RU2546379C1 - Виброизолятор кочетова с сухим трением - Google Patents

Виброизолятор кочетова с сухим трением Download PDF

Info

Publication number
RU2546379C1
RU2546379C1 RU2014112274/11A RU2014112274A RU2546379C1 RU 2546379 C1 RU2546379 C1 RU 2546379C1 RU 2014112274/11 A RU2014112274/11 A RU 2014112274/11A RU 2014112274 A RU2014112274 A RU 2014112274A RU 2546379 C1 RU2546379 C1 RU 2546379C1
Authority
RU
Russia
Prior art keywords
friction
spring
housing
vibration
dry friction
Prior art date
Application number
RU2014112274/11A
Other languages
English (en)
Inventor
Олег Савельевич Кочетов
Мария Олеговна Стареева
Мария Михайловна Стареева
Анна Михайловна Стареева
Татьяна Дмитриевна Ходакова
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2014112274/11A priority Critical patent/RU2546379C1/ru
Application granted granted Critical
Publication of RU2546379C1 publication Critical patent/RU2546379C1/ru

Links

Images

Abstract

Изобретение относится к машиностроению. Виброизолятор содержит упругий элемент, корпус и демпфер сухого трения. Корпус выполнен в виде двух оппозитно расположенных втулок, фиксирующих пружину своей внешней поверхностью. Демпфер выполнен в виде трех упругих лепестков, жестко связанных с нижней втулкой. Лепестки с усилием охватывают внешнюю поверхность пружины. Цилиндрическая винтовая пружина содержит корпус, выполненный из винтовой пустотелой упругой стальной трубки. Внутри корпуса коаксиально установлена с зазором дополнительная упругая стальная трубка. В зазорах между трубками расположен фрикционный элемент из полиэтилена, обладающего высоким коэффициентом теплового расширения по сравнению со сталью. Поверхности корпуса и дополнительной упругой стальной трубки соприкасаются с поверхностями фрикционных элементов. Коаксиально корпусу расположен винтовой сплошной упругий стержень. Достигается повышение эффективности виброизоляции в резонансном режиме. 4 з.п. ф-лы, 2 ил.

Description

Изобретение относится к машиностроению и может быть использовано для виброизоляции технологического оборудования.
Известно применение пружинных упругих элементов для виброизоляции технологического оборудования в текстильной промышленности [1, 2, 3, 4]. Расчеты показывают высокую эффективность пружинных упругих элементов в системах виброизоляции.
Однако для снижения низкочастотных колебаний требуется существенная высота пружин.
Известно применение пружинных виброизоляторов [5, 6] с маятниковым подвесом, в которых используется система виброизоляции подвесного типа с пружинным упругим элементом.
Недостатком такого типа виброизоляторов с маятниковым подвесом является их большой габарит по высоте, так как они относятся к категории подвесных систем.
Известен пружинный виброизолятор с сухим трением [7], содержащий пружину, корпус и демпфер сухого трения, корпус выполнен в виде полой вертикальной стойки, взаимодействующей с Т-образной платформой, упруго связанной с демпфером сухого трения, выполненного в виде втулки, внутренняя поверхность которой через подпружиненные фрикционные элементы взаимодействует с внешней поверхностью стойки, а на ее внешней поверхности закреплена пружина, опирающаяся на основание стойки.
Недостатком такого типа виброизоляторов является сравнительно невысокая надежность в резонансном режиме из-за износа демпфера сухого трения, что несколько снижает эффективность виброзащиты.
Известно применение пружинных элементов в виброизоляторах [8], содержащих корпус, который выполнен в виде верхней и нижней прямоугольных плит, между которыми размещены винтовые упругие элементы разной жесткости.
Недостатком такого типа виброизоляторов является возможность блокирования винтовых упругих элементов в пакетах, что несколько может изменить их общую жесткость, а следовательно, и эффективность виброзащиты.
Известно применение пружинных элементов в виброизоляторах [9] с переменной структурой демпфирования, содержащих корпус с размещенным в нем штоком с поршнем, причем на конце штока закреплена виброизолируемая масса, удерживаемая пружинами, а демпфер сухого трения выполнен в виде фрикционной втулки с ограничительными упорами по торцам, причем усилие прижатия фрикционных элементов к втулке осуществляется через регулировочные винты, которые связаны с исполнительным серводвигателем, а сигнал на включение серводвигателя поступает от микропроцессора, управляющего работой демпфера сухого трения по заданной характеристике и связанного с датчиком виброускорений.
Недостатком такого типа виброизоляторов является большая стоимость системы виброзащиты, которая не всегда оправдана из-за их эффективности виброзащиты.
Известен пружинный виброизолятор с маятниковым подвесом [10], содержащий винтовую цилиндрическую пружину, нижний торец которой опирается на верхний фланец корпуса и взаимодействующую с маятниковым механизмом.
Недостатком известного устройства является сравнительно невысокая эффективность на резонансе из-за отсутствия демпфирования колебаний.
Наиболее близким техническим решением к заявляемому объекту является пружинный виброизолятор с сухим трением по патенту РФ №2279592 [11] (прототип), содержащий упругий элемент, корпус и демпфер сухого трения, корпус выполнен в виде двух оппозитно расположенных относительно торцов цилиндрической винтовой пружины верхней и нижней втулок, фиксирующих пружину своей внешней поверхностью, а демпфер сухого трения выполнен в виде, по крайней мере трех упругих лепестков, жестко связанных с нижней втулкой и охватывающих с определенным усилием внешнюю поверхность пружины.
Недостатком известного устройства является сравнительно невысокая эффективность на резонансе из-за недостаточного демпфирования колебаний.
Технический результат - повышение эффективности виброизоляции в резонансном режиме.
Это достигается тем, что в виброизоляторе с сухим трением, содержащем упругий элемент, корпус и демпфер сухого трения, корпус выполнен в виде двух оппозитно расположенных относительно торцов цилиндрической винтовой пружины верхней и нижней втулок, фиксирующих пружину своей внешней поверхностью, а демпфер сухого трения выполнен в виде, по крайней мере, трех упругих лепестков, жестко связанных с нижней втулкой и охватывающих с определенным усилием внешнюю поверхность пружины, при этом цилиндрическая винтовая пружина содержит корпус, выполненный из винтовой, пустотелой и упругой стальной трубки, внутри которой коаксиально и осесимметрично установлена с зазором, по крайней мере, одна дополнительная упругая стальная трубка, а в зазорах между трубками расположен, по крайней мере, один фрикционный элемент, например, из полиэтилена, обладающего высоким коэффициентом теплового расширения по сравнению со сталью, при этом поверхности корпуса и дополнительной упругой стальной трубки соприкасаются с поверхностями фрикционных элементов, а их оси совпадают с осью витков корпуса, а центрально, коаксиально и осесимметрично корпусу расположен винтовой упругий стержень, выполненный сплошным, а фрикционные элементы выполнены трубчатыми, например, из полиэтилена.
На фиг.1 представлен фронтальный разрез предлагаемого виброизолятора, на фиг.2 - схема пружины.
Виброизолятор с сухим трением (фиг.1) содержит упругий элемент 3, корпус 1 и демпфер сухого трения 4. Корпус выполнен в виде двух оппозитно расположенных относительно торцов цилиндрической винтовой пружины 3 верхней 2 и нижней 1 втулок, фиксирующих пружину 3 своей внешней поверхностью, а демпфер сухого трения 4 выполнен в виде, по крайней мере, трех упругих лепестков 4, жестко связанных с нижней втулкой 1 и охватывающих с определенным усилием внешнюю поверхность пружины 3. Изнутри лепестки 4 покрыты слоем фрикционного материала 5, усиливающего эффект демпфирования.
Пружина (фиг.2) содержит корпус 6, выполненный из винтовой, пустотелой и упругой стальной трубки, внутри которой коаксиально и осесимметрично установлена с зазором, по крайней мере, одна дополнительная упругая стальная трубка 8, а в зазорах между трубками расположен, по крайней мере, один фрикционный элемент 7, например, из полиэтилена, обладающего высоким коэффициентом теплового расширения по сравнению со сталью. При этом поверхности корпуса 6, дополнительной упругой стальной трубки 8 соприкасаются с поверхностями фрикционных элементов 7 и 9, а их оси совпадают с осью витков корпуса. Центрально, коаксиально и осесимметрично корпусу 6 расположен винтовой упругий стержень 10, который может быть выполнен также как корпус и дополнительные упругие стальные трубки полым, как показано на чертеже, либо сплошным (на чертеже не показано). Фрикционные элементы 7 и 9 могут быть выполнены трубчатыми, как показано на чертеже, при этом иметь либо сплошную структуру, например из полиэтилена, как элемент 9, либо комбинированную, как элемент 7, например из полиэтилена с вкраплениями гранул из вибродемпфирующего материала. Возможен вариант, когда фрикционный элемент выполнен в виде гранулированной засыпки из вибродемпфирующего материала (на чертеже не показано).
Возможен вариант, когда винтовой упругий стержень 10 выполнен в виде винтовой пружины с шагом, меньшим на 5÷10% шага винтовой линии корпуса 6, для создания натяга, обеспечивающего функциональное назначение фрикционных элементов 7 и 9.
Виброизолятор работает следующим образом.
При колебаниях виброизолируемого объекта на втулке 2 пружина 3 воспринимает вертикальные нагрузки, ослабляя тем самым динамическое воздействие на перекрытия зданий. Демпфирование колебаний осуществляется за счет трения фрикционных элементов 5 о внешнюю поверхность пружины 3. За счет такой схемы выполнения подвеса обеспечивается дополнительная пространственная виброизоляция оборудования по всем шести направлениям колебаний (по трем координатным осям x, y, z и поворотным колебаниям вокруг этих осей). Пружина работает следующим образом.
При малых амплитудах колебаний, когда большое затухание нежелательно, рассеиваемая энергия за счет сухого трения между стальной трубкой и фрикционным элементом будет невелика. При больших амплитудах колебаний, особенно при резонансах, демпфирование увеличивается из-за относительного перемещения стальных трубок и фрикционного элемента. Во время длительной работы пружинного амортизатора с большими амплитудами затухание возрастает, так как фрикционный элемент при повышении температуры расширяется в замкнутом объеме в несколько раз больше, чем сталь, увеличивая тем самым давление на стенки стальных трубок, в результате чего возрастает сухое трение и колебания быстро прекращаются.
Таким образом, пружина благодаря избирательным свойствам обеспечивает эффективную пространственную виброизоляцию оборудования по всем шести направлениям колебаний (по трем осям X.Y, Z и поворотные колебания вокруг этих осей) с демпфированием колебаний на резонансе, и при различных условиях работы.
Предложенная конструкция виброизолятора является эффективной, а также отличается простотой при монтаже и эксплуатации.
Источники информации
1. Кочетов О.С., Сажин Б.С. Снижение шума и вибраций в производстве: теория, расчет, технические решения. М.: МГТУ им. А.Н. Косыгина, 2001. - 319 с.: стр.120, рис.5.6; стр.287, рис.П.Y.15.
2. Кочетов О.С. Текстильная виброакустика. Учебное пособие для вузов. М.: МГТУ им. А.Н. Косыгина, группа «Совьяж Бево» 2003. - 191 с.: стр.59, рис.3.1; стр.61, рис.3.4а; рис.3.5.
3. Кочетов О.С. Виброизоляторы типа «ВСК-1» для ткацких станков // Текстильная промышленность. - 2000, №5. С.19…20.
4. Кочетов О.С. Расчет пространственной системы виброзащиты. Журнал «Безопасность труда в промышленности», №8, 2009, стр.32-37.
5. Кочетов О.С., Кочетова М.О., Ходакова Т.Д., Шестернинов А.В. Пружинный виброизолятор с маятниковым подвесом // Патент на изобретение №2279589. Опубликовано 10.07.06. Бюллетень изобретений №19.
6. Кочетов О.С., Кочетова М.О., Ходакова Т.Д., Шестернинов А.В. Виброизолирующая система // Патент на изобретение №2279586. Опубликовано 10.07.06. Бюллетень изобретений №19.
7. Кочетов О.С., Кочетова М.О., Ходакова Т.Д., Шестернинов А.В., Стареев М.Е. Пружинный виброизолятор с сухим трением // Патент на изобретение №2282075. Опубликовано 20.08.06. Бюллетень изобретений №23.
8. Кочетов О.С., Кочетова М.О., Ходакова Т.Д., Шестернинов А.В. Виброизолированная площадка // Патент на изобретение №2277650. Опубликовано 10.06.06. Бюллетень изобретений №16.
9. Кочетов О.С., Кочетова М.О., Шестернинов А.В., Зубова И.Ю. Виброизолятор с переменной структурой демпфирования // Патент на изобретение №2303722. Опубликовано 27.07.07. Бюллетень изобретений №21.
10. Кочетов О.С., Кочетова М.О., Ходакова Т.Д. Виброизолятор с маятниковым подвесом // Патент на изобретение №2269699. Опубликовано 10.02.06. Бюллетень изобретений №4.
11. Кочетов О.С., Кочетова М.О., Ходакова Т.Д., Шестернинов А.В., Стареев М.Е. Виброизолятор с сухим трением // Патент на изобретение №2279592. Опубликовано 10.07.06. Бюллетень изобретений №19.

Claims (5)

1. Виброизолятор с сухим трением, содержащий упругий элемент, корпус и демпфер сухого трения, корпус выполнен в виде двух оппозитно расположенных относительно торцов цилиндрической винтовой пружины верхней и нижней втулок, фиксирующих пружину своей внешней поверхностью, а демпфер сухого трения выполнен в виде, по крайней мере, трех упругих лепестков, жестко связанных с нижней втулкой и охватывающих с определенным усилием внешнюю поверхность пружины, отличающийся тем, что цилиндрическая винтовая пружина содержит корпус, выполненный из винтовой пустотелой упругой стальной трубки, внутри которой коаксиально и осесимметрично установлена с зазором, по крайней мере, одна дополнительная упругая стальная трубка, а в зазорах между трубками расположен, по крайней мере, один фрикционный элемент, например из полиэтилена, обладающего высоким коэффициентом теплового расширения по сравнению со сталью, при этом поверхности корпуса и дополнительной упругой стальной трубки соприкасаются с поверхностями фрикционных элементов, а их оси совпадают с осью витков корпуса, а центрально, коаксиально и осесимметрично корпусу расположен винтовой упругий стержень, выполненный сплошным, а фрикционные элементы выполнены трубчатыми, например из полиэтилена.
2. Виброизолятор с сухим трением по п.1, отличающийся тем, что изнутри лепестки покрыты слоем фрикционного материала.
3. Виброизолятор с сухим трением по п.1, отличающийся тем, что фрикционный элемент выполнен комбинированным, например из полиэтилена с вкраплениями гранул из вибродемпфирующего материала.
4. Виброизолятор с сухим трением по п.1, отличающийся тем, что фрикционный элемент выполнен в виде гранулированной засыпки из вибродемпфирующего материала.
5. Виброизолятор с сухим трением по п.1, отличающийся тем, что винтовой упругий стержень выполнен в виде винтовой пружины с шагом, меньшим на 5÷10% шага винтовой линии корпуса, для создания натяга, обеспечивающего функциональное назначение фрикционных элементов.
RU2014112274/11A 2014-04-01 2014-04-01 Виброизолятор кочетова с сухим трением RU2546379C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014112274/11A RU2546379C1 (ru) 2014-04-01 2014-04-01 Виброизолятор кочетова с сухим трением

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014112274/11A RU2546379C1 (ru) 2014-04-01 2014-04-01 Виброизолятор кочетова с сухим трением

Publications (1)

Publication Number Publication Date
RU2546379C1 true RU2546379C1 (ru) 2015-04-10

Family

ID=53295829

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014112274/11A RU2546379C1 (ru) 2014-04-01 2014-04-01 Виброизолятор кочетова с сухим трением

Country Status (1)

Country Link
RU (1) RU2546379C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2597702C2 (ru) * 2015-01-12 2016-09-20 Олег Савельевич Кочетов Виброизолятор кочетова с сухим трением
RU183775U1 (ru) * 2018-04-02 2018-10-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный архитектурно-строительный университет" Пружинный амортизатор для гашения резонансных колебаний в вибрационных строительных машинах
RU2672826C1 (ru) * 2017-09-15 2018-11-19 Олег Савельевич Кочетов Двухкаскадный виброизолятор с динамическим гасителем

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1419268A (en) * 1971-02-22 1975-12-24 Brunswick Corp Energy controlling composite
SU717438A2 (ru) * 1974-03-22 1980-02-25 Mironov Evgenij M Пружинный амортизатор
EP0886078A2 (de) * 1997-06-19 1998-12-23 Basf Aktiengesellschaft Reibungsdämpfer mit einem Elastomerfederlement
RU2279592C1 (ru) * 2005-03-14 2006-07-10 Олег Савельевич Кочетов Виброизолятор с сухим трением

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1419268A (en) * 1971-02-22 1975-12-24 Brunswick Corp Energy controlling composite
SU717438A2 (ru) * 1974-03-22 1980-02-25 Mironov Evgenij M Пружинный амортизатор
EP0886078A2 (de) * 1997-06-19 1998-12-23 Basf Aktiengesellschaft Reibungsdämpfer mit einem Elastomerfederlement
RU2279592C1 (ru) * 2005-03-14 2006-07-10 Олег Савельевич Кочетов Виброизолятор с сухим трением

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2597702C2 (ru) * 2015-01-12 2016-09-20 Олег Савельевич Кочетов Виброизолятор кочетова с сухим трением
RU2672826C1 (ru) * 2017-09-15 2018-11-19 Олег Савельевич Кочетов Двухкаскадный виброизолятор с динамическим гасителем
RU183775U1 (ru) * 2018-04-02 2018-10-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный архитектурно-строительный университет" Пружинный амортизатор для гашения резонансных колебаний в вибрационных строительных машинах

Similar Documents

Publication Publication Date Title
RU2549600C1 (ru) Пружина кочетова
RU2558770C1 (ru) Демпфер сухого трения кочетова, встроенный в пружинный виброизолятор
RU2597928C2 (ru) Демпфер кочетова
RU2547203C1 (ru) Пружина кочетова со встроенным демпфером
RU2597702C2 (ru) Виброизолятор кочетова с сухим трением
RU2546379C1 (ru) Виброизолятор кочетова с сухим трением
RU2594259C1 (ru) Демпфер кочетова сухого трения
RU2546383C1 (ru) Виброизолятор сетчатый кочетова
RU2545271C1 (ru) Демпфер сухого трения кочетова
RU2597057C2 (ru) Вибродемпфирующая пружина кочетова
RU2594258C1 (ru) Пружинный виброизолятор с демпфером
RU2558766C1 (ru) Виброизолятор кочетова для сейсмических фундаментов зданий
RU2662353C1 (ru) Пространственный виброизолятор каркасного типа
RU2659122C2 (ru) Виброизолятор пружинный сетчатый кочетова
RU2548447C1 (ru) Шарнирно-рычажная система виброизоляции с резино-сетчатым демпфером
RU2546396C1 (ru) Виброизолирующая система кочетова
RU2650325C2 (ru) Вибродемпфирующая пружина
RU2661647C1 (ru) Пространственный виброизолятор каркасного типа
RU2546392C1 (ru) Пружинный виброизолятор с маятниковым подвесом
RU2565303C1 (ru) Виброизолятор для фундаментов зданий, работающих в сейсмически опасных районах
RU2657131C1 (ru) Виброизолятор с тарельчатыми пружинами
RU2672826C1 (ru) Двухкаскадный виброизолятор с динамическим гасителем
RU2636990C1 (ru) Виброизолирующая система кочетова с повышенным демпфированием
RU2652887C2 (ru) Виброизолятор кочетова для фундаментов зданий
RU2662342C1 (ru) Пространственный виброизолятор каркасного типа