RU2544482C1 - Способ определения направления и величины отклонения самолета от курса и глиссады и устройство для его реализации - Google Patents

Способ определения направления и величины отклонения самолета от курса и глиссады и устройство для его реализации Download PDF

Info

Publication number
RU2544482C1
RU2544482C1 RU2014103772/07A RU2014103772A RU2544482C1 RU 2544482 C1 RU2544482 C1 RU 2544482C1 RU 2014103772/07 A RU2014103772/07 A RU 2014103772/07A RU 2014103772 A RU2014103772 A RU 2014103772A RU 2544482 C1 RU2544482 C1 RU 2544482C1
Authority
RU
Russia
Prior art keywords
2vif
signals
glide path
input
frequency
Prior art date
Application number
RU2014103772/07A
Other languages
English (en)
Inventor
Виктор Леонидович Семенов
Original Assignee
Виктор Леонидович Семенов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виктор Леонидович Семенов filed Critical Виктор Леонидович Семенов
Priority to RU2014103772/07A priority Critical patent/RU2544482C1/ru
Application granted granted Critical
Publication of RU2544482C1 publication Critical patent/RU2544482C1/ru

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

Группа изобретений относится к системам посадки самолетов и может быть использована при реализации комплексов аэродромного обеспечения. Достигаемый технический результат - расширение ассортимента устройств посадки самолетов на аэродром, что достигается за счет использования РЛС, содержащей: четыре антенны (ППА), десять генераторов сигналов, по двенадцать смесителей и фильтров, по четыре усилителей мощности и частотомера, пять ЦАП, вычислитель коэффициента и по две схемы умножения и вычитания. При этом определяют направление и величину отклонения самолета от курса и глиссады, облучая его четырьмя ППА, установленными в начале ВПП аэродрома, в плоскости, перпендикулярной глиссаде, на окружности, на равном удалении по окружности друг от друга и от глиссады, с базовыми L расстояниями между диаметрально противоположными ППА1 и ППА2, устанавливаемыми перпендикулярно глиссаде, с базовыми L расстояниями между диаметрально противоположными ППА3 и ППА4, устанавливаемыми параллельно ВПП, которые излучают четыре непрерывных сигнала с частотной модуляцией по одностороннему пилообразно линейно-спадающему закону (НЛЧМ1 сигналы) с близкими частотами f1, f2, f3, f4 и одинаковыми частотой модуляции Fm и девиацией частоты dfm, которые после отражения от самолета принимаются ППА, и их перемножают с излученными НЛЧМ сигналами, и выделяют сигналы с частотами Fpi=2DiFmdfm/C+2Vif1/C, Fpj=2DjFmdfm/C+2Vif2/C, Fpz=2DzFmdfm/C+2Vif3/C, Fpx=2DxFmdfm/C+2Vif4/C, где C - скорость света, Di, Dj, Dz и Dx - расстояния между ППА и самолетом, имеющим скорость Vi, определяемую до получения этих сигналов, которые далее перемножают с сформированными заранее сигналами с частотами 2Vif1/C, 2Vif2/C, 2Vif3/C и 2Vif4/C и выделяют четыре сигнала с частотами F1pi=2DiFmdfm/C, Fp1j=DjFmdfm/C, Flpz=2DzFmdfm/C, F1px=DxFmdfm/C, а также вычисляют коэффициент Ki=Di/Dmin, где Dmin - минимально возможное расстояние от ППА до самолета, после чего вычисляют произведение двух разностей ±Ki(F1pi-Fp1j) и ±Ki(F1pz-F1px), величина и знак которых определяют величину и знак отклонения самолета от курса и глиссады. 2 н.п. ф-лы.

Description

Группа изобретений относится к системам посадки самолетов и может быть использована при реализации комплексов аэродромного обеспечения.
Общеизвестен способ определения курса и глиссады при посадке самолета с помощью аэродромной РЛС, например, РСП-7, две антенны которой все время вращаются в заданных секторах по азимуту и углу места. О РЛС с невращающимися антеннами и аналогичными функциями мало что известно.
Целью изобретения является расширение ассортимента устройств посадки самолетов на аэродром, что достигается за счет использования для определения величины отклонения самолета от курса и глиссады четырехчастотного дальномера.
При определении направления и величины отклонения самолета от курса и глиссады самолет облучают четырьмя приемо-передающими антеннами ППА1, ППА2, ППА3, ППА4, установленными в начале взлетно-посадочной полосы (ВПП) аэродрома, в плоскости, перпендикулярной глиссаде, на окружности, на равном удалении по окружности друг от друга и от глиссады, с базовыми L расстояниями между диаметрально противоположными ППА1 и ППА2, устанавливаемыми перпендикулярно глиссаде, с базовыми L расстояниями между диаметрально противоположными ППА3 и ППА4, устанавливаемыми параллельно ВПП, которые излучают в сторону приближающегося к ВПП самолета четыре непрерывных сигнала с частотной модуляцией по одностороннему пилообразно линейно-спадающему закону, соответственно, НЛЧМ1, НЛЧМ2, НЛЧМ3 и НЛЧМ4 сигналы с близкими частотами f1, f2, f3 и f4 соответственно у НЛЧМ1, НЛЧМ2, НЛЧМ3, НЛЧМ4 сигналов и одинаковыми у них частотой модуляции Fm и девиацией частоты dfm, которые после отражения от самолета принимаются, соответственно, ППА1, ППА2, ППА3, ППА4, и их перемножают с излученными, соответственно, НЛЧМ1, НЛЧМ2, НЛЧМ3, НЛЧМ4 сигналами, и выделяют сигналы с частотами, соответственно, Fpi=2DiFmdfm/C+2Vif1/C, Fpj=2DjFmdfm/C+2Vif2/C, Fpz=2DzFmdfm/C+2Vif3/C, Fpx=2DxFmdfm/C+2Vif4/C, где С - скорость света, Di, Dj, Dz и Dx - расстояния, соответственно, между ППА1, ППА2, ППА3, ППА4 и самолетом, приближающимся к аэродрому со скоростью Vi, которую определяют до получения сигналов с частотами Fpi, Fpj, Fpz и Fpx, которые далее перемножают, соответственно, с сформированными заранее сигналами с частотами 2Vif1/C, 2Vif2/C, 2Vif3/C и 2Vif4/C и выделяют четыре сигнала с частотами F1pi=2DiFmdfm/C, Fp1j=DjFmdfm/C, Flpz=2DzFmdfm/C, Flpx=2DxFmdfm/C, а также вычисляют коэффициент Ki=Di/Dmin=CF1pi/2FmdfmDmin, где Dmin - минимально возможное расстояние от ППА до самолета, когда еще есть необходимость в определении курса и глиссады, после чего вычисляют две разности со знаком, т.е. ±Δ1=F1pi-Fp1j и ±Δ2=F1pz-F1px, которые умножают на коэффициент Ki и получают два числа, т.е. ±Δ1Ki и ±Δ2Ki, величине и знаку которым соответствует величина и знак отклонения самолета от курса и глиссады.
Устройство определения направления и величины отклонения самолета от курса и глиссады выполнено в виде частотного радиолокатора, содержащего последовательно соединенные генератор импульсов, счетчик импульсов, первый цифроаналоговый преобразователь (ЦАП1), первый генератор непрерывных сигналов (Г1), выход которого подключен к входам смесителей (CM) CM5, СМ6, СМ7 и СМ8, а выход Г2 через последовательно соединенные второй вход CM5, пятый фильтр (Ф5), СМ1, Ф1 подключен к второму входу СМ9, выход Г3 через последовательно соединенные второй вход СМ6, Ф6, СМ2, Ф2 подключен к второму входу СМ10, выход Г4 через последовательно соединенные второй вход СМ7, Ф7, СМ3, Ф3 подключен к второму входу СМИ, выход Г5 через последовательно соединенные второй вход СМ8, Ф8, СМ4, Ф4 подключен к второму входу СМ12, а также выходы Ф5, Ф6, Ф7 и Ф8, соответственно, через усилители мощности (УМ) УМ1, УМ2, УМ3, УМ4 подключены к входам, соответственно, ППА1, ППА2, ППА3, ППА4, работающим на передачу, а входы ППА1, ППА2, ППА3, ППА4, работающие на прием, подключены к вторым входам, соответственно, СМ1, СМ2, СМ3, СМ4 и, кроме того, выход Ф1 подключен к входу определителя скорости посадки самолета, выходы которого подключены к входам ЦАП2, ЦАП3, ЦАП4 и ЦАП5, входы опорных напряжений которых подключены, соответственно, к выходам первого блока опорного напряжения (БОН1), БОН2, БОН3 и БОН4, выход ЦАП2 через последовательно соединенные Г6, СМ9, Ф9, первый частотомер (Ч1) подключен к первой схеме вычитания и вычислителю коэффициента, выход ЦАП3 через последовательно соединенные Г7, СМ10, Ф10, Ч2 подключен к второму входу первой схемы вычитания, выход ЦАП5 через последовательно соединенные Г8, СМ11, Ф11, Ч3 подключен к второй схеме вычитания, выход ЦАП4 через последовательно соединенные Г9, СМ12, Ф12, Ч4 подключен к второму входу второй схемы вычитания, выходы первой и второй схем вычитания, соответственно, через первую и вторую схемы умножения подключены к первой и второй выходным шинам, а вторые входы первой и второй схем умножения подключены к выходу вычислителя коэффициента.
Рассмотрим, в том числе на примерах, работу устройства определения направления и величины отклонения самолета от курса и глиссады.
Установим ППА1, ППА2, ППА3 и ППА4 в начале ВПП аэродрома, в плоскости, перпендикулярной глиссаде, на окружности, на равном удалении по окружности друг от друга и от глиссады, с базовыми L=2 м расстояниями между диаметрально противоположными ППА1 и ППА2, устанавливаемыми перпендикулярно глиссаде, с базовыми L=2 м расстояниями между диаметрально противоположными ППА3 и ППА4, устанавливаемыми параллельно ВПП, которые излучают в сторону приближающегося к ВПП самолета, соответственно, НЛЧМ1, НЛЧМ2, НЛЧМ3 и НЛЧМ4 сигналы, с близкими частотами f1=1, f2=1,1, f3=1,2 и f4=1,3 ГГц соответственно у НЛЧМ1, НЛЧМ2, НЛЧМ3, НЛЧМ4 сигналов и одинаковыми у них частотой модуляции Fm=5 кГц и девиацией частоты dfm=5,1 МГц, формируемые на четырехчастотном радиолокаторе (ЧЧР), в котором счетчик импульсов все время подсчитывает импульсы генератора импульсов. При этом на выходе ЦАП1 формируется пилообразное напряжение с частотой повторения Fm=5 кГц, которое подают на варикап Г1. При этом на выходе Г1 формируется сигнал частотой f и девиацией частоты dfm=5,1 МГц, который поступает на первые входы СМ5, СМ6, СМ7 и СМ8, на вторые входы которых подают с Г2, Г3, Г4 и Г5, соответственно, сигналы частотой fx, fz, fy и fr. При этом на выходах СМ5, СМ6, СМ7 и СМ8 и соответственно Ф5, Ф6, Ф7 и Ф8 формируются сигналы частотой f1=f-fx=1, f2=f-fz=1,1, f3=f-fy=1,2 и f4=f-fr=1,3 ГГц, которые, соответственно, УМ1, УМ2, УМ3 и УМ4 усиливаются и через, соответственно, ППА1, ППА2, ППА3 и ППА4 передаются в сторону самолета. Отраженные от самолета НЛЧМ1, НЛЧМ2, НЛЧМ3 и НЛЧМ4 сигналы принимаются ППА1, ППА2, ППА3 и ППА4, перемножаются в СМ1, СМ2, СМ3 и СМ4 с излученными НЛЧМ1, НЛЧМ2, НЛЧМ3 и НЛЧМ4 сигналами, подводимыми к вторым входам, соответственно, СМ1, СМ2, СМ3 и СМ4 с выходов, соответственно, Ф5, Ф6, Ф7 и Ф8. После перемножения НЛЧМ сигналов на выходах СМ1, СМ2, СМ3 и СМ4 и соответственно выходах Ф1, Ф2, Ф3, Ф4 формируются сигналы с частотами, соответственно, Fpi=2DiFmdfm/C+2Vif1/C, Fpj=2DjFmdfm/C+2Vf2/C, Fpz=2DzFmdfm/C+2Vif3/C, Fpx=2DxFmdfm/C+2Vif4/C.
Следует отметить, что до момента обнаружения самолета измеряют его посадочную скорость Vi, вычисляя при, например, выбранных Vo=15 м/с и До=Vof1/Fmdfm выражение Vi=4До/t, где [см. заявку РФ №2012148956/07 (078599)] До - выбираемый базовый интервал расстояния, Vo - минимально возможная посадочная скорость самолета, t - измеряемое время пролета самолетом расстояния 4До. Для чего в известной РЛС излучаемый НЛЧМ сигнал не задерживают и в обнаружителе сигналов узкополосного спектра частот [см. там же] выбирают соответствующий опорный сигнал, что позволяет измерить Vi на удалениях больших длины глиссады.
Очевидно, что если значение Vi, например, в цифровой форме подать на входы ЦАП2, ЦАП3, ЦАП4 и ЦАП5, на ЦАПы, имеющие разные опорные напряжения, то под действием на варикапы Г6, Г7, Г8 и Г9 напряжений с их выходов можно установить эти генераторы в состояние генерации ими сигналов, соответственно, частотой 2Vif1/C, 2Vif2/C, 2Vif3/C и 2Vif4/C и далее их в СМ9, СМ10, СМ11 и СМ12 перемножить с сигналами, сформированными на выходах Ф1, Ф2, Ф3 и Ф4, с целью выделения фильтрами Ф9, Ф10, Ф11 и Ф12 четырех разностных сигналов с частотами Flpi=2DiFmdfm/C, Fp1j=2DjFmdfm/C, F1pz=2DzFmdfm/C, F1px=2DxFmdfm/C.
Пусть, между ППА1, ППА2, ППА3 и ППА4 и самолетом будут, например, минимально возможные для отслеживания курсовых и глиссадных рассогласований расстояния, соответственно, D1=15 м, D2=√152 м+L2=15,1327 м,
D3=√152+(L2/2)=15,067 м и D4=15,067 м, т.е. самолет летит прямо только на ППА1, выше на 1 м глиссады и точно по курсу. Тогда фильтры Ф9, Ф10, Ф11 и Ф12 выделят и частотомеры Ч1, Ч2, Ч3 и Ч4 вычислят, соответственно, частоты:
F1p1=20[(15 м)(5 кГц)(5,1 МГц)]/(3×108 м/с)=2550 Гц,
F1p2=20[(15,1327 м=√152+22)(5 кГц)(5,1 МГц)]/(3×108 м/с)=2572,567 Гц,
F1p3=20[(15,067 м=√152+2)(5 кГц)(5,1 МГц)]/(3×108 м/с)=2561,308 Гц,
F1p4=20[(15,067 м=√152+2)(5 кГц)(5,1 МГц)]/(3×108 м/с)=2561,308 Гц.
После чего и при, например, Dmin=15 м вычислителем коэффициента вычисляют коэффициент K1=D1/Dmin=15 м/15 м=1, а первой и второй схемами вычитания вычисляют две разности со знаком, т.е. Δ1=F1p1-F1p2=-22,567 и Δ2=F1p3-F1p4=0, которые в первой и второй схемах умножения умножают на коэффициент K1 и получают K1Δ1=-22,567 и K1Δ2=+0, т.е. два числа со знаками, величине и знаку которых соответствует величина и знак отклонения самолета от курса и глиссады (в данном случае на 1 м выше глиссады и точно по курсу).
Пусть, между ППА1, ППА2, ППА3 и ППА4 и самолетом будут, например, максимально возможные для отслеживания курсовых и глиссадных рассогласований расстояния, соответственно, 1500 м, √15002 м+L2=1500,001333 м, √15002+(L2/2)=1500,00067 м и 1500,00067 м, т.е. самолет летит прямо только на ППА1, выше на 1 м глиссады и точно по курсу. Тогда фильтрами Ф9, Ф10, Ф11, Ф12 будут выделены и частотомерами Ч1, Ч2, Ч3, Ч4 вычислены, соответственно, частоты
F1p5=20[(1500 м)(5 кГц)(5,1 МГц)]/(3×108 м/с)=255000 Гц,
Flp6=20[(1500,001333=√152+22)(5 кГц)(5,1 МГц)]/(3×108 м/с)=255000,2266 Гц,
Flp7=20[(1500,00067=√152+2)(5 кГц)(5,1 МГц)]/(3×108 м/с)=255000,1139 Гц,
Flp8=20[(1500,00067=√152+2)(5 кГц)(5,1 МГц)]/(3×108 м/с)=255000,1139 Гц.
После чего вычисляют коэффициент K2=1500/15=100 и две разности со знаком, т.е. Δ3=Flp1-Flp2=-0,2266 и Δ4=Flp3-Flp4=0, которые умножают на коэффициент K2, т.е. K2Δ3=-22,566 и K2Δ4=+0, и получают два числа, величине и знаку которых соответствует величина и знак отклонения самолета от курса и глиссады (на 1 м выше глиссады и точно по курсу).
Пусть, между ППА1, ППА2, ППА3 и ППА4 и самолетом будет, соответственно, √15002+92=1500,027, √15002+112=1500,040, Е м. и Е м., т.е. самолет летит точно по курсу и выше на 10 м глиссады. Тогда фильтрами Ф9, Ф10, Ф11, Ф12 будут выделены и частотомерами Ч1, Ч2, Ч3, Ч4 вычислены, соответственно, частоты
Flp9=20[(1500,027 м)(5 кГц)(5,1 МГц)]/(3×108 м/с)=255004,59 Гц,
F1p10=20[(1500,040 м)(5 кГц)(5,1 МГц)/(3×108 м/с)=255006,8 Гц
и F1p11=F1p12
После чего вычисляют коэффициент K3=1500,027/15=100 и две разности со знаком, т.е. Δ5=Flp9-Flp10=-2,21 и Δ6=Flp11-Flp12=0, которые умножают на коэффициент K3, т.е. K3Δ5=-221 и K3Δ6=+0, и получают два числа, величине и знаку которых соответствует величина и знак отклонения самолета от курса и глиссады (точно по курсу и на 10 м выше глиссады, так как K3Δ5 больше K2Δ3 или K1Δ1 почти в 10 раз).

Claims (2)

1. Способ определения направления и величины отклонения самолета от курса и глиссады, заключающийся в облучении самолета электромагнитной энергией, отличающийся тем, что самолет облучают четырьмя приемо-передающими антеннами ППА1, ППА2, ППА3, ППА4, установленными в начале взлетно-посадочной полосы (ВПП) аэродрома, в плоскости, перпендикулярной глиссаде, на окружности, на равном удалении по окружности друг от друга и от глиссады, с базовыми L расстояниями между диаметрально противоположными ППА1 и ППА2, устанавливаемыми перпендикулярно глиссаде, с базовыми L расстояниями между диаметрально противоположными ППА3 и ППА4, устанавливаемыми параллельно ВПП, которые излучают в сторону приближающегося к ВПП самолета четыре непрерывных сигнала с частотной модуляцией по одностороннему пилообразно линейно-спадающему закону, соответственно, НЛЧМ1, НЛЧМ2, НЛЧМ3 и НЛЧМ4 сигналы, с близкими частотами f1, f2, f3 и f4 соответственно у НЛЧМ1, НЛЧМ2, НЛЧМ3, НЛЧМ4 сигналов и одинаковыми у них частотой модуляции Fm и девиацией частоты dfm, которые после отражения от самолета принимаются, соответственно, ППА1, ППА2, ППА3, ППА4, и их перемножают с излучаемыми, соответственно, НЛЧМ1, НЛЧМ2, НЛЧМ3, НЛЧМ4 сигналами и выделяют сигналы с частотами, соответственно, Fpi=2DiFmdfm/C+2Vif1/C, Fpj=2DjFmdfm/C+2Vif2/C, Fpz=2DzFmdfm/C+2Vif3/C, Fpx=2DxFmdfm/C+2Vif4/C, где С - скорость света, Di, Dj, Dz и Dx - расстояния, соответственно, между ППА1, ППА2, ППА3, ППА4 и самолетом, приближающимся к аэродрому со скоростью Vi, которую определяют до получения сигналов с частотами Fpi, Fpj, Fpz и Fpx, которые далее перемножают, соответственно, с сформированными заранее сигналами с частотами 2Vif1/C, 2Vif2/C, 2Vif3/C и 2Vif4/C, и выделяют четыре сигнала с частотами F1pi=2DiFmdfm/C, Fp1j=DjFmdfm/C, F1pz=2DzFmdfm/C, F1px=DxFmdfm/C, a также вычисляют коэффициент Кi=Di/Dmin=CF1pi/2FmdfmDmin, где Dmin - минимально возможное расстояние от ППА до самолета, когда еще есть необходимость в определении курса и глиссады, после чего вычисляют две разности со знаком, т.е. ±Δ1=F1pi-Fp1j и ±Δ2=F1pz-F1px, которые умножают на коэффициент Кi и получают два числа, т.е. ±Δ1Кi и ±Δ2Кi, величине и знаку которых соответствует величина и знак отклонения самолета от курса и глиссады.
2. Устройство определения направления и величины отклонения самолета от курса и глиссады, содержащее частотный радиолокатор, отличающееся тем, что частотный радиолокатор содержит последовательно соединенные генератор импульсов, счетчик импульсов, первый цифроаналоговый преобразователь (ЦАП1), первый генератор непрерывных сигналов (Г1), выход которого подключен к входам смесителей (СМ) СМ5, СМ6, СМ7 и СМ8, а выход Г2 через последовательно соединенные второй вход СМ5, пятый фильтр (Ф5), СМ1, Ф1 подключен к второму входу СМ9, выход Г3 через последовательно соединенные второй вход СМ6, Ф6, СМ2, Ф2 подключен к второму входу СМ10, выход Г4 через последовательно соединенные второй вход СМ7, Ф7, СМ3, Ф3 подключен к второму входу СМИ, выход Г5 через последовательно соединенные второй вход СМ8, Ф8, СМ4, Ф4 подключен к второму входу СМ12, а также выходы Ф5, Ф6, Ф7 и Ф8, соответственно, через усилители мощности (УМ) УМ1, УМ2, УМ3, УМ4 подключены к входам, соответственно, ППА1, ППА2, ППА3, ППА4, работающим на передачу, а входы ППА1, ППА2, ППА3, ППА4, работающие на прием, подключены к вторым входам, соответственно, СМ1, СМ2, СМ3, СМ4 и, кроме того, выход Ф1 подключен к входу определителя скорости посадки самолета, выходы которого подключены к входам ЦАП2, ЦАП3, ЦАП4 и ЦАП5, входы опорных напряжений которых подключены, соответственно, к выходам первого блока опорного напряжения (БОН1), БОН2, БОН3 и БОН4, выходы ЦАП2 через последовательно соединенные Г6, СМ9, Ф9, первый частотомер (Ч1) подключен к первой схеме вычитания и вычислителю коэффициента, выходы ЦАП3 через последовательно соединенные Г7, СМ10, Ф10, 42 подключен к второму входу первой схемы вычитания, выходы ЦАП4 через последовательно соединенные Г8, СМ11, Ф11, Ч3 подключен к второй схеме вычитания, выходы ЦАП5 через последовательно соединенные Г9, СМ12, Ф12, Ч4 подключен к второму входу второй схемы вычитания, выходы первой и второй схем вычитания, соответственно, через первую и вторую схемы умножения подключены к первой и второй выходным шинам, а вторые входы первой и второй схем умножения подключены к выходу вычислителя коэффициента.
RU2014103772/07A 2014-02-04 2014-02-04 Способ определения направления и величины отклонения самолета от курса и глиссады и устройство для его реализации RU2544482C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014103772/07A RU2544482C1 (ru) 2014-02-04 2014-02-04 Способ определения направления и величины отклонения самолета от курса и глиссады и устройство для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014103772/07A RU2544482C1 (ru) 2014-02-04 2014-02-04 Способ определения направления и величины отклонения самолета от курса и глиссады и устройство для его реализации

Publications (1)

Publication Number Publication Date
RU2544482C1 true RU2544482C1 (ru) 2015-03-20

Family

ID=53290593

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014103772/07A RU2544482C1 (ru) 2014-02-04 2014-02-04 Способ определения направления и величины отклонения самолета от курса и глиссады и устройство для его реализации

Country Status (1)

Country Link
RU (1) RU2544482C1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2148537C1 (ru) * 1999-12-07 2000-05-10 Малышев Геннадий Викторович Способ полета ракетоплана
US6119055A (en) * 1998-01-23 2000-09-12 Mcdonnell Douglas Corporation Real time imaging system and method for use in aiding a landing operation of an aircraft in obscured weather conditions
RU2303796C1 (ru) * 2006-01-26 2007-07-27 Владимир Тарасович Артемов Способ автономного формирования посадочной информации для летательного аппарата и бортовой радиолокатор для его осуществления (варианты)
US7416566B2 (en) * 2005-09-30 2008-08-26 Kirin Cosmetics Co., Ltd. Dyeing composition for hair
WO2012055663A2 (en) * 2010-10-26 2012-05-03 Airbus Operations Gmbh A method and an arrangement for purposes of determining an incidence of loading of an aircraft structure
RU2492495C2 (ru) * 2011-07-21 2013-09-10 Виктор Леонидович Семенов Способы определения знака и величины отклонения самолета от курса и глиссады на конечном этапе его посадки на аэродром и устройства для их осуществления
RU2496131C1 (ru) * 2012-07-10 2013-10-20 Открытое акционерное общество "Раменское приборостроительное конструкторское бюро" (ОАО "РПКБ") Способ управления летательным аппаратом при заходе на посадку
JP5321144B2 (ja) * 2009-03-03 2013-10-23 日本電気株式会社 航空機管制システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119055A (en) * 1998-01-23 2000-09-12 Mcdonnell Douglas Corporation Real time imaging system and method for use in aiding a landing operation of an aircraft in obscured weather conditions
RU2148537C1 (ru) * 1999-12-07 2000-05-10 Малышев Геннадий Викторович Способ полета ракетоплана
US7416566B2 (en) * 2005-09-30 2008-08-26 Kirin Cosmetics Co., Ltd. Dyeing composition for hair
RU2303796C1 (ru) * 2006-01-26 2007-07-27 Владимир Тарасович Артемов Способ автономного формирования посадочной информации для летательного аппарата и бортовой радиолокатор для его осуществления (варианты)
JP5321144B2 (ja) * 2009-03-03 2013-10-23 日本電気株式会社 航空機管制システム
WO2012055663A2 (en) * 2010-10-26 2012-05-03 Airbus Operations Gmbh A method and an arrangement for purposes of determining an incidence of loading of an aircraft structure
RU2492495C2 (ru) * 2011-07-21 2013-09-10 Виктор Леонидович Семенов Способы определения знака и величины отклонения самолета от курса и глиссады на конечном этапе его посадки на аэродром и устройства для их осуществления
RU2496131C1 (ru) * 2012-07-10 2013-10-20 Открытое акционерное общество "Раменское приборостроительное конструкторское бюро" (ОАО "РПКБ") Способ управления летательным аппаратом при заходе на посадку

Similar Documents

Publication Publication Date Title
Yao et al. Demonstration of ultra-high-resolution photonics-based Kaband inverse synthetic aperture radar imaging
JP2016099143A (ja) Fmcwレーダ装置およびfmcwレーダ用信号処理方法
RU2564385C1 (ru) Способ обнаружения, определения координат и сопровождения воздушных объектов
RU2544482C1 (ru) Способ определения направления и величины отклонения самолета от курса и глиссады и устройство для его реализации
RU157114U1 (ru) Приемопередающий модуль бортовой цифровой антенной решетки
US3254341A (en) Systems for calculating the coordinates of a point at the surface of the earth
RU2516432C2 (ru) Способ определения местоположения источника радиоизлучения
US20220252697A1 (en) Radar device
RU2485537C2 (ru) Способ посадки самолета по курсу или глиссаде на аэродром и устройства для его реализации, рлс определения знака отклонения цели от равносигнального направления
CN108259090A (zh) 一种基于数字逻辑运算的射频任意波形光生成方法及系统
RU2608551C1 (ru) Способ функционирования импульсно-доплеровской бортовой радиолокационной станции при обнаружении воздушной цели - носителя станции радиотехнической разведки
RU2548385C1 (ru) Способы определения местоположения астероида относительно точки земли и устройства для их реализации. цифровая карта околоземного пространства
US3229286A (en) Fm cw distance measuring system
RU2632478C1 (ru) Имитатор радиоэлектронной цели
Wang et al. A flexible, efficient and low-cost experimental platform for FMCW radars
RU2608748C1 (ru) Способ измерения скорости полёта воздушного объекта и РЛС для его осуществления
RU2560259C1 (ru) Способ наведения оружия и ракеты на цель и устройство для его реализации
RU2697257C1 (ru) Способ функционирования радиолокационной системы при измерении скорости полёта беспилотного летательного аппарата малого класса типа мультикоптер и дальности до него
RU2011130240A (ru) Способ определения знака и величины отклонения самолета от курса или глиссады на конечном этапе его посадки на аэродром, применение устройства формирования команды на пуск защитного боеприпаса в качестве датчика знака и величины отклонения самолета от курса или глиссады
RU2662727C2 (ru) Сверхвысокочастотное приемо-передающее устройство
RU152358U1 (ru) Бортовая радиолокационная станция
RU153587U1 (ru) Имитатор сигналов брлс
RU2687071C1 (ru) Имитатор пространственного радиолокационного сигнала
US20170261598A1 (en) Filter apparatus and target detection apparatus
Garnov et al. A Direct Experiment on the Passage of Ultra-Wideband Pulses of Subnanosecond Duration in the Earth’s Atmosphere