RU2542740C1 - Ядерный реактор для сжигания трансурановых химических элементов - Google Patents

Ядерный реактор для сжигания трансурановых химических элементов Download PDF

Info

Publication number
RU2542740C1
RU2542740C1 RU2013150057/07A RU2013150057A RU2542740C1 RU 2542740 C1 RU2542740 C1 RU 2542740C1 RU 2013150057/07 A RU2013150057/07 A RU 2013150057/07A RU 2013150057 A RU2013150057 A RU 2013150057A RU 2542740 C1 RU2542740 C1 RU 2542740C1
Authority
RU
Russia
Prior art keywords
nuclear reactor
microfuel
liquid metal
reactor according
nucleons
Prior art date
Application number
RU2013150057/07A
Other languages
English (en)
Inventor
Анатолий Яковлевич Столяревский
Original Assignee
Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" filed Critical Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority to RU2013150057/07A priority Critical patent/RU2542740C1/ru
Application granted granted Critical
Publication of RU2542740C1 publication Critical patent/RU2542740C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Particle Accelerators (AREA)

Abstract

Изобретение относится к ядерной технике, а именно к конструкции ядерных реакторов и систем с внешними источниками нуклонов, предназначенных для сжигания трансурановых химических элементов. Ядерный реактор для сжигания трансурановых химических элементов содержит подкритическую активную зону, содержащую элементы, подлежащие сжиганию, и внешний источник нуклонов высокой энергии. Активная зона состоит из микротопливных частиц, диспергированных в жидкометаллический теплоноситель, циркулирующий по замкнутому контуру, на верхний слой которого направлен пучок нуклонов высокой энергии. В качестве нуклонов используют протоны с энергией выше 800 МэВ, пучок которых проходит через блок развертки, на выходе которого угол пучка составляет более 45°. Технический результат - упрощение конструкции, повышение производительности реактора. 7 з.п. ф-лы, 1 ил.

Description

Изобретение относится к ядерной технике, а именно к конструкции ядерных реакторов и систем с внешними источниками нуклонов, предназначенных для сжигания трансурановых химических элементов.
Нерешенность проблемы утилизации отработавшего ядерного топлива (ОЯТ), содержащего накопленные долгоживущие радиоактивные продукты деления и минорные актиниды, является одним из серьезных препятствий для развития традиционной атомной энергетики.
На сегодняшний день отработанные тепловыделяющие сборки (ТВС), содержащие ОЯТ, не подвергаются переработке, а просто размещаются в комплексе пристанционных хранилищ действующих АЭС, ожидая разработки эффективных технологий переработки и создания соответствующих производственных мощностей. В качестве основного способа снижения активности реализуется просто их длительная выдержка.
Количество и активность отработавшего ядерного топлива (ОЯТ), хранящегося только на Красноярском горно-химическом комбинате в хранилище ОТВС, по официальным данным превышает 3000 тонн ОЯТ (по урану). При полном объеме хранилища в 6 тысяч тонн суммарная активность составит 6 млрд. кюри [http://nuclearno.ru/text.asp?332], что примерно на два порядка больше радиоктивного выброса во время чернобыльской аварии. Для решения этой проблемы предложено выжигание минорных актинидов (Np237, Am241, Am243, Cm242, Cm244). Одним из вариантов является решение, предложенное в патенте RU 2178209, опубл. 10.01.2002, в соответствии с которым пучок частиц высокой энергии направляют в камеру для взаимодействия с тяжелыми ядрами, содержащимися в камере, для производства нейтронов высокой энергии. Полученные нейтроны размножают в докритических условиях с помощью процесса воспроизводства и деления. Процесс производства и деления проводят внутри камеры. Проблемой при выжигании минорных актинидов в таком способе является повышенный риск потери контроля над управляемостью реактора.
Предложена также трансмутация радиоактивных отходов и устройство для ее осуществления, изложенные в патенте RU 2212072, опубл. 10.09.2003, в котором взаимодействие пучка нейтронов от нейтронного генератора осуществляют на свинцовой матрице с распределенными в ней ядерным топливом и радиоактивными отходами, затем их замедляют и размножают в подкритической активной зоне на тепловых нейтронах. Для осуществления этого центральная мишень устройства выполнена в виде свинцовой матрицы с распределенными в ней ядерным топливом и радиоактивными отходами. Недостаток способа - малая энергонапряженность активной зоны и, следовательно, низкая производительность и эффективность способа. Известен способ создания активной зоны ядерного реактора с жидким топливом, например расплавом фторидов металлов, содержащего внутри корпуса выше активной зоны напорную камеру жидкого топлива, дно которой перфорировано отверстиями, стержневую систему аварийной защиты активной зоны и систему отвода тепла ядерной реакции посредством циркуляции инертного газа, например гелия, с последующей передачей тепла в теплообменниках, размещенных внутри корпуса, для утилизации, отличающийся тем, что активную зону создают потоком струй жидкого топлива, при этом упомянутый поток струй образует посредством отверстий в дне упомянутой камеры и отводят на свободный уровень жидкого топлива /патент RU 2246767, опубл.: 20.02.2005 Бюл. №5/. Такой способ не снимает проблем ввода пучка нуклонов.
Известен также ядерный реактор для сжигания трансурановых химических элементов, содержащий подкритическую активную зону, содержащую упомянутые элементы, подлежащие сжиганию, и внешний источник расщепляющих нейтронов, отличающийся тем, что активная зона работает на подкритичном уровне, по существу, равном разности между желательной долей pt запаздывающих нейтронов в активной зоне и действительной долей р запаздывающих нейтронов в активной зоне, и предусмотрены средства измерения в реальном масштабе времени мгновенного потока n(t) нейтронов в активной зоне, средства учета реакции встречных пучков для регулирования в реальном масштабе времени мощности внешнего источника на основании измеренного мгновенного потока n(t) нейтронов так, чтобы имитировать присутствие в активной зоне дополнительной группы запаздывающих нейтронов в соответствии с долей ps запаздывающих нейтронов, равной упомянутой разности /патент RU 2267826, опубл.: 10.01.2006 Бюл. №01 - прототип/. Такой реактор позволяет осуществлять контроль доли pt запаздывающих нейтронов в активной зоне, а, значит, обладает повышенной безопасностью, но не решает проблемы ввода пучка нуклонов в активную зону и повышения производительности реактора.
Технический результат, на достижение которого направлено настоящее изобретение, заключается в повышении безопасности ядерного реактора для сжигания трансурановых химических элементов, упрощения его конструкции и повышения производительности. Технический результат достигается тем, что в ядерном реакторе для сжигания трансурановых химических элементов, содержащем подкритическую активную зону, содержащую упомянутые элементы, подлежащие сжиганию, и внешний источник нуклонов высокой энергии, активная зона состоит из микротопливных частиц, диспергированных в жидкометаллический теплоноситель, циркулирующий по замкнутому контуру, на верхний слой которого направлен пучок нуклонов высокой энергии.
При этом:
- в качестве нуклонов используют протоны с энергией выше 800 МэВ, пучок которых проходит через блок развертки, на выходе которого угол пучка составляет более 45°;
- выход жидкометаллического теплоносителя из активной зоны соединен со входом теплообменника с возможностью естественной циркуляции;
- в качестве жидкометаллического теплоносителя используют свинец;
- микротопливные частицы имеют керамическое покрытие;
- плотность микротопливных частиц отличается от плотности жидкометаллического теплоносителя не более, чем на 10%;
- контур жидкометаллического теплоносителя содержит устройства ввода микротопливных частиц, а также фильтры, установленные с возможностью удержания и вывода микротопливных частиц из тракта;
- активная зона окружена отражателем нейтронов или бланкетом, содержащим изотопы урана, плутония или тория, а внутри активной зоны установлен внутренний отражатель нейтронов, содержащий центральный канал для прохода жидкометаллического теплоносителя.
Ядерный реактор для сжигания трансурановых химических элементов показан на фигуре.
Основные элементы: 1 - ускоритель, 2 - подвод электроэнергии, 3 - протонопровод, 4 - блок развертки пучка, 5 - окно, 6 - полость, 7 - циркулирующий жидкометаллический теплоноситель, 8 - труба подъема, 9 - внутренний отражатель, 10 - теплообменник, 11 - подвод теплоносителя 2-го контура, 12 - боковой отражатель, 13 - фильтр вывода топлива, 14 - выгоревшее миктротопливо, 15 - подвод свежего микротоплива, 16 - устройство ввода микротопливных частиц.
Примером реализации изобретения ядерный реактор для сжигания трансурановых химических элементов, описанный ниже.
В излагаемом примере осуществления изобретения ядерный реактор для сжигания трансурановых химических элементов, выполненный в соответствии с данным изобретением, работает следующим образом (см. фигуру).
В ускорителе 1 с помощью подвода электроэнергии 2 формируется и ускоряется пучок высокоэнергетичных протонов, подаваемых в протонопровод 3, по которому с использованием магнитных систем направляется в блок развертки пучка 4, отклоняющего пучок таким образом, чтобы создать конус пучка протонов с углом отклонения не менее 45°. Активная зона реактора образована внутри бокового отражателя 12 и включает в себя циркулирующий жидкометаллический теплоноситель 7, содержащий свинец, в котором диспергированы микротопливные частицы, имеющие керамическое покрытие, а также внутренний отражатель 9, например, выполненный в форме кольца или тора. Сформированный и развернутый пучок протонов направляют через окно 5 в полость 6 активной зоны реактора, образованную над поверхностью циркулирующего жидкометаллического теплоносителя 7, подаваемого через трубу подъема 8, расположенную в центре внутреннего отражателя 9, предназначенного для формирования нейтронного поля заданной конфигурации. При попадании на поверхность циркулирующего жидкометаллического теплоносителя 7, содержащего свинец, в котором диспергированы микротопливные частицы, имеющие керамическое покрытие, протоны с энергией выше 800 МэВ вызывают реакции неупругого взаимодействия со свинцом с образованием нейтронов высокой энергии. При энергии пучка протонов, бомбардирующих мишень 1÷2 ГэВ, выход нейтронов с энергией Е<10,5 МэВ, определяется тем, что зависимость среднего числа нейтронов с энергией <10,5 МэВ на единицу энергии пучка имеет в этом диапазоне энергий максимум и далее медленно спадает с повышением энергии.
Комплекс экспериментальных исследований [см. В.И. Юревич, P.M. Яковлев, В.А. Николаев, В.Г. Ляпин, И.О. Цветков, Н.С. Амелин. Образование нейтронов при взаимодействии релятивистских протонов и дейтонов со свинцовыми мишенями. Препринт ОИЯИ, Дубна, Р1-2005-79] на цилиндрической электроядерной свинцовой мишени диаметром 20 см и высотой 60 см показал, что при энергии протонов 2 ГэВ в неупругих соударениях с ядрами свинца в рассматриваемой мишени в среднем ~ 800 МэВ уходит на образование нейтронов и ~ 1200 МэВ на ионизационные потери, эмиссию заряженных частиц, ядерных фрагментов и образование новых частиц. Тепловыделение в мишени составляет примерно 60% энергии пучка, ~ 40% энергии пучка идет на образование нейтронов, при этом 31% - это кинетическая энергия нейтронов, из которых 27% уносят нейтроны с энергией выше 20 МэВ. Свинец не делится нейтронами с энергией ниже 14.5 МэВ, но имеет небольшую делимость, около 5%, при энергиях частиц в области нескольких сотен МэВ. Свыше 800 МэВ сечение деления свинца составляет около 60 мбарн [см. Взаимодействие пучка протонов с массивной свинцовой мишенью при энергиях до 100 ГэВ. Препринт Воронков А.В., Соболевский Н.М., ИПМ им. М.В. Келдыша РАН, Москва, 2000]. Изотоп 238U имеет делимость до 20% на быстрых нейтронах и более 50% под действием частиц с энергией до 1 ГэВ. В таблице [там же] даны результаты расчета среднего числа реакций и выходы нейтронов для мишени на основе свинца с бланкетом из природного урана (238U) для энергии протонов 1 ГэВ. Заливкой выделены данные, относящиеся к адронному каскаду. Все числа нормированы на 1 протон.
Таблица
Мишень Pb + Бланкет 238U Мишень Pb Бланкет 238U Вся сборка
Упругое рассеяние 4.34 4.52 8.86
Неупругое рассеяние 4.19 3.65 7.84
в том числе деление 0.026 1.12 1.15
Ядра-продукты - - 8.98
Выход нейтронов, En>14.5 МэВ - - 0.042
Источник нейтронов En>14.5 МэВ - - 37.4
Выход нейтронов, En<14.5 МэВ - - 2.53
Деление (n,f) 0 5.91 5.91
Захват (n,с) 0.18 48.2 48.4
Неупругое рассеяние (n,n′) 9.54 204.8 214.3
Реакция (n, 2n) 0.62 1.35 1.97
Адронный каскад включает нейтроны с энергией выше 14.5 МэВ и все остальные адроны (протоны, пионы, каоны, антинуклоны).
Активная зона содержит подкритический состав: свинец, в котором диспергированы микротопливные частицы, содержащие помимо сырьевых изотопов урана, и тория, и минорных актинидов, также делящийся материал (235U, 233U или плутоний). Низкий уровень подкритичности реактора дает возможность уменьшить максимальную мощность внешнего источника в 20-30 раз по сравнению с обычной гибридной системой и не накладывает, в то же время, ограничений на долю запаздывающих нейтронов. Поэтому реактор используется в качестве усилителя внешнего источника нейтронов.
Параметры активной зоны (загрузка топлива, энергонапряженность и другие) могли бы быть приняты близкими к другим быстрым реакторам с жидкометаллическим свинцовым топливом, в частности по проекту БРЕСТ. В этом случае энергонапряженность активной зоны составит 100-150 кВт/л, загрузка топлива (уран-плутониевого) около 20 т (при мощности реактора 1000 МВттепл), количество свинца в активной зоне около 40 т, общее количество свинца около 60 т при расходе 60 т/с (температура входа/выхода свинца, °С: 420/540).
Размеры микротопливных частиц могли бы быть близкими к тем, которые освоены применительно к реакторам типа ВТГР (диаметр около 400 мкм) с покрытием на основе керамики, устойчивой в свинце, например, Si3N4). Доля микротопливных частиц в активной зоне по объему составит около 10-20% при использовании металлического топлива или 20-30% при использовании топлива на основе нитридов урана и плутония. Применению металлического топлива благоприятствуют низкие температуры топлива (до 600°С) при высоких параметрах термодинамики и эффективности цикла выработки электроэнергии (до 44-48%), которая может производиться при отводе тепла от циркулирующего жидкометаллического теплоносителя 7, выход которого из активной зоны соединен со входом теплообменника 10 с возможностью естественной циркуляции. Тепло в теплообменнике 10 отводится теплоносителем, поступающим через подвод теплоносителя 11. В качестве теплоносителя может использоваться как водяной пар, так и сверхкритический диоксид углерода.
Как показано в работе [см. Основы создания малоактивируемого свинцового теплоносителя с изотопным обогащением для перспективных ядерно-энергетических установок. Г.Л. Хорасанов, А.И. Блохин ГНЦ РФ ФЭИ, Обнинск. УДК 621.039.526], длительная эксплуатация природного свинца в быстром реакторе, в течение 10-30 лет, приводит к наработке в нем стабильного изотопа висмута, Bi-209, в количествах 1-3 кг на 1 т свинца благодаря радиационному захвату нейтрона ядром Pb-208 и последующему бета-распаду ядра Pb-209.
Нарабатываемый висмут служит источником образования альфа-активных изотопов полония Ро-210 и висмута Bi-210m, а также долгоживущих гамма-активных изотопов висмута Bi-207 и Bi-208. Особую опасность вызывает генерация радионуклида Ро-210, радиотоксичность которого, в случае тяжелой аварии с разгерметизацией корпуса и выбросом нуклидов в атмосферу, эквивалентна вредности всех остальных радионуклидов, включая 1-131 и Cs-137. Отработавший в течение 30-ти лет теплоноситель освобождается от радиационного контроля по Ро-210 только через 100 лет выдержки. Для распада до безопасного уровня другого радионуклида, изотопа висмута Bi-207, потребуется несколько сотен лет выдержки.
В электроядерных установках, в свинцовых мишенях, облучаемых быстрыми протонами, появляется дополнительный канал генерации радионуклидов Bi-207 и Bi-208 за счет ядерных реакций с участием протонов. Вклад этих реакций столь велик, что можно говорить о проблеме накопления изотопа Bi-207 в мишенях из природного свинца для управляемых ускорителями подкритических быстрых реакторов. В этой связи, как предложено в работе [см. Основы создания малоактивируемого свинцового теплоносителя с изотопным обогащением для перспективных ядерно-энергетических установок. Г.Л. Хорасанов, А.И. Блохин ГНЦ РФ ФЭИ, Обнинск. УДК 621.039.526], может оказаться целесообразным использовать в качестве циркулирующего жидкометаллического теплоносителя 7 свинца, обогащенного изотопом свинца, Pb-206.
Перезагрузка топлива на основе микротопливных частиц могла бы производиться на ходу, без остановки реактора за счет применения фильтров вывода топлива 13, выводящих выгоревшее миктротопливо 14 из циркулирующего жидкометаллического теплоносителя 7, с одновременной работой подвода свежего микротоплива 15 за счет устройства ввода микротопливных частиц 16.
Целесообразно применять микротопливные частицы, плотность которых с учетом свободной полости и покрытия из керамики была бы близка к плотности циркулирующего жидкометаллического теплоносителя 7, то есть около 10-11 кг/л, для того, чтобы избежать стратификации микротопливных частиц в циркулирующем жидкометаллическом теплоносителе 7 и, тем самым, избежать неравномерности гидродинамических и нейтронно-физических полей.
В качестве сырьевого топлива в микротопливные частицы может входить торий. В этом варианте наработанный уран 233U выводится в составе выгоревшего миктротоплива 14, а вместо урана 233U при подводе свежего микротоплива 15 добавляют плутоний Pu для интенсификации сжигания.
При получении пучков заряженных частиц большой мощности в непрерывном режиме для уменьшения габаритов установки, повышения ее мощности и сейсмостойкости и целесообразно пропускать пучок частиц через линейный ускоритель 1, а затем в участки протонопровода 3, соединенные друг с другом магнитными узлами поворота, с последующим направлением в блок развертки пучка 4, как это, например, описано в патенте РФ №2152142, опубл. 27.06.2000. В первую очередь, в таких системах эффективны технологии уникального российского трехмерного модульного компактного ускорителя протонов на обратной волне (УЛОВ), в западной аббревиатуре - BWLAP/ABC3D.
Важным является и то, что использование предлагаемого реактора помимо эффекта от сжигания трансурановых химических элементов и наработки топлива обеспечит снижение объема ремонтных работ, снижение вредного радиоактивного воздействия на окружающую среду, сокращение транспортно-технологических операций с радиоактивными веществами и простоя реактора, снижение дозовых нагрузок на персонал, увеличение коэффициента использования мощности и выработки электроэнергии, повышение безопасности реактора. Применение предложенного способа решило задачу повышения безопасности ядерного реактора для сжигания трансурановых химических элементов, упрощения его конструкции и повышения производительности, снижения дозовых нагрузок на персонал, увеличения выработки электроэнергии.

Claims (8)

1. Ядерный реактор для сжигания трансурановых химических элементов, содержащий подкритическую активную зону, содержащую упомянутые элементы, подлежащие сжиганию, и внешний источник нуклонов высокой энергии, отличающийся тем, что активная зона состоит из микротопливных частиц, диспергированных в жидкометаллический теплоноситель, циркулирующий по замкнутому контуру, на верхний слой которого направлен пучок нуклонов высокой энергии.
2. Ядерный реактор по п.1, отличающийся тем, что в качестве нуклонов используют протоны с энергией выше 800 МэВ, пучок которых проходит через блок развертки, на выходе которого угол пучка составляет более 45°.
3. Ядерный реактор по п.1, отличающийся тем, что выход жидкометаллического теплоносителя из активной зоны соединен со входом теплообменника с возможностью естественной циркуляции.
4. Ядерный реактор по п.1, отличающийся тем, что в качестве жидкометаллического теплоносителя используют свинец.
5. Ядерный реактор по п.1, отличающийся тем, что микротопливные частицы имеют керамическое покрытие.
6. Ядерный реактор по п.1, отличающийся тем, что плотность микротопливных частиц отличается от плотности жидкометаллического теплоносителя не более чем на 10%.
7. Ядерный реактор по п.1, отличающийся тем, что контур жидкометаллического теплоносителя содержит устройство ввода микротопливных частиц и фильтры, установленные с возможностью удержания и вывода микротопливных частиц из контура.
8. Ядерный реактор по п.1, отличающийся тем, что активная зона окружена отражателем или бланкетом, содержащим изотопы урана, и/или плутония, и/или тория.
RU2013150057/07A 2013-11-11 2013-11-11 Ядерный реактор для сжигания трансурановых химических элементов RU2542740C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013150057/07A RU2542740C1 (ru) 2013-11-11 2013-11-11 Ядерный реактор для сжигания трансурановых химических элементов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013150057/07A RU2542740C1 (ru) 2013-11-11 2013-11-11 Ядерный реактор для сжигания трансурановых химических элементов

Publications (1)

Publication Number Publication Date
RU2542740C1 true RU2542740C1 (ru) 2015-02-27

Family

ID=53289965

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013150057/07A RU2542740C1 (ru) 2013-11-11 2013-11-11 Ядерный реактор для сжигания трансурановых химических элементов

Country Status (1)

Country Link
RU (1) RU2542740C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2122750C1 (ru) * 1997-10-10 1998-11-27 Государственное унитарное предприятие "Научно-исследовательский и конструкторский институт энерготехники" Способ эксплуатации ядерного энергетического комплекса
RU2267826C2 (ru) * 2000-03-08 2006-01-10 Коммиссариат А Л`Энержи Атомик Способ сжигания трансурановых химических элементов и ядерный реактор для осуществления этого способа
US20110206173A1 (en) * 2010-02-22 2011-08-25 Advanced Reactor Concetps LLC Small, fast neutron spectrum nuclear power plant with a long refueling interval

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2122750C1 (ru) * 1997-10-10 1998-11-27 Государственное унитарное предприятие "Научно-исследовательский и конструкторский институт энерготехники" Способ эксплуатации ядерного энергетического комплекса
RU2267826C2 (ru) * 2000-03-08 2006-01-10 Коммиссариат А Л`Энержи Атомик Способ сжигания трансурановых химических элементов и ядерный реактор для осуществления этого способа
US20110206173A1 (en) * 2010-02-22 2011-08-25 Advanced Reactor Concetps LLC Small, fast neutron spectrum nuclear power plant with a long refueling interval

Similar Documents

Publication Publication Date Title
RU2178209C2 (ru) Способ выработки энергии из ядерного топлива, усилитель мощности для осуществления способа, энерговырабатывающая установка
US20080232533A1 (en) High flux sub-critical reactor for nuclear waste transmulation
US9177679B2 (en) Accelerator-based method of producing isotopes
Zelinsky et al. NSC KIPT neutron source on the base of subcritical assembly driven with electron linear accelerator
WO2019168030A1 (ja) 核融合システム、核融合方法、長寿命核分裂生成物の核種変換短寿命化処理システム及び長寿命核分裂生成物の核種変換短寿命化処理方法
RU2003191C1 (ru) Способ трансмутации изотопов
Takahashi et al. Concepts of accelerator based transmutation systems
RU2542740C1 (ru) Ядерный реактор для сжигания трансурановых химических элементов
CN108367157B (zh) 医用中子源和用于医用中子源的核反应堆
Svistunov et al. Characteristics of ADS target irradiated by 200… 400 MeV proton beam
JPH08146175A (ja) 未臨界型原子炉
Seltborg External source effects and neutronics in accelerator-driven systems
Golovkina et al. Power plant based on subcritical reactor and proton linac
JP2000321390A (ja) 未臨界炉
Babenko et al. The new research subcritical reactor driven by a highintensity neutron generator for transmutation of the nuclear waste
Baldin et al. Relativistic nuclear technology (RNT) for energy production and utilization of spent nuclear fuel. The results of first experiments on physical justification of RNT
Pudjorahardjo et al. High power particle accelerator for driving the nuclear waste transmutation system at nuclear power plant
RU2159968C1 (ru) Подкритический источник нейтронов
US9613726B2 (en) Systems and methods for reducing the storage time of spent nuclear fuel
RU2212072C2 (ru) Способ трансмутации радиоактивных отходов и устройство для его осуществления
Umasankari et al. Types of nuclear reactors
Wu et al. Neutronics Design of Hybrid Nuclear Systems
Moiseenko et al. AMERICIUM AND CURIUM BURNUP IN A FUSION REACTOR
Loffe et al. Heavy water reactors and nuclear power plants in the USSR and Russia: Past, present, and future
Sasa et al. J-PARC Transmutation Experimental Facility Programme

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20160405

MM4A The patent is invalid due to non-payment of fees

Effective date: 20161112