей обмотки, с припаянными металлическими ребрами, проходящими между проводниками секций и контактирующими с охлаждаемым корпусом.
Основным недостатком вышеназванного технического решения, принятого за прототип, является низкая эффективность охлаждения лобовых частей рабочей обмотки статора из-за недостаточной теплопроводности металла, используемого для изготовления металлических ребер, контактирующих с охлаждаемым корпусом. При этом применение в конструкции сплошных металлических ребер ведет к значительному повышению массы электрической машины в целом.
Задача заявляемого технического решения - повышение надежности работы за счет повышения эффективности охлаждения лобовых частей рабочей обмотки статора при сохранении его оптимальных массогабаритных показателей.
Технический результат достигается тем, что в статоре электрической машины с жидкостным охлаждением проточным хладагентом, содержащем корпус, рубашку с каналами для проточного хладагента, магнитопровод с рабочей обмоткой, охлаждение лобовых частей которой осуществляется посредством расположенных между слоями либо над слоями лобовых частей обмотки теплоотводящих элементов в виде цилиндров с ребрами на наружной поверхности, отходящими в радиальном направлении и контактирующими с рубашкой, каждый из цилиндров теплоотводящих элементов выполнен с полостью между его внутренней и внешней стенками, а в качестве ребер использованы присоединенные торцевыми концами к внешним стенкам цилиндров тепловые трубы, плотно примыкающие своими торцевыми конденсационными концами к рубашке с каналами для проточного хладагента. Полость между внутренней и внешней стенками цилиндров и полость тепловых труб сообщаются между собой и составляют герметичную систему, заполненную рабочей жидкостью тепловых труб.
Такое конструктивное выполнение заявляемого статора электрической машины с тепловыми трубами, внутреннее пространство которых образует единую полость с замкнутым пространством между внутренней и внешней стенками цилиндров теплоотводящих элементов, заполненную рабочей жидкостью тепловых труб, позволяет в полной мере использовать высокую теплопроводность тепловых труб, которая значительно выше теплопроводности любого металла. При этом значительно повышается эффективность охлаждения лобовых частей рабочей обмотки статора, тем самым повышается надежность работы электрической машины в целом. Применение легких тонкостенных тепловых труб позволяет сохранить оптимальные массогабаритные показатели.
Изобретение иллюстрируется рисунками, на которых показаны:
фиг.1 - схема статора электрической машины с жидкостным охлаждением проточным хладагентом,
фиг.2 - поперечное сечение статора электрической машины с расположенными над слоями лобовых частей обмотки теплоотводящими элементами,
фиг.3 - поперечное сечение статора электрической машины с расположенными между слоями лобовых частей обмотки теплоотводящими элементами.
Статор электрической машины с жидкостным охлаждением проточным хладагентом (фиг.1, фиг.2, фиг.3) содержит корпус 1, рубашку 2 с каналами 3 для проточного хладагента, магнитопровод с рабочей обмоткой 4 с ее лобовыми частями 5 и теплоотводящий элемент, состоящий из цилиндра 6 и отходящих от него в радиальном направлении тепловых труб 7, заполненных рабочей жидкостью 8 тепловых труб 7.
Охлаждение лобовых частей рабочей обмотки статора электрической машины осуществляется следующим образом. Проточный хладагент для охлаждения поступает в каналы 3 рубашки 2. Магнитопровод с рабочей обмоткой 4 плотно прилегает к рубашке 2, что обеспечивает отведение тепла к проточному хладагенту от самого магнитопровода и от пазовой части рабочей обмотки 4. Отведение тепла от лобовых частей 5 рабочей обмотки 4 обеспечивается теплоотводящим элементом, состоящим из теплоотводящего цилиндра 6 и тепловых труб 7. Теплоотводящий элемент может быть расположен между слоями (фиг.3) либо над слоями (фиг.2) лобовых частей 5 рабочей обмотки 4. Цилиндр 6 выполнен с полостью между его внутренней и внешней стенками. Тепловые трубы 7 как ребра, отходящие в радиальном направлении, присоединены торцевыми концами к внешним стенкам теплоотводящих цилиндров 6, а своими торцевыми конденсационными концами плотно контактируют с рубашкой 2 с каналами 3 для проточного хладагента. Полость тепловых труб 7 и полость между стенками цилиндра 6 теплоотводящего элемента составляют герметичную систему и заполнены жидкостью 8 тепловых труб 7. Омические тепловые потери, возникающие в меди лобовых частей рабочей обмотки 4 при протекании по ней электрического тока, нагревают рабочую жидкость 8 тепловых труб 7. В процессе нагревания рабочая жидкость 8 начинает испаряться и образовавшийся газ непосредственно по самим тепловым трубам 7 перемещается к своим более холодным конденсационным концам, примыкающим к рубашке 2, обтекаемой по каналам 3 проточным хладагентом. На этих более холодных концах тепловых труб 7 происходит конденсация рабочей жидкости 8, которая затем по специально структурированным стенкам тепловых труб 7 поступает обратно в полость между стенками цилиндра 6. Указанный процесс превращения и перемещения рабочей жидкости 8 тепловых труб 7 обеспечивает интенсивный перенос тепла от лобовых частей рабочей обмотки 4 к рубашке 2 с каналами 3 для хладагента.
Выполнение в статоре электрической машины с жидкостным охлаждением проточным хладагентом теплоотводящих элементов в виде цилиндров с полостью между их внутренней и внешней стенками, а также использование тепловых труб с их рабочей жидкостью, наполнение герметичной системы рабочей жидкостью тепловых труб дает возможность постоянно осуществлять интенсивный отвод тепла от лобовых частей рабочей обмотки.
Таким образом, существенно повышая эффективность охлаждения лобовых частей рабочей обмотки статора электрической машины, заявляемое техническое решение позволяет сохранить оптимальные массогабаритные показатели, значительно повысить надежность работы статора и, соответственно, электрической машины в целом.
Claims (1)
- Статор электрической машины с жидкостным охлаждением проточным хладагентом, содержащий корпус, рубашку с каналами для проточного хладагента, магнитопровод с рабочей обмоткой, охлаждение лобовых частей которой осуществляется посредством расположенных между слоями либо над слоями лобовых частей обмотки теплоотводящих элементов в виде цилиндров с ребрами на наружной поверхности, отходящими в радиальном направлении и контактирующими с рубашкой, отличающийся тем, что каждый из цилиндров теплоотводящих элементов выполнен с полостью между его внутренней и внешней стенками, а в качестве ребер использованы присоединенные торцевыми концами к внешним стенкам цилиндров тепловые трубы, плотно примыкающие своими торцевыми конденсационными концами к рубашке с каналами для проточного хладагента, причем полость между внутренней и внешней стенками цилиндров и полость тепловых труб сообщаются между собой и составляют герметичную систему, заполненную рабочей жидкостью тепловых труб.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013143348/07A RU2546964C1 (ru) | 2013-09-25 | 2013-09-25 | Статор электрической машины с жидкостным охлаждением проточным хладагентом |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013143348/07A RU2546964C1 (ru) | 2013-09-25 | 2013-09-25 | Статор электрической машины с жидкостным охлаждением проточным хладагентом |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013143348A RU2013143348A (ru) | 2015-03-27 |
RU2546964C1 true RU2546964C1 (ru) | 2015-04-10 |
Family
ID=53286575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013143348/07A RU2546964C1 (ru) | 2013-09-25 | 2013-09-25 | Статор электрической машины с жидкостным охлаждением проточным хладагентом |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2546964C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU169095U1 (ru) * | 2016-09-30 | 2017-03-03 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") | Рубашка охлаждения статора электромашины |
RU2720064C1 (ru) * | 2019-11-26 | 2020-04-23 | Вячеслав Авазович Чукреев | Вентильно-индукторный двигатель |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU313258A1 (ru) * | ПОЮЗНАЯ I !.^-;Д'.^'г/:---.г;г-;^ р1В. И. Науменко5-..?-•,.-•••••-•' ^_"'""_;[^^.__ | |||
US3508092A (en) * | 1968-06-19 | 1970-04-21 | Air Reduction | Heat sink for stator winding of dynamo-electric machine |
US3518466A (en) * | 1968-08-22 | 1970-06-30 | Gen Electric | Dynamoelectric machine |
RU2047257C1 (ru) * | 1992-02-19 | 1995-10-27 | Научно-исследовательский, проектно-конструкторский и технологический институт тяжелого электромашиностроения Харьковского завода "Электротяжмаш" им.В.И.Ленина | Статор электрической машины |
RU2210157C2 (ru) * | 1997-07-25 | 2003-08-10 | Дженерал Электрик Компани | Сердечник статора электрогенератора |
-
2013
- 2013-09-25 RU RU2013143348/07A patent/RU2546964C1/ru active IP Right Revival
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU313258A1 (ru) * | ПОЮЗНАЯ I !.^-;Д'.^'г/:---.г;г-;^ р1В. И. Науменко5-..?-•,.-•••••-•' ^_"'""_;[^^.__ | |||
US3508092A (en) * | 1968-06-19 | 1970-04-21 | Air Reduction | Heat sink for stator winding of dynamo-electric machine |
US3518466A (en) * | 1968-08-22 | 1970-06-30 | Gen Electric | Dynamoelectric machine |
RU2047257C1 (ru) * | 1992-02-19 | 1995-10-27 | Научно-исследовательский, проектно-конструкторский и технологический институт тяжелого электромашиностроения Харьковского завода "Электротяжмаш" им.В.И.Ленина | Статор электрической машины |
RU2210157C2 (ru) * | 1997-07-25 | 2003-08-10 | Дженерал Электрик Компани | Сердечник статора электрогенератора |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU169095U1 (ru) * | 2016-09-30 | 2017-03-03 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") | Рубашка охлаждения статора электромашины |
RU2720064C1 (ru) * | 2019-11-26 | 2020-04-23 | Вячеслав Авазович Чукреев | Вентильно-индукторный двигатель |
Also Published As
Publication number | Publication date |
---|---|
RU2013143348A (ru) | 2015-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107276275B (zh) | 一种轴向冷却电机 | |
US9397536B2 (en) | Rotating electrical machine for vehicles with liquid cooling | |
EP3628955A1 (en) | Heat-dissipating structure having embedded support tube to form internally recycling heat transfer fluid and application apparatus | |
CA2817064C (en) | Axial flux electrical machines | |
CN105305667A (zh) | 电机 | |
CN105531911B (zh) | 具有导热装置的电机 | |
TW201421864A (zh) | 定子模組及其磁力產生構件 | |
CN101645632A (zh) | 一种外转子永磁同步电机的定子水冷装置 | |
RU2011120334A (ru) | Динамоэлектрическая машина | |
CN109617272B (zh) | 一种基于电传动系统的集成式冷却结构 | |
CN103280927A (zh) | 水冷电机壳双冷却回路结构 | |
RU2546964C1 (ru) | Статор электрической машины с жидкостным охлаждением проточным хладагентом | |
CN103618394A (zh) | 一种采用热管绕组的盘式电机定子 | |
CN102624121A (zh) | 一种电机绕组端部冷却结构 | |
RU2439768C2 (ru) | Система жидкостного охлаждения статоров электрических машин | |
CN104197024A (zh) | 蠕动泵送循环冷却式磁性液体密封装置 | |
CN108539908A (zh) | 一种电机水冷机壳及其制作方法 | |
CN112104167A (zh) | 基于脉动热管的电机 | |
CN103401346A (zh) | 一种电动车水冷永磁同步电机冷却水流道结构 | |
RU2513042C1 (ru) | Система жидкостного охлаждения статора электрических машин автономных объектов | |
CN205622419U (zh) | 一种基于热管冷却系统的水冷电机 | |
US20150022041A1 (en) | Method of cooling a generator or motor rotor with end disks and a hybrid shaft assembly | |
CN103427560B (zh) | 使用导热管增强电机冷却效果的结构 | |
CN208128046U (zh) | 一种电机水冷机壳 | |
CN203387364U (zh) | 使用导热管增强电机冷却效果的结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180926 |
|
NF4A | Reinstatement of patent |
Effective date: 20210604 |