RU2540484C1 - Волоконный лазер со сверхкороткой длительностью импульса - Google Patents

Волоконный лазер со сверхкороткой длительностью импульса Download PDF

Info

Publication number
RU2540484C1
RU2540484C1 RU2013130942/28A RU2013130942A RU2540484C1 RU 2540484 C1 RU2540484 C1 RU 2540484C1 RU 2013130942/28 A RU2013130942/28 A RU 2013130942/28A RU 2013130942 A RU2013130942 A RU 2013130942A RU 2540484 C1 RU2540484 C1 RU 2540484C1
Authority
RU
Russia
Prior art keywords
fiber
fibre
laser
polarization
pulse
Prior art date
Application number
RU2013130942/28A
Other languages
English (en)
Other versions
RU2013130942A (ru
Inventor
Дмитрий Владимирович Худяков
Сергей Каренович Вартапетов
Андрей Александрович Бородкин
Original Assignee
Общество С Ограниченной Ответственностью "Лазерспарк"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Лазерспарк" filed Critical Общество С Ограниченной Ответственностью "Лазерспарк"
Priority to RU2013130942/28A priority Critical patent/RU2540484C1/ru
Priority to PCT/RU2014/000489 priority patent/WO2015005827A1/ru
Publication of RU2013130942A publication Critical patent/RU2013130942A/ru
Application granted granted Critical
Publication of RU2540484C1 publication Critical patent/RU2540484C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06712Polarising fibre; Polariser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06704Housings; Packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

Изобретение относится к лазерной технике. Волоконный лазер со сверхкороткой длительностью импульса содержит лазер накачки, последовательно установленные, образующие кольцевой резонатор и закрепленные на держатель волокна волоконные модуль ввода излучения лазера накачки в волокно, легированное редкоземельным элементом волокно, разветвитель, контроллер поляризации, волоконный поляризатор, контроллер поляризации, изолятор. При этом волокно закреплено на держателе оптического волокна так, что при распространении импульса излучения по волокну на каждом витке волокна сдвиг фаз поляризационных компонент поля оптического импульса относительно двух взаимно перпендикулярных осей скомпенсирован. Технический результат заключается в упрощении конструкции и обеспечении компактности лазера. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к квантовой электронике, а именно к волоконным лазерам со сверхкороткой длительностью импульса.
Для компоновки волоконного импульсного лазера, длина волокна которого часто составляет величину от нескольких метров до сотен метров, используется намотка волокна на различные фиксирующие устройства, такие, например, как в патенте США №6144792. Однако каждый изгиб волокна создает анизотропию для распространения поляризованного светового импульса в волокне, так как показатели преломления волокна для распространения излучения с поляризацией вдоль плоскости изгиба и перпендикулярно этой плоскости отличаются на величину Δn=a·(rclad/r)2, rclad - радиус волокна, r - радиус изгиба, а - константа, зависящая от материала волокна и длины волны излучения. Величина Δn дана для полной окружности с радиусом r. При распространении поляризованного излучения в таком изогнутом волокне компонента поля E_slow светового импульса вдоль оси, перпендикулярной плоскости изгиба (медленной оси), отстает от компоненты поля E_fast светового импульса вдоль плоскости изгиба (быстрой оси). В волоконных лазерах ультракоротких импульсов оптический дихроизм, возникающий на изгибах волокна, приводит к расплыванию поляризационных компонент импульса вдоль быстрой и медленной осей оптического волокна. Такой эффект искажает состояние оптической поляризации, изменяет временной профиль импульса, а также затрудняет реализацию синхронизации мод на эффекте нелинейного вращения эллипса поляризации.
Известен волоконный лазер, патент США №7876495, в котором для компенсации дихроизма, вызванного изгибом оптического волокна, применяется специальное волокно увеличенного диаметра со сложной структурой.
Задачей изобретения является создание волоконного лазера со сверхкороткой длительностью импульса, реализующего синхронизацию мод на эффекте нелинейного вращения эллиптической поляризации в световом волокне.
Волоконный лазер со сверхкороткой длительностью импульса, содержащий лазер накачки, последовательно установленные, образующие кольцевой резонатор и закрепленные на держателе волокна модуль ввода излучения лазера накачки в волокно, легированное редкоземельным элементом волокно, разветвитель, контроллер поляризации, волоконный поляризатор, контроллер поляризации, изолятор, волокно закреплено в держателе оптического волокна так, что при распространении импульса излучения по волокну на каждом витке волокна сдвиг фазы поляризационных компонент поля оптического импульса относительно двух взаимно перпендикулярных осей скомпенсирован. При такой компоновке волокна компенсирован наведенный дихроизм, возникающий вследствие изгибов волокна при намотке. Если на каждом витке фазовый сдвиг для поляризационных компонент оптического импульса вдоль двух взаимно перпендикулярных осей одинаков, создаются условия распространения лазерного импульса без накопления фазового сдвига, как если бы волокно было вытянуто в линию. Это позволяет реализовать синхронизацию мод в волоконном лазере на эффекте нелинейного вращения эллипса поляризации, используя длинный отрезок волокна в компактном устройстве. В настоящее время в коммерческих вариантах волоконных лазеров со сверхкороткой длительностью импульса для синхронизации мод используют пассивный насыщающийся поглотитель и оптическое волокно с поддержкой поляризации. Поскольку в оптическом волокне с поддержкой поляризации нелинейное вращение поляризации отсутствует, получить стабильную импульсную генерацию возможно только с использованием насыщающихся поглотителей, распределенных на локальном участке волокна либо твердотельных, например насыщающихся полупроводниковых зеркал SESAM-ов. Использование в волоконных лазерах эффекта нелинейного вращения эллипса поляризации для импульсного режима генерации позволяет максимально использовать преимущество волоконной схемы резонатора, сократить длительность импульса за счет быстрого времени срабатывания такого нелинейного переключателя, сделать схему лазера более простой и надежной.
Держатель оптического волокна имеет две взаимно перпендикулярные оси, относительно каждой из которых волокно изогнуто с равным радиусом изгиба. Одним из вариантов исполнения волоконного лазера является крепление волокна на держателе с двумя взаимно перпендикулярными осями, вокруг которых волокно изогнуто с одинаковыми радиусами. В таком случае положительный фазовый сдвиг, возникающий между двух взаимно перпендикулярных поляризационных компонент излучения в каждом следующем изгибе намотки, компенсируется аналогичным отрицательным фазовым сдвигом для этих компонент в предыдущем изгибе намотки, что позволяет получить способ намотки волокна без накопления фазового сдвига для поляризационных компонент импульсного излучения, распространяющегося по оптическому волокну.
Техническим результатом предлагаемого технического решения является создание компактного надежного волоконного лазера со сверхкороткой длительностью импульса.
На фиг.1 показана схема волоконного лазера со сверхкороткой длительностью импульса.
На фиг.2 показана схема намотки волокна на держатель волокна в волоконном лазере со сверхкороткой длительностью импульса.
На фиг.1 лазер накачки 1 соединен с модулем ввода излучения лазера накачки в волокно 2, модуль вода излучения лазера накачки в волокно 2, легированное редкоземельным элементом волокно 3, разветвитель 4, контроллер поляризации 5, волоконный поляризатор 6, контроллер поляризации 5, изолятор 7 образуют кольцевой резонатор волоконного лазера. Волоконные элементы лазера закреплены на держателе волокна согласно схеме на фиг.2. Ось Х и ось Z взаимно перпендикулярны. Каждый виток волокна на катушке, представленной на фиг.2, содержит 4 прямых участка 8, изображенных сплошной линией, два полукруглых участка 9, изображенных пунктирной линией, и два полукруглых участка 10, изображенных штрихпунктирной линией. Полукруглые участки 9 волокна представляют собой половину дуги окружности радиуса R в плоскости, перпендикулярной оси X. Участки 10 волокна представляют собой половину дуги окружности радиуса R в плоскости, перпендикулярной оси Z.
При включении лазера накачки 1 излучение через модуль ввода 2 попадает в кольцевой резонатор. При общей длине оптического волокна в несколько метров и средней мощности накачки чуть выше порога свободной генерации лазер переходит в режим импульсной генерации при соответствующей подстройке контроллеров поляризации.
При прохождении импульсом двух участков волокна 9 за счет изгиба в плоскости, перпендикулярной оси X, возникает фазовый сдвиг Δφ1=(2π/λ)(nx-nz)2πr и поляризационные компоненты поля светового импульса вдоль оси Х отстают от поляризационных компонент поля вдоль оси Z. На двух участках волокна 10 за счет изгиба волокна в плоскости, перпендикулярной оси Z, возникающий фазовый сдвиг компенсирует предыдущий: Δφ2=Δφ1=(2π/λ)(nz-nx)2πr и поляризационные компоненты поля светового импульса вдоль оси Z будут отставать от поляризационных компонент поля светового импульса вдоль оси X. Таким образом, на каждом витке волокна, закрепленного на держателе в соответствии со схемой, представленной на фиг.2, фазового сдвига на одном витке намотки не происходит. Это позволяет использовать эффект нелинейного вращения эллипса поляризации для синхронизации мод волоконного лазера.

Claims (2)

1. Волоконный лазер со сверхкороткой длительностью импульса, содержащий лазер накачки, последовательно установленные, образующие кольцевой резонатор и закрепленные на держатель волокна волоконные модуль ввода излучения лазера накачки в волокно, легированное редкоземельным элементом волокно, разветвитель, контроллер поляризации, волоконный поляризатор, контроллер поляризации, изолятор, отличающийся тем, что волокно закреплено на держателе оптического волокна так, что при распространении импульса излучения по волокну на каждом витке волокна сдвиг фаз поляризационных компонент поля оптического импульса относительно двух взаимно перпендикулярных осей скомпенсирован.
2. Волоконный лазер со сверхкороткой длительностью импульса по п.1., отличающийся тем, что держатель оптического волокна имеет две взаимно перпендикулярные оси, относительно каждой из которых волокно изогнуто с равным радиусом изгиба.
RU2013130942/28A 2013-07-08 2013-07-08 Волоконный лазер со сверхкороткой длительностью импульса RU2540484C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2013130942/28A RU2540484C1 (ru) 2013-07-08 2013-07-08 Волоконный лазер со сверхкороткой длительностью импульса
PCT/RU2014/000489 WO2015005827A1 (ru) 2013-07-08 2014-07-03 Волоконный лазер со сверхкороткой длительностью импульса

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013130942/28A RU2540484C1 (ru) 2013-07-08 2013-07-08 Волоконный лазер со сверхкороткой длительностью импульса

Publications (2)

Publication Number Publication Date
RU2013130942A RU2013130942A (ru) 2015-01-20
RU2540484C1 true RU2540484C1 (ru) 2015-02-10

Family

ID=52280359

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013130942/28A RU2540484C1 (ru) 2013-07-08 2013-07-08 Волоконный лазер со сверхкороткой длительностью импульса

Country Status (2)

Country Link
RU (1) RU2540484C1 (ru)
WO (1) WO2015005827A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2560750C2 (ru) * 2013-11-18 2015-08-20 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Способ пассивной синхронизации мод излучения в лазере сверхкоротких импульсов с цельноволоконным оптическим резонатором

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920588A (en) * 1996-04-11 1999-07-06 Fujitsu Limited Method and device for generation of phase conjugate light and wavelength conversion, and system having the device
RU2137166C1 (ru) * 1996-10-25 1999-09-10 Самсунг Электроникс Ко., Лтд Компоновочное устройство оптического усилителя
US6373868B1 (en) * 1993-05-28 2002-04-16 Tong Zhang Single-mode operation and frequency conversions for diode-pumped solid-state lasers
US7876495B1 (en) * 2007-07-31 2011-01-25 Lockheed Martin Corporation Apparatus and method for compensating for and using mode-profile distortions caused by bending optical fibers
WO2011113499A1 (en) * 2010-03-18 2011-09-22 Vrije Universiteit Brussel Methods and systems for converting or amplifying

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373868B1 (en) * 1993-05-28 2002-04-16 Tong Zhang Single-mode operation and frequency conversions for diode-pumped solid-state lasers
US5920588A (en) * 1996-04-11 1999-07-06 Fujitsu Limited Method and device for generation of phase conjugate light and wavelength conversion, and system having the device
RU2137166C1 (ru) * 1996-10-25 1999-09-10 Самсунг Электроникс Ко., Лтд Компоновочное устройство оптического усилителя
US7876495B1 (en) * 2007-07-31 2011-01-25 Lockheed Martin Corporation Apparatus and method for compensating for and using mode-profile distortions caused by bending optical fibers
WO2011113499A1 (en) * 2010-03-18 2011-09-22 Vrije Universiteit Brussel Methods and systems for converting or amplifying

Also Published As

Publication number Publication date
RU2013130942A (ru) 2015-01-20
WO2015005827A1 (ru) 2015-01-15

Similar Documents

Publication Publication Date Title
US5577057A (en) Modelocked lasers
JPH09199777A (ja) モードロックレーザー装置
KR101501509B1 (ko) 이중 광빗 펨토초 광섬유 레이저
US10367328B2 (en) Pulse laser device
US8854713B2 (en) Power selective optical filter devices and optical systems using same
JP6637899B2 (ja) レーザー装置を操作する方法、共振装置及び移相器の使用
WO2015073257A1 (en) Compact fiber short pulse laser sources
RU2547343C1 (ru) Импульсный волоконный лазер с варьируемой конфигурацией поддерживающего поляризацию излучения кольцевого резонатора
JP2015156452A (ja) 受動モードロックファイバレーザ装置
RU2540484C1 (ru) Волоконный лазер со сверхкороткой длительностью импульса
Dong et al. Tunable and switchable dual-wavelength passively mode-locked fiber ring laser with high-energy pulses at a sub-100 kHz repetition rate
CN203039222U (zh) 一种偏振态稳定控制的自启动锁模光纤激光器
CN204885809U (zh) 全光纤激光器
RU2564519C2 (ru) Волоконный импульсный кольцевой лазер с пассивной синхронизацией мод излучения (варианты)
ES2653196T3 (es) Fibra láser de doble frecuencia por mezcla de ondas en fibras ópticas amplificadoras
Zhou et al. Fiber ring laser employing an all-polarization-maintaining loop periodic filter
RU2566385C1 (ru) Волоконный источник однонаправленного одночастотного поляризованного лазерного излучения с пассивным сканированием частоты (варианты)
Cui et al. Linear-cavity cylindrical vector lasers based on all-fiber mode converters
CN111509550A (zh) 高峰值功率窄线宽1064nm全固态脉冲激光器
CN104538826A (zh) 超短脉冲光纤激光器
Wu et al. Mode-locked femtosecond all polarization-maintaining erbium-doped dispersion managed fiber laser based on a nonlinear amplifying loop mirror
CN220934587U (zh) 一种圆柱矢量光场产生装置
CN209981720U (zh) 一种双臂结构环形光斑输出连续光纤激光器
Madeikis et al. Optical Repetition Rate Locking of Ultrafast Yb Doped All Fiber Oscillator for High Intensity OPCPA Systems
Xu et al. Cylindrical Vector Beam Fibre Laser Based on photonic lantern

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160709