RU2542912C2 - Способ получения интерметаллического антиэмиссионного покрытия на сеточных электродах генераторных ламп - Google Patents

Способ получения интерметаллического антиэмиссионного покрытия на сеточных электродах генераторных ламп Download PDF

Info

Publication number
RU2542912C2
RU2542912C2 RU2013133581/02A RU2013133581A RU2542912C2 RU 2542912 C2 RU2542912 C2 RU 2542912C2 RU 2013133581/02 A RU2013133581/02 A RU 2013133581/02A RU 2013133581 A RU2013133581 A RU 2013133581A RU 2542912 C2 RU2542912 C2 RU 2542912C2
Authority
RU
Russia
Prior art keywords
zirconium
carbide
layer
vacuum
net
Prior art date
Application number
RU2013133581/02A
Other languages
English (en)
Other versions
RU2013133581A (ru
Inventor
Юрий Александрович Быстров
Александр Аркадьевич Лисенков
Сергей Александрович Трифонов
Дарья Андреевна Чухлеб
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)"
Priority to RU2013133581/02A priority Critical patent/RU2542912C2/ru
Publication of RU2013133581A publication Critical patent/RU2013133581A/ru
Application granted granted Critical
Publication of RU2542912C2 publication Critical patent/RU2542912C2/ru

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Изобретение относится к области изготовления электровакуумных приборов, в частности к способу получения интерметаллического антиэмиссионного покрытия Pt3Zr на сеточных электродах генераторных ламп, и может быть использовано для получения интерметаллических антиэмиссионных покрытий на сеточных электродах генераторных ламп. Последовательно формируют слои карбида материала сетки распылением графитового катода катодным пятном вакуумно-дугового разряда. Наносят карбид циркония и поверхностный слой платины. Осуществляют отжиг сеточного электрода в вакууме. Наносят из потока металлической плазмы вакуумно-дугового разряда слой циркония. Использование в процессе получения антиэмиссионного покрытия предварительно сформированного слоя карбида материала сеточного электрода позволяет создать барьерный слой для диффузии платины в керн материала сетки, а использование переходного слоя циркония обеспечивает модифицирование поверхности и получение на границе раздела поверхностей новой комбинированной фазы (Mo-C-Zr), являющейся дополнительным барьерным слоем для диффузии материалов. Кроме этого на этапе получения интерметаллического соединения свободный цирконий связывает освобождающийся углерод с образованием карбида циркония (ZrC), который выполняет функции барьерного слоя. 2 ил., 1 табл.

Description

Изобретение относится к области изготовления электровакуумных приборов и может быть использовано для получения интерметаллических антиэмиссионных покрытий на сеточных электродах генераторных ламп.
К сеточным электродам генераторных ламп, как к элементам, определяющим параметры и характеристики электронных приборов, предъявляются высокие требования, выполнение которых определяет качество выпускаемой продукции. Сетка представляет собой сложную решетчатую конструкцию с определенной степенью прозрачности. Выбор материала сеточных электродов определяется условиями их работы и особенностями конструкции прибора. В процессе работы сеточные узлы, располагающиеся в зоне электронного потока, должны обеспечивать высокое тепловое рассеивание, сохранять свои геометрические характеристики и обладать малым коэффициентом вторичной эмиссии.
Для большинства типов мощных генераторных приборов установленная норма паразитной термоэлектронной эмиссии составляет 10-5 А/см2. Уменьшение эмиссии сеточных электродов может быть обеспечено максимальным снижением их рабочей температуры или достижением возможно большей работы выхода с поверхности. Конструктивные решения, снижающие температуру сеток, такие как, например, увеличение их рабочей поверхности или увеличение расстояния между сеткой и катодом, как правило, не приемлемы, т.к. приводят к снижению таких технических характеристик ламп, как крутизна, увеличению межэлектродных емкостей, габаритов и массы.
Наиболее эффективным в этом случае является использование при изготовлении сеточных электродов материалов и покрытий, обладающих высокими значениями интегрального коэффициента излучения и работы выхода, и представляющих сложную систему многослойных структур, состоящую из сплавов или химических соединений. Данная проблема становится весьма актуальной при создании мощных генераторных ламп, использующих перенапряженные режимы работы и высокие удельные мощности рассеивания на сетках до 20 Вт/см и более, при соответствующем повышении рабочей температуры сеток.
Различные типы антиэмиссионых покрытий в зависимости от типа прибора (уровень выходной мощности, тип катода) рассмотрены в [Современные технологические процессы в производстве мощных генераторных ламп / В.Т. Барченко, А.А. Лисенков, В.С. Прилуцкий и др.; под ред. Ю.А. Быстрова. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2009. 213 с.].
Рассматривая антиэмиссионные покрытия, нельзя обойти вниманием возможность использования углеграфитовых материалов [Лисенков А.А., Ветров Н.З., Радциг Н.М. Применение углеродосодержащих покрытий в производстве генераторных ламп. Вакуумная техника и технология. 2001. Т.11. №4. С.167-170], роль которых в настоящее время не только не уменьшается, но вызывает все возрастающий интерес из-за уникального сочетания физико-механических, электрических и химических свойств.
Показано, что при осаждении в вакууме на тугоплавкую подложку (Mo, W) слоя углерода при последующем отжиге удается получать различные структурные модификации приповерхностного слоя [Галль Н.Р., Рутьков Е.В., Тонтегоде А.Я. Диффузия углерода между объемом и поверхностью (100) молибдена // ЖТФ. 2002. Т. 72. Вып. 4. С.113-119], [Потехина Н.Д., Галль Н.Р., Рутьков Е.В., Тонтегоде А.Я. Особенности сегрегации углерода на поверхности вольфрама // ЖТФ. 2003. Т. 45. Вып. 4. С.742-747].
Наиболее близким к заявляемому способу по совокупности признаков является способ получения антиэмиссионного покрытия на сеточных электродах мощных генераторных ламп, изложенный в [Быстров Ю.А., Ветров И.З., Лисенков А.А. и др. Способ получения интерметаллического антиэмиссионного покрытия. Патент РФ №2261940. C23C 28/00, C23C 14/24, C23C 14/58, H01J 1/48, H01J 19/30 №2004114090, заявл. 30.04.2004, БИ №28. 2005].
В этом способе, принятом авторами за прототип, для получения антиэмиссионного покрытия используют вакуумно-дуговые источники плазмы. Данный тип испарителей позволяет как интенсифицировать процесс нанесения покрытий, так и обеспечить высокую их чистоту и хорошую адгезию. Особенностью данной технологии является возможность получения не только чистых материалов, но и осуществление плазмохимического синтеза соединений, для чего в генерируемый плазменный поток вводится реакционно-способный газ.
В этом случае способ получения интерметаллического антиэмиссионного покрытия Pt3Zr на сетках мощных генераторных ламп состоит из следующих последовательно выполняемых операций: формирование поверхностного слоя карбида материала сетки, нанесение из плазмы вакуумно-дугового разряда на сеточное полотно слоя карбида циркония, гальваническое осаждение платины и отжиг сеточного электрода в вакууме.
Реализация данного технологического процесса осложняется тем, что сеточный электрод часто изготовляется из различных материалов (Mo, W, Ni) и для получения карбидного слоя применяются различные способы карбидирования, что в целом затрудняет технологический процесс изготовления.
Кроме этого эксплуатация антиэмиссионных покрытий показала, что в процессе работы использование покрытия предложенного состава не предотвращает встречной диффузии материалов.
Техническим результатом заявляемого изобретения является создание многокомпонентного барьерного слоя, обеспечивающего снижение скорости встречной диффузии металлов, повышение эксплуатационных свойств приборов и упрощение технологии их изготовления.
Указанный технический результат достигается за счет того, что в способе получения интерметаллического антиэмиссионного покрытия Pt3Zr на сеточных электродах генераторных ламп, включающего формирование слоев карбида материала сеточного электрода, карбида циркония и поверхностного слоя платины и последующий отжиг сеточного электрода с нанесенным покрытием в вакууме, сначала осуществляют распыление графитового катода катодным пятном вакуумно-дугового разряда с образованием карбида материала сетки и углеродного слоя, затем из потока металлической плазмы вакуумно-дугового разряда напыляют цирконий с образованием комбинированной системы слоев, состоящей из циркония и карбида циркония, а также карбида циркония, после чего на подготовленную подложку гальванически наносят слой платины.
Предлагаемое решение позволяет за один технологический цикл получить:
- при распылении графитового катода катодным пятном вакуумно-дугового разряда - подслой объемного карбида материала подложки (МеподлС);
- а применяя высокотехнологичный процесса нанесения покрытия из металлической плазмы вакуумно-дугового разряда при высокой температуре сеточного электрода - переходный слой циркония (Zr).
Использование в процессе получения антиэмиссионного покрытия предварительно сформированного слоя карбида материала (МеподлС) сеточного электрода позволяет:
- создать барьерный слой для диффузии платины в керн материала сетки;
а использование переходного слоя циркония (Zr) обеспечивает:
- модифицирование поверхности и получение на границе раздела поверхностей новой комбинированной фазы (Mo-C-Zr), являющейся дополнительным барьерным слоем для диффузии материалов;
- получение более качественного покрытия ZrC и высококачественного интерметаллического соединения Pt3Zr.
Кроме этого на этапе получения интерметаллического соединения свободный цирконий связывает освобождающийся углерод с образованием карбида циркония (ZrC), который выполняет функции барьерного слоя.
Изобретение поясняется таблицей 1, отображающей последовательность технологических операций формирования покрытия, и графическими материалами:
Фиг. 1. Дифрактограммы, характеризующие качество карбидного слоя материала сеточного электрода (а); покрытия карбида циркония (б).
Фиг. 2. Структура сформированного антиэмиссионного покрытия.
Особенностью ионно-плазменных технологических процессов является наличие в плазменном потоке частиц с высокой энергией, что позволяет при условии их взаимодействия с поверхностью твердого тела, не изменяя объемных свойств материала, модифицировать его структурный и фазовый состав.
Для решения поставленной задачи использовалась установка вакуумно-дугового напыления с двумя источниками плазмы: с графитовым и циркониевым катодами. Графитовый катод (высокопрочный графит МПГ-6, изготовленный методом «холодного» прессования) крепился на торце водоохлаждаемого титанового основания. Специфика формируемых покрытий на основе углерода такова, что в зависимости от условий и методов их получения, они существенно различаются как по составу, так и по структуре, что определяется состоянием обрабатываемого металла и удельной долей атомов углерода, вступающих в химическую реакцию и определяющих конфигурацию соединения.
Толщина сформированного покрытия определялась с помощью эллипсометрического лазерного микроскопа и путем получения шлифов. Микротопография тонких пленок осуществлялась с помощью сканирующего атомно-силового микроскопа. Фазовый состав образцов исследовался методом рентгенофазового анализа на рентгеновском дифрактометре ДРОН-3 в фильтрованном излучении Cu-Κα в интервале углов 2Θ от 20 до 150°. Рентгенограммы расшифровывались по картотеке ASTM.
Для определения компонентов, входящих в состав плазменного потока, использовался эмиссионный спектральный анализатор на базе модернизированной одномерной ПЗС-линейки TCD 1304. Излучение изучалось в диапазоне длин волн 220...950 nm с разрешением 1.5 nm. В качестве эталона использовался спектр излучения ртутно-кварцевой ламы низкого давления.
При распылении графита катодным пятном вакуумно-дугового разряда (Iраз=80 А, p=7.8·10-3 Ра) в плазменном потоке фиксировались положительно заряженные (CII, CIII), возбужденные и нейтральные частицы углерода, а также молекулы, углеродные конгломераты материала и сложные частицы, образовавшиеся в результате соединения нескольких частиц.
Введение в рабочий объем аргона (Ar) или гелия (Не) способствовало повышению степени ионизации плазменного потока, при этом в спектре излучения наблюдались интенсивные линии в длинноволновой области.
Модифицирование поверхности материала подложки достигалось за счет согласования следующих физических процессов: распыление графитового катода катодным пятном вакуумно-дугового разряда, формирование, транспортировка и выделение заряженной компоненты плазменного потока, ускорение и осаждение положительных ионов углерода на тугоплавкую основу (температура подложки варьировалась от 300 до 900 K).
При условии равновесия поступления заряженных частиц углерода (dNC/dt) на обрабатываемую поверхность с процессом переноса вещества в глубь подложки (dNдиф//dt) для многокомпонентных систем выгодным оказывается сосуществование не элементов, а химических соединений. В этом случае одновременно с насыщением поверхностного слоя углеродом (диаметры атомов углерода и молибдена соответственно равны 0,15 нм и 0,28 нм) на подложке протекает реакция образования объемного карбидного соединения:
Figure 00000001
(Табл. 1, операция 1).
Figure 00000002
Растворимость углерода в молибдене в интервале температур 300…1070 K определяется примерно как 0.3% по массе, а при температуре выше 1770 K резко увеличивается. Поэтому дальнейшее проникновение углерода в приповерхностную область сопровождается образованием в ней объемного карбида молибдена (Мо2С). Карбид обладает решеткой гексагональной структуры Bh, а из зафиксированных на дифрактограммах линий следует отметить присутствие линий: [101], [100] и [002], а также [102], [110] и [103] (Фиг. 1, а). Толщина формируемого карбида определяется температурой подложки и энергией частиц и составляет 7…10 мкм (Табл. 1, операция 1). При увеличении времени обработки или при увеличении притока заряженных частиц углерода (dNC/dt>dNдиф/dt) на поверхности подложки формируется слой углеродного покрытия.
После формирования подслоя карбида молибдена на подложку толщиной до 3 мкм напыляется переходный слой циркония (Табл. 1, операция 2). В этом случае за счет высокоэнергетичных ионов циркония (ZrII, ZrIII) и одновременной диффузии атомов, осаждающихся на границе поверхностного раздела (МоС-Zr), происходит образование новой комбинированной фазы (MoC-C-Zr) (Табл. 1, процесс 2), сопровождающееся появлением зерновой структуры.
Изменение кристаллической модификации определяется различными коэффициентами диффузии в разных направлениях кристаллографических осей для одной решетки. При этом наблюдается постепенное формирование конкурирующих между собой разных кристаллических решеток новой фазы.
Процесс образования на поверхности карбидной фазы (ZrC) с минимальным содержанием углерода сопровождается уменьшением доли объемного карбида (Mo2C) в молибденовом основании. Реакция образования ZrC во всем интервале температур термодинамически более выгодна, т.к. коэффициент диффузии Zr из ZrC в молибден на несколько порядков ниже, чем коэффициент диффузии циркония и самого молибдена в молибдене, что указывает о стабильности соединения ZrC.
Формирование промежуточного слоя (MoC-C-ZrC-Zr) с согласованными свойствами покрытия и подложки снижает напряжения, увеличивает прочность сцепления и является основой для синтеза из потока металлической плазмы вакуумно-дугового разряда в среде углеродосодержащего газа (С6Н6) покрытия карбида циркония (ZrC) (Табл. 1, операция 3). Покрытие толщиной до 7 мкм имеет хорошо сформированную кристаллическую структуру с преимущественной ориентацией [111] - 2.712 Å (Фиг. 1, б). На дифрактограммах отмечались все линии максимальной интенсивности, из которых следует также отметить: [200] - 2.3361 Å, [220] - 1.6545 Å и [311] - 1.409 Å.
Расчетное межплоскостное расстояние составило 2.7120±0.0026 Å, в то время как табличное значение по ASTM для hkl - [111] равняется 2.709 Å. Период решетки для стехиометрического состава карбида циркония равен а=4.6980 Å, а для полученных образцов расчеты по линиям [200] 2.3361 Å, [220] - 1.6545 Å и [311] - 1.409 Å дали значение а=4.6917 Å. Незначительные расхождения свидетельствуют о наличие в формируемой структуре дефектов.
После осаждения в электролитическом растворе слоя платины (Pt) (Табл. 1, операция 4) при термической обработке в вакууме (Табл. 1, операция 5) в сформированной системе (Mo-Mo2C)-(MoC-C-ZrC)-(Zr-ZrC)-Pt происходит образование интерметаллического соединения Pt3Zr с многокомпонентным барьерным слоем, состоящим из последующих слоев: (Мо2С), (MoC-C-ZrC) и (ZrC-Zr) (Фиг. 2).
Проведенные эксплуатационные исследования показали, что использование в качестве промежуточного слоя между материалом сеточного полотна (Мо) и антиэмиссионным покрытием (Pt3Zr) сложного многокомпонентного покрытия (Мо2С, MoC-C-ZrC, ZrC-Zr) при рабочих температурах позволяет обеспечить снижение встречных диффузионных процессов и повысить срок службы антиэмиссионных сеточных покрытий.

Claims (1)

  1. Способ получения интерметаллического антиэмиссионного покрытия Pt3Zr на сеточных электродах генераторных ламп, включающий формирование слоев карбида материала сеточного электрода, карбида циркония и поверхностного слоя платины и последующий отжиг сеточного электрода с нанесенным покрытием в вакууме, отличающийся тем, что сначала осуществляют распыление графитового катода катодным пятном вакуумно-дугового разряда с образованием карбида материала сетки и углеродного слоя, затем из потока металлической плазмы вакуумно-дугового разряда напыляют цирконий с образованием комбинированной системы слоев, состоящей из циркония и карбида циркония, а также карбида циркония, после чего на подготовленную подложку гальванически наносят слой платины.
RU2013133581/02A 2013-07-18 2013-07-18 Способ получения интерметаллического антиэмиссионного покрытия на сеточных электродах генераторных ламп RU2542912C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013133581/02A RU2542912C2 (ru) 2013-07-18 2013-07-18 Способ получения интерметаллического антиэмиссионного покрытия на сеточных электродах генераторных ламп

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013133581/02A RU2542912C2 (ru) 2013-07-18 2013-07-18 Способ получения интерметаллического антиэмиссионного покрытия на сеточных электродах генераторных ламп

Publications (2)

Publication Number Publication Date
RU2013133581A RU2013133581A (ru) 2015-01-27
RU2542912C2 true RU2542912C2 (ru) 2015-02-27

Family

ID=53281098

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013133581/02A RU2542912C2 (ru) 2013-07-18 2013-07-18 Способ получения интерметаллического антиэмиссионного покрытия на сеточных электродах генераторных ламп

Country Status (1)

Country Link
RU (1) RU2542912C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2643851C2 (ru) * 2016-06-28 2018-02-06 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" Способ получения интерметаллического антиэмиссионного покрытия
FR3095074A1 (fr) * 2019-04-11 2020-10-16 Thales Electrode à faible émissivité électronique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1149329A1 (ru) * 1981-02-13 1985-04-07 Организация П/Я Х-5263 Сетчатый электрод дл электронного прибора и способ его изготовлени
RU2114210C1 (ru) * 1997-05-30 1998-06-27 Валерий Павлович Гончаренко Способ формирования углеродного алмазоподобного покрытия в вакууме
RU2261940C1 (ru) * 2004-04-30 2005-10-10 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" Способ получения интерметаллического антиэмиссионного покрытия
US7812510B2 (en) * 2002-11-07 2010-10-12 Sony Corporation Flat display and manufacturing method thereof
RU2478141C2 (ru) * 2011-05-05 2013-03-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт электрофизической аппаратуры им. Д.В. Ефремова" (ФГУП "НИИЭФА им. Д.В. Ефремова") Способ модификации поверхности материала плазменной обработкой

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1149329A1 (ru) * 1981-02-13 1985-04-07 Организация П/Я Х-5263 Сетчатый электрод дл электронного прибора и способ его изготовлени
RU2114210C1 (ru) * 1997-05-30 1998-06-27 Валерий Павлович Гончаренко Способ формирования углеродного алмазоподобного покрытия в вакууме
US7812510B2 (en) * 2002-11-07 2010-10-12 Sony Corporation Flat display and manufacturing method thereof
RU2261940C1 (ru) * 2004-04-30 2005-10-10 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" Способ получения интерметаллического антиэмиссионного покрытия
RU2478141C2 (ru) * 2011-05-05 2013-03-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт электрофизической аппаратуры им. Д.В. Ефремова" (ФГУП "НИИЭФА им. Д.В. Ефремова") Способ модификации поверхности материала плазменной обработкой

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2643851C2 (ru) * 2016-06-28 2018-02-06 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" Способ получения интерметаллического антиэмиссионного покрытия
FR3095074A1 (fr) * 2019-04-11 2020-10-16 Thales Electrode à faible émissivité électronique

Also Published As

Publication number Publication date
RU2013133581A (ru) 2015-01-27

Similar Documents

Publication Publication Date Title
Mao et al. The influence of annealing on yttrium oxide thin film deposited by reactive magnetron sputtering: Process and microstructure
CN102016108B (zh) 通过弧蒸发制造具有预定结构的金属氧化物层的方法
US20150368535A1 (en) Graphene composites and methods of fabrication
CN103590008A (zh) 一种在TiAl合金和MCrAlY涂层间制备Al2O3扩散障的方法
CN104988466A (zh) 一种利用双辉等离子渗金属技术低温制备α-Al2O3涂层的方法
CN109735804B (zh) 一种金属碳化合物涂层及其制备方法
CN108677144A (zh) 一种制备铝氮共掺类金刚石复合薄膜的方法
Monteiro et al. Deposition of mullite and mullite-like coatings on silicon carbide by dual-source metal plasma immersion
RU2542912C2 (ru) Способ получения интерметаллического антиэмиссионного покрытия на сеточных электродах генераторных ламп
Ivanov et al. The structure of the surface alloy formed as a result of high-speed melting of the film (TiCu)/substrate (Al) system
CN114561628A (zh) 一种循环化学气相沉积高纯钽的制备方法及其应用
CN114672715B (zh) 高温高熵合金表面碳化物/金刚石颗粒涂层的制备方法
Lin et al. Interface characterization of a Cu–Ti-coated diamond system
Xu et al. Preparation, characterization and property of high-quality LaB6 single crystal grown by the optical floating zone melting technique
Vetrov et al. Antiemissive coatings
Aghamir et al. Characteristics of tungsten layer deposited on graphite substrate by a low energy plasma focus device at different angular position
Lisenkov et al. An antiemission coating based on zirconium carbide
RU2261940C1 (ru) Способ получения интерметаллического антиэмиссионного покрытия
Li et al. Enhancing oxidation resistance of Mo metal substrate by sputtering an MoSi2 (N) interlayer as diffusion barrier of MoSi2 (Si) surface coating
JPH03260054A (ja) 耐剥離性にすぐれたcBN被覆部材及びその製作法
JP2014209045A (ja) 金属蒸発用タングステンるつぼ、その製造方法及び使用方法
Clift et al. Deposition and analysis of Ir-Al coatings for oxidation protection of carbon materials at high temperatures
RU2643851C2 (ru) Способ получения интерметаллического антиэмиссионного покрытия
Wang et al. Field emission property of copper nitride thin film deposited by reactive magnetron sputtering
KR100634856B1 (ko) 금속 화합물을 이용한 탄소나노튜브 전자방출원의 제조방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180719