RU2538396C1 - Способ культивирования двустворчатых моллюсков - Google Patents

Способ культивирования двустворчатых моллюсков Download PDF

Info

Publication number
RU2538396C1
RU2538396C1 RU2013144645/13A RU2013144645A RU2538396C1 RU 2538396 C1 RU2538396 C1 RU 2538396C1 RU 2013144645/13 A RU2013144645/13 A RU 2013144645/13A RU 2013144645 A RU2013144645 A RU 2013144645A RU 2538396 C1 RU2538396 C1 RU 2538396C1
Authority
RU
Russia
Prior art keywords
larvae
water
neomycin
stage
salinity
Prior art date
Application number
RU2013144645/13A
Other languages
English (en)
Inventor
Ольга Владимировна Юрченко
Вячеслав Алексеевич Дячук
Марина Юрьевна Хабарова
Евгений Геннадьевич Ивашкин
Елена Евгеньевна Воронежская
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт биологии моря им. А.В. Жирмунского Дальневосточного отделения Российской академии наук (ИБМ ДВО РАН)
Федеральное государственное бюджетное учреждение науки Институт биологии развития им. Н.К. Кольцова (ИБР РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт биологии моря им. А.В. Жирмунского Дальневосточного отделения Российской академии наук (ИБМ ДВО РАН), Федеральное государственное бюджетное учреждение науки Институт биологии развития им. Н.К. Кольцова (ИБР РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт биологии моря им. А.В. Жирмунского Дальневосточного отделения Российской академии наук (ИБМ ДВО РАН)
Priority to RU2013144645/13A priority Critical patent/RU2538396C1/ru
Application granted granted Critical
Publication of RU2538396C1 publication Critical patent/RU2538396C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

Изобретение относится к культивированию двустворчатых моллюсков с планктонной личинкой. Способ предусматривает сбор и содержание в искусственных условиях взрослых моллюсков, стимулирование нереста, оплодотворение яиц, содержание развивающихся яиц до момента выплыва личинок, отбор и рассаживание личинок по отдельным емкостям и доращивание личинок в морской воде. При доращивании личинок со стадии велигера до стадии педивелигера в морскую воду добавляют неомицин в количестве 30-50 мкмоль/л. Изобретение повышает эффективность выращивания личинок морских двустворчатых моллюсков в плотной культуре посредством одновременного повышения выживаемости личинок и ускорения процесса их развития. 1 з.п. ф-лы, 5 ил., 1 табл., 4 пр.

Description

Изобретение относится к марикультуре, в частности к способам культивирования двустворчатых моллюсков с планктонной личинкой.
Многие виды двустворчатых моллюсков имеют большое экономическое значение. Они являются важными промысловыми объектами, имеющими большую ценность в качестве деликатесных пищевых продуктов. Кроме того, двустворчатые моллюски имеют большое экологическое значение. Взрослые особи являются биофильтраторами, и оголение участков дна в результате антропогенных воздействий может приводить к усилению последствий техногенных загрязнений в водных (как пресноводных, так и морских) экосистемах. Личинки двустворчатых моллюсков составляют до 70% зоопланктона, таким образом, являясь важным звеном водных пищевых цепей. Большое значение это имеет для роста молоди и нагула массы промысловых видов рыб, обитающих в прибрежной шельфовой зоне. Очевидно, что продуктивность плантации зависит как от количества особей, так и от скорости их роста. Пополнение молодью литоральных популяций двустворчатых моллюсков крайне нестабильно при сильной зависимости от абиотических и биотических факторов среды. В дополнение к колебаниям температуры и солености нередки вспышки бактериальных и вирусных инфекций, приводящие к массовой гибели моллюсков и наносящие значительный урон экологии и промысловой индустрии. Также среди факторов, влияющих на численность двустворок, можно отметить различные химические загрязняющие вещества. Одним из способов, позволяющих быстро восстанавливать численность популяций двустворчатых моллюсков как в природе, так и на промысловых фермах, является искусственное оплодотворение и культивация моллюсков до момента их выседания.
Известен способ экологического культивирования двустворчатого моллюска Ruditapes philippinarum. Для повышения уровня выживаемости и одновременного ускорения метаморфоза у личинок в воду с культурой добавляют сок чеснока (Заявка КНР, №101347105, A01K61/00; A61K36/8962; A61P43/00, опубл. 21.01.2009).
Недостатками данного способа являются сравнительно небольшой эффект действия сока чеснока на выживаемость личинок, небольшой прирост в скорости метаморфоза, общее время культивирования изменяется не существенно, не обнаруживается личинок особо крупного размера.
Известен способ культивирования моллюсков, включающий размещение моллюсков в ваннах, получение яиц и спермы от родительских животных, помещение оплодотворенных яйцеклеток в ванны, где ведут выращивание личинок. Весь процесс культивирования ведут в морской воде, освобожденной от бактерий (обеззараживание) и взвесей. Для обеззараживания используют последовательность различных антибиотиков. Антибиотики берут из группы, состоящей из polymyxin B, хлорамфеникола, ампициллина, эритомицина, chlortetracycline, неомицина, стрептомицина и gentamycin (п. США, №4532883, A01K61/00, опубл. 06.08.1985).
Недостатком данного способа является необходимость проведения всего процесса культивирования в воде, обеззараженной различными антибиотиками. Процесс культивирования является длительным, сложным, требует последовательного использования большого числа различных антибиотиков. Цель использования антибиотиков - уничтожение бактерий, при этом неизвестно, каким образом используемые антибиотики действуют на личинок моллюсков.
Наиболее близким к заявляемому способу культивирования двустворчатых моллюсков является способ культивирования гребешка, включающий сбор и содержание в искусственных условиях взрослых особей гребешка, стимулирование нереста, оплодотворение яиц, содержание развивающихся яиц до момента выплыва личинок в морской воде с присутствием неомицина, перидический отбор и ресуспендирование личинок по отдельным емкостям, доращивание личинок в морской воде низкой температуры (15оС) с последующей высадкой на субстрат (п. США, №5144907, A01K61/00, опубл. 08.09. 1992).
К недостаткам данного способа следует отнести:
- содержание только оплодотворенных яиц в морской воде с присутствием неомицина не приводит к ускорению развития и уменьшению срока культивирования личинок;
- неомицин, присутствующий в морской воде, используемой только после оплодотворения личинок, выполняет функцию вещества, предотвращающего развитие бактерий и микроорганизмов, и при этом не оказывает никакого влияния на культивируемые организмы;
- длительный срок культивирования личинок, более 30 суток;
- личинок отбирают и периодически ресуспендируют в глубокие емкости, что приводит к травмированию личинок и уменьшению их количества;
- низкая плотность культуры (2 личинки на 1 мл), используемая в способе, в конечном результате делает данный способ неэффективным, поскольку требует больших объемов специально обработанной морской воды и емкостей большого объема;
- необходимость поддержания низкой температуры в течение всего срока культивирования.
Задачей, на решение которой направлено заявляемое изобретение, является повышение эффективности выращивания личинок морских двустворчатых моллюсков в плотной культуре посредством одновременного повышения выживаемости личинок и ускорения процесса их развития за счет воздействия на естественные механизмы физиологической регуляции активности нейронов личинки.
Поставленная задача решается тем, что в известном способе культивирования двустворчатых моллюсков, включающем сбор и содержание в искусственных условиях взрослых моллюсков, стимулирование нереста, оплодотворение яиц, содержание развивающихся яиц до момента выплыва личинок, отбор и рассаживание личинок по отдельным емкостям, доращивание личинок в морской воде, включая стадии бластулы, велигера и педивелигера, и высадку на субстрат, согласно изобретению при доращивании личинок со стадии велигера до стадии педивелигера, т.е. на стадии велигера, в морскую воду добавляют неомицин в количестве 30-50 мкмоль/л.
В качестве двустворчатых моллюсков могут быть использованы виды с планктонной личинкой, в частности разные виды мидий, устриц, морских гребешков. Использование при доращивании личинок на стадии велигера морской воды, содержащей неомицин в количестве 30-50 мкмоль/л, оказывает воздействие на нервные клетки личинки, приводя к увеличению содержания пептида FMRFамида, вследствие чего происходит ускорение развития личинок и увеличение числа выживших личинок. В конечном результате это приводит к снижению продолжительности сроков культивирования и повышению эффективности культивирования двустворчатых моллюсков.
Добавление в морскую воду при культивировании личинок на стадии велигера неомицина в количестве большем 50 мкмоль/л является неэффективным, так как возрастает расход неомицина, а количество выживших личинок и срок их культивирования существенно не меняются.
Культивирование личинок на стадии велигера в морской воде, содержащей неомицин в количестве меньшем 30 мкмоль/л не приводит к существенному изменению содержания пептида FMRFамида в нейронах личинки, не наблюдается сокращения времени развития личинок. В результате снижения продолжительности культивирования не происходит, кроме того, наблюдается высокая смертность личинок при высокой плотности культуры.
С целью дальнейшего увеличения количества выживающих личинок на ранних сроках культивирования, для личинок от стадии бластулы до стадии велигера целесообразно повышать соленость морской воды до 40-42 ‰. В этом случае снижается содержание серотонина в нейронах личинки, что приводит к повышению их выживаемости даже при высокой плотности содержания.
Однако культивирование личинок от стадии бластулы до стадии велигера в морской воде, имеющей соленость более 42‰ недопустимо, так как вызывает повышенную гибель личинок, а снижение солености морской воды менее 40 ‰ неэффективно, так как существенно не влияет на содержание серотонина в нейронах личинки, а, следовательно, не обеспечивает выживаемость личинок со стадии бластулы до стадии велигера в достаточной степени.
Заявленный способ иллюстрируется следующими примерами.
Пример 1
Отбирают в море 30 половозрелых мидий и помещают их в 5 л емкость с морской водой, имеющей температуру 8оС, и аэрируют. Через 8 часов производят стимуляцию выметывания половых продуктов путем замены воды в емкости на подогретую до температуры 25оС морскую воду (термошок). Начало выметывания половых продуктов контролируют визуально в течение 1 часа. После начала выметывания половых продуктов по визуальным признакам определяют пол особей. Точный контроль пола производится путем исследования половых продуктов под микроскопом проходящего света. Самцов и самок распределяют отдельно по одной особи по емкостям со свежей водой объемом 200 мл и температурой 20оС. В течение 30 мин ожидают полного выметывания половых продуктов. Полученную первичную суспензию половых продуктов (отдельно яйцеклетки, отдельно сперматозоиды) процеживают через сито с ячеей 100 мкм. Оплодотворение производят в 10 л емкостях с морской водой нормальной солености (33‰) и высотой столба воды 10 см, при температуре 20оС. На 10 л взвеси яйцеклеток плотностью около 500 яйцеклеток/мл3 добавляют порционно 100 мкл взвеси спермы (приблизительно 15000 сперматозоидов/10 мкл3) при плавном перемешивании. Все дальнейшее развитие проводят при 20оС. Через 12 часов после оплодотворения всплывших личинок собирают с поверхности емкости, аккуратно зачерпывая верхний слой воды стеклянным стаканом (200 мл), и перемещают в 5 л стеклянные стаканы с морской водой, в которых личинок содержат в течение 6 дней (со стадии выплыва до стадии велигера) при плотности около 1000 личинок/10 мл. Перемешивание столба воды осуществляют при помощи механической мешалки (10 об/мин). Смену воды производят каждые третьи сутки, концентрируя личинок с помощью сита с ячеей газа 30 мкм. Кормление личинок начинают на третий день после выплыва добавлением раствора водорослей (Isochrisis) из расчета 100 мкл плотной культуры на 5 л каждый день. Через 6 дней культивирования при очередной смене воды добавляют неомицин до концентрации 50 мкмоль/л. Дальнейшее развитие проводят в воде с неомицином 50 мкмоль/л. Кормление проводят смесью водорослей (Isochrisis и Dunaliella). Смену воды с неомицином производят каждые третьи сутки, концентрируя личинок с помощью сита с ячеей газа 60 мкм. Через 12 дней культивирования, когда большинство личинок достигают стадии педивелигера, перемешивание личинок мешалкой прекращают, личинок собирают и с помощью сита с ячеей газа 60 мкм и высаживают на субстрат.
Количество выживших личинок в 7 раз превышает контроль, средний размер личинок на 20% больше чем в воде без неомицина, личинки достигали стадии педивелигера на 6 дней раньше, чем личинки, культивировавшиеся в воде без неомицина. Относительная яркость нейронов, содержащих серотонин, у личинок при выращивании в воде с неомицином была на 10% ниже, а содержащих FMRFамид на 23% выше, чем у личинок, культивировавшихся в воде без неомицина.
Пример 2
Отбирают в море 30 половозрелых гребешков Свифта и производят стимуляцию выметывания половых продуктов путем инъекции серотонина в мантийную полость (1 мг/мл, 5 мл на 1 кг моллюска). Начало выметывания половых продуктов контролируют визуально в течение 1 часа. После начала выметывания половых продуктов по визуальным признакам определяют пол особей. Точный контроль пола производится путем исследования половых продуктов под микроскопом проходящего света. Самцов и самок распределяют отдельно по одной особи по емкостям со свежей водой объемом 500 мл и температурой 20оС. В течение 30 мин ожидают полного выметывания половых продуктов. Полученную первичную суспензию половых продуктов (отдельно яйцеклетки, отдельно сперматозоиды) процеживают через сито с ячеей 100 мкм. Оплодотворение производят в 10 л емкостях с морской водой нормальной солености (33‰) и высотой столба воды 10 см. На 10 л взвеси яйцеклеток плотностью около 500 яйцеклеток/мл3 добавляют порционно 100 мкл взвеси спермы (приблизительно 15000 сперматозоидов/10 мкл3) при плавном перемешивании. Все дальнейшее развитие проводят при 20оС. Через 12 часов после оплодотворения всплывших личинок собирают с поверхности емкости, аккуратно зачерпывая верхний слой воды стеклянным стаканом (200 мл), и перемещают в 5 л стеклянные стаканы с морской водой с повышенной соленостью 42‰, в которых личинок содержат в течение 6 дней (со стадии выплыва до стадии велигера) при плотности около 1000 личинок/10 мл. Перемешивание столба воды осуществляют при помощи механической мешалки (10 об/мин). Смену воды производят каждые третьи сутки, концентрируя личинок с помощью сита с ячеей газа 30 мкм. Кормление личинок начинают на третий день после выплыва добавлением раствора водорослей (Isochrisis) из расчета 100 мкл плотной культуры на 5 л каждый день. Через 6 дней культивирования при очередной смене воды воду с соленостью 42‰ заменяют на воду с соленостью 33 промилле, в которую добавляют неомицин до концентрации 50 мкмоль/л. Дальнейшее развитие проводят в воде с соленостью 33‰ с неомицином 50 мкмоль/л. Кормление проводят смесью водорослей (Isochrisis и Dunaliella). Смену воды с неомицином производят каждые третьи сутки, концентрируя личинок с помощью сита с ячеей газа 60 мкм. Через 12 дней культивирования, когда большинство личинок достигают стадии педивелигера, перемешивание личинок мешалкой прекращают, личинок собирают и с помощью сита с ячеей газа 60 мкм и высаживают на субстрат.
Количество личинок, выживших при выращивании в воде с соленостью 42‰, а затем в воде соленостью 33‰ с неомицином, в 4 раза больше, их средний размер на 12% больше, личинки достигали стадии педивелигера на 5 дней раньше, чем личинки, культивировавшиеся в воде соленостью 33‰ без неомицина. Относительная яркость нейронов, содержащих серотонин, у личинок при описанном способе выращивания была на 11% ниже, а содержащих FMRFамид на 17% выше, чем у личинок, культивировавшихся в воде без неомицина.
Пример 3
Берут 30 половозрелых устриц и помещают на 8 часов в 5 л морской воды с температурой 8оС и аэрацией. Через 8 часов производят стимуляцию выметывания половых продуктов путем замены воды в емкости на подогретую до температуры 25оС морскую воду (термошок). Начало выметывания половых продуктов контролируют визуально в течение 1 часа. После начала выметывания половых продуктов по визуальным признакам определяют пол особей. Точный контроль пола производится путем исследования половых продуктов под микроскопом проходящего света. Самцов и самок распределяют отдельно по одной особи по емкостям со свежей водой объемом 500 мл и температурой 20оС. В течение 30 мин ожидают полного выметывания половых продуктов. Полученную первичную суспензию половых продуктов (отдельно яйцеклетки, отдельно сперматозоиды) процеживают через сито с ячеей 100 мкм. Оплодотворение производят в 10 л емкостях с морской водой нормальной солености (33 промилле) и высотой столба воды 10 см. На 10 л взвеси яйцеклеток плотностью около 500 яйцеклеток/мл3 добавляют порционно 100 мкл взвеси спермы (приблизительно 15000 сперматозоидов/10 мкл3) при плавном перемешивании. Все дальнейшее развитие проводят при 20оС. Через 12 часов после оплодотворения всплывших личинок собирают с поверхности емкости, аккуратно зачерпывая верхний слой воды стеклянным стаканом (200 мл), и перемещают в 5 л стеклянные стаканы с морской водой с повышенной соленостью 42 ‰, в которых личинок содержат в течение 6 дней (со стадии выплыва до стадии велигера) при плотности около 1000 личинок/10 мл. Перемешивание столба воды осуществляют при помощи механической мешалки (10 об/мин). Смену воды производят каждые третьи сутки, концентрируя личинок с помощью сита с ячеей газа 30 мкм. Кормление личинок начинают на третий день после выплыва добавлением раствора водорослей (Isochrisis) из расчета 100 мкл плотной культуры на 5 л каждый день. Через 6 дней культивирования при очередной смене воды воду с соленостью 42 ‰ заменяют на воду с соленостью 33 ‰, в которую добавляют неомицин до финальной концентрации 30 мкмоль/л. Дальнейшее развитие проводят в воде с соленостью 33 ‰ с неомицином 30 мкмоль/л. Кормление проводят смесью водорослей (Isochrisis и Dunaliella). Смену воды с неомицином производят каждые третьи сутки, концентрируя личинок с помощью сита с ячеей газа 60 мкм. Через 12 дней культивирования, когда большинство личинок достигают стадии педивелигера, перемешивание личинок мешалкой прекращают, личинок собирают и с помощью сита с ячеей газа 60 мкм и высаживают на субстрат. В описанном примере количество личинок, выживших при выращивании в воде с неомицином, было в 3 раза больше, их средний размер был на 12% больше, чем в воде без неомицина, личинки достигали стадии педивелигера на 3 дня раньше, чем личинки, культивировавшиеся в воде без неомицина. Относительная яркость нейронов, содержащих серотонин, у личинок при описанном способе выращивания была на 5% ниже, а содержащих FMRFамид на 10% выше, чем у личинок, культивировавшихся в воде без неомицина.
Пример 4
Берут 30 половозрелых мидий и помещают на 8 часов в 5 л морской воды с температурой 8оС и аэрацией. Через 8 часов производят стимуляцию выметывания половых продуктов путем замены воды в емкости на подогретую до температуры 25оС морскую воду (термошок). Начало выметывания половых продуктов контролируют визуально в течение 1 часа. После начала выметывания половых продуктов по визуальным признакам определяют пол особей. Точный контроль пола производится путем исследования половых продуктов под микроскопом проходящего света. Самцов и самок распределяют отдельно по одной особи по емкостям со свежей водой объемом 200 мл и температурой 20оС. В течение 30 мин ожидают полного выметывания половых продуктов. Полученную первичную суспензию половых продуктов (отдельно яйцеклетки, отдельно сперматозоиды) процеживают через сито с ячеей 100 мкм. Оплодотворение производят в 10 л емкостях с морской водой нормальной солености (33 ‰) и высотой столба воды 10 см при температуре 20оС. На 10 л взвеси яйцеклеток плотностью около 500 яйцеклеток/мл3 добавляют порционно 100 мкл взвеси спермы (приблизительно 15000 сперматозоидов/10 мкл3) при плавном перемешивании. Все дальнейшее развитие проводят при 20оС. Через 12 часов после оплодотворения всплывших личинок собирают с поверхности емкости, аккуратно зачерпывая верхний слой воды стеклянным стаканом (200 мл), и перемещают в 5 л стеклянные стаканы с морской водой с повышенной соленостью 40 ‰, в которых личинок содержат в течение 6 дней (со стадии выплыва до стадии велигера) при плотности около 1000 личинок/10 мл. Перемешивание столба воды осуществляют при помощи механической мешалки (10 об/мин). Смену воды производят каждые третьи сутки, концентрируя личинок с помощью сита с ячеей газа 30 мкм. Кормление личинок начинают на третий день после выплыва, добавлением раствора водорослей (Isochrisis) из расчета 100 мкл плотной культуры на 5 л каждый день. Через 6 дней культивирования при очередной смене воды добавляют неомицин до финальной концентрации 50 мкМ. Дальнейшее развитие проводят в воде с неомицином 50 мкМ. Кормление проводят смесью водорослей (Isochrisis и Dunaliella). Смену воды с неомицином производят каждые третьи сутки, концентрируя личинок с помощью сита с ячеей газа 60 мкм. Через 12 дней культивирования, когда большинство личинок достигают стадии педивелигера, перемешивание личинок мешалкой прекращают, личинок собирают и с помощью сита с ячеей газа 60 мкм и высаживают на субстрат. В описанном примере количество личинок, выживших при выращивании в воде с неомицином, было в 10 раз больше, их средний размер был на 25% больше, чем в воде без неомицина, личинки достигали стадии педивелигера на 7,5 дней раньше, чем личинки, культивировавшиеся в воде без неомицина. Относительная яркость нейронов, содержащих серотонин, у личинок при описанном способе выращивания была на 15% ниже, а содержащих FMRFамид на 25% выше, чем у личинок, культивировавшихся в воде без неомицина.
Заявленный технический результат также иллюстрируются чертежами 1-5 и таблицей. На фиг. 1 показаны апикальные нейроны личинки мидии, культивированной по Примеру 4. Нейроны окрашены антителами против серотонина. Видно, что яркость окрашивания, и, следовательно, содержание серотонина существенно ниже у личинок, культивированных в воде соленостью 40‰ с 50 мкмоль/л неомицина.
На фиг. 2 показана нервная система личинки мидии, культивированной по Примеру 4. Нейроны окрашены антителами против пептида FMRFамида. Видно, что яркость окрашивания и количество выявленных нервных отростков, и, следовательно, содержание FMRFамида, существенно выше у личинок, культивированных в воде соленостью 40‰ с 50 мкмоль/л неомицина.
На фиг. 3 представлен график выживаемости личинок мидии при культивировании в воде различной солености. Видно, что количество личинок в воде с соленостью 40‰ в 2,5 раза больше, чем в воде с соленостью 33‰.
На фиг. 4 представлен график выживаемости личинок мидии при культивировании в воде с 50 мкмоль/л неомицина. Видно, что количество личинок в воде с неомицином в 8,5 раз больше, чем в контроле (без неомицина).
На фиг. 5 представлен график размеров личинок мидии при культивировании в воде с 50 мкмоль/л неомицина. Видно, что средний размер личинок в воде с неомицином на 62 мкм (32%), а максимальный на 89 мкм больше, чем у контрольных (культивировавшихся в воде без неомицина).
В Таблице показан процент личинок, достигших стадии педивелигера (готовой к оседанию личинки), у различных двустворчатых моллюсков на 17 день развития. Видно, что процент готовых к оседанию личинок у всех трех видов моллюсков в 7-18 раз больше, чем при культивировании в воде нормальной солености без неомицина.
Таким образом, представленные иллюстрации не только подтверждают результаты, полученные в примерах 1-4, но и наглядно демонстрируют, что добавление неомицина в морскую воду при доращивании личинок со стадии велигера до стадии педивелигера, а также дополнительное использование морской воды с повышенной соленостью 40-42‰ со стадии бластулы до стадии велигера, оказывают значительное влияние на содержание медиаторов серотонина и FMRFамида в нейронах личинки, что приводит к увеличению выживаемости и увеличению среднего размера личинок. В конечном результате, повышается продуктивность и уменьшается продолжительность культивирования личинок с момента оплодотворения до момента их высадки на субстрат.

Claims (2)

1. Способ культивирования двустворчатых моллюсков, включающий сбор и содержание в искусственных условиях взрослых моллюсков, стимулирование нереста, оплодотворение яиц, содержание развивающихся яиц до момента выплыва личинок, отбор и рассаживание личинок по отдельным емкостям, доращивание личинок в морской воде, включая стадии бластулы, велигера и педивелигера, с последующим высаживанием на субстрат, отличающийся тем, что при доращивании личинок со стадии велигера до стадии педивелигера в морскую воду добавляют неомицин в количестве 30-50 мкмоль/л.
2. Способ по 1, отличающийся тем, что при доращивании личинок от стадии бластулы до стадии велигера используют морскую воду соленостью 40-42 ‰.
RU2013144645/13A 2013-10-07 2013-10-07 Способ культивирования двустворчатых моллюсков RU2538396C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013144645/13A RU2538396C1 (ru) 2013-10-07 2013-10-07 Способ культивирования двустворчатых моллюсков

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013144645/13A RU2538396C1 (ru) 2013-10-07 2013-10-07 Способ культивирования двустворчатых моллюсков

Publications (1)

Publication Number Publication Date
RU2538396C1 true RU2538396C1 (ru) 2015-01-10

Family

ID=53288051

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013144645/13A RU2538396C1 (ru) 2013-10-07 2013-10-07 Способ культивирования двустворчатых моллюсков

Country Status (1)

Country Link
RU (1) RU2538396C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532883A (en) * 1983-10-14 1985-08-06 Monterey Abalone Farms Process for controlling the microbial environment in abalone mariculture
US5144907A (en) * 1988-10-06 1992-09-08 Dabinett Patrick E Scallop aquaculture
RU2479996C2 (ru) * 2011-04-14 2013-04-27 Федеральное Государственное унитарное предприятие Азовский научно-исследовательский институт рыбного хозяйства Экологический комплекс для аквакультуры и рекультивации морских вод

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532883A (en) * 1983-10-14 1985-08-06 Monterey Abalone Farms Process for controlling the microbial environment in abalone mariculture
US5144907A (en) * 1988-10-06 1992-09-08 Dabinett Patrick E Scallop aquaculture
RU2479996C2 (ru) * 2011-04-14 2013-04-27 Федеральное Государственное унитарное предприятие Азовский научно-исследовательский институт рыбного хозяйства Экологический комплекс для аквакультуры и рекультивации морских вод

Similar Documents

Publication Publication Date Title
Rakaj et al. Spawning and rearing of Holothuria tubulosa: A new candidate for aquaculture in the Mediterranean region
Hinegardner Growth and development of the laboratory cultured sea urchin
JP6267810B2 (ja) カキの陸上養殖方法
Vijverberg Culture techniques for studies on the growth, development and reproduction of copepods and cladocerans under laboratory and in situ conditions: a review
CN105875453A (zh) 提高虾夷扇贝高温耐受的杂交育种方法
CN108967278A (zh) 一种金钱鱼的人工繁殖方法
CN100372510C (zh) 全人工培育斑节对虾亲体的方法
CN106259118B (zh) 一种大鳞鲃鱼苗培育方法
Eddy et al. Aquaculture of the green sea urchin Strongylocentrotus droebachiensis in North America
CN109892261B (zh) 巴布亚硝水母人工养殖方法
Alagarswami et al. Hatchery technology for pearl oyster production
Chen et al. Sea cucumber aquaculture in China
Sorgeloos et al. Production and use of Artemia in aquaculture
RU2538396C1 (ru) Способ культивирования двустворчатых моллюсков
RU2614644C1 (ru) Способ интенсивного когортного культивирования акарций (морских каланоидных копепод)
Yaqing et al. The status of mariculture in northern China
RU2548116C1 (ru) Способ получения молоди (спата) мидий mytillus galloprovincialis для выращивания в черном море
JP7174062B2 (ja) マダコ(octopus vulgaris)の幼生の培養方法
RU2541459C1 (ru) Способ выращивания гигантской устрицы crassostrea gigas в черном море
KR101839314B1 (ko) 쏘가리 초기 양식방법 및 양식장치
CN105211005A (zh) 一种水蛭苗种生态立体培养方法
KR101839315B1 (ko) 쏘가리 초기 양식방법 및 양식장치
Nayar et al. Production of oyster seed in a hatchery system
CN114680083B (zh) 一种无菌丰年虫的制作方法及其应用
CN102106298A (zh) 中国龙虾幼体培育方法

Legal Events

Date Code Title Description
TC4A Change in inventorship

Effective date: 20150706

PD4A Correction of name of patent owner